Encyclopedia of Complexity and Systems Science

2009 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Interaction Based Computing in Physics

  • Franco Bagnoli
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30440-3_291


Physics investigation is based on building models of reality: in order for a phenomenon to be understood, we need to represent it in our minds using a limited amount of symbols. However, it is a common experience that, even using simple “building blocks” one usually obtains systems whose behavior is quite complex. In this case one needs to develop new languages and new phenomenological models in order to manage this “complexity”.

Computers have changed the way a physical model is studied. Computers may be used to calculate the properties of a very complicated model representing a real system, or to investigate experimentallywhat are the essential ingredients of a complex phenomenon. In order to carry out these explorations, several basic models have been developed, which are now used as building blocks for performing simulations and designing algorithms in many fields, from chemistry to engineering, from natural sciences to psychology. Rather than being derived from some...

This is a preview of subscription content, log in to check access.


Primary Literature

  1. 1.
    Albert R, Barabasi AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. 2.
    Bagnoli F (2000) Cellular automata. In: Bagnoli F, Ruffo S (eds) Dynamical Modeling in Biotechnologies. World Scientific, Singapore, p 1Google Scholar
  3. 3.
    Bagnoli F, Boccara N, Rechtman R (2001) Nature of phase transitions in a probabilistic cellular automaton with two absorbing states. Phys Rev E 63(4):046 116CrossRefGoogle Scholar
  4. 4.
    Bagnoli F, Cecconi F (2001) Synchronization of non-chaotic dynamical systems. Phys Lett A 282(1–2):9–17 MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    Bagnoli F, Rechtman R (1999) Synchronization and maximum Lyapunov exponents of cellular automata. Phys Rev E 59(2):R1307–R1310ADSCrossRefGoogle Scholar
  6. 6.
    Bagnoli F, Rechtman R (2007) Entropy and chaos in a discrete hydrodynamical system. arXiv:cond-mat/0702074Google Scholar
  7. 7.
    Bagnoli F, Rechtman R, Ruffo S (1992) Damage spreading and Lyapunov exponents in cellular automata. Phys Lett A 172:34ADSCrossRefGoogle Scholar
  8. 8.
    Bagnoli F, Rechtman R, Ruffo S (1994) Some facts of life. Physica A 171:249MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Bak P, Tang C, Weisenfeld K (1987) Self-organizing criticality: An explanation of 1/f noise. Phys Rev A 38:364–374ADSCrossRefGoogle Scholar
  10. 10.
    Barkema GT, MacFarland T (1994) Parallel simulation of the ising model. Phys Rev E 50(2):1623–1628ADSCrossRefGoogle Scholar
  11. 11.
    Berlekamp E, Conway J, Guy R (1982) What is Life?, vol 2: Games in Particular. Academic Press, London, chap 25Google Scholar
  12. 12.
    Binney J, Dowrick N, Fisher A, Newman MEJ (1993) The Theory of Critical Phenomena. Oxford Science Publications. Clarendon Press, OxfordGoogle Scholar
  13. 13.
    Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU (2006) Complex networks: Structure and dynamics. Phys Rep 424(4–5):175–308MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Broadbent S, Hammersley J (1957) Percolation processes I. Crystals and mazes. Proc Camb Philos Soc 53:629–641MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. 15.
    Cailliau R (1995) A short history of the web. http://www.netvalley.com/archives/mirrors/robert_cailliau_speech.htm Accessed 25 May 2008
  16. 16.
    Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55(22):2471–2474ADSCrossRefGoogle Scholar
  17. 17.
    Cecconi F, Livi R, Politi A (1998) Fuzzy transition region in a one-dimensional coupled-stable-map lattice. Phys Rev E 57(3):2703–2712ADSCrossRefGoogle Scholar
  18. 18.
    Chopard B, Luthi P, Masselot A, Dupuis A (2002) Cellular automata and lattice Boltzmann techniques: An approach to model and simulate complex systems. Adv Complex Syst 5(2):103–246MathSciNetzbMATHGoogle Scholar
  19. 19.
    Crutchfield J, Kaneko K (1988) Are attractors relevant to turbulence? Phys Rev Lett 60(26):2715–2718MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    Daxois T, Peyrard M, Ruffo S (2005) The Fermi–Pasta–Ulam ‘numerical experiment’: History and pedagogical perspectives. Eur J Phys 26:S3–S11CrossRefGoogle Scholar
  21. 21.
    Domany E, Kinzel W (1984) Equivalence of cellular automata to ising models and directed percolation. Phys Rev Lett 53(4):311–314MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    Dotsenko V (1994) An Introduction to the Theory of Spin Glasses and Neural Networks. World Scientific, SingaporezbMATHGoogle Scholar
  23. 23.
    El Yacouby S, Chopard B, Bandini S (eds) (2006) Cellular Automata. Lecture Notes in Computer Science, vol 4173. Springer, BerlinGoogle Scholar
  24. 24.
    Enabling grids for e-science. http://www.eu-egee.org/ Accessed 25 May 2008
  25. 25.
    Fermi E, Pasta J, Ulam S (1955) Los alamos report la-1940. In: Segré E (ed) Collected papers of Enrico Fermi. University of Cicago Press, ChicagoGoogle Scholar
  26. 26.
    Frisch U, Hasslacher B, Pomeau Y (1986) Lattice-gas automata for the navier-stokes equation. Phys Rev Lett 56(14):1505–1508ADSCrossRefGoogle Scholar
  27. 27.
    Gardiner CW (1994) Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences. Springer series in synergetics, vol 13. Springer, BerlinGoogle Scholar
  28. 28.
    Georges A, le Doussal P (1989) From equilibrium spin models to probabilistic cellular automata. J Stat Phys 54(3–4):1011–1064ADSzbMATHCrossRefGoogle Scholar
  29. 29.
    Hardy J, Pomeau Y, de Pazzis O (1973) Time evolution of a two-dimensional classical lattice system. Phys Rev Lett 31(5):276–279ADSCrossRefGoogle Scholar
  30. 30.
    Harlow H, Metropolis N (1983) Computing & computers - weapons simulation leads to the computer era. Los Alamos Science 4(7):132Google Scholar
  31. 31.
    Haw M (2005) Einstein's random walk. Physics World 18:19–22Google Scholar
  32. 32.
    Hinrichsen H (1997) Stochastic lattice models with several absorbing states. Phys Rev E 55(1):219–226ADSCrossRefGoogle Scholar
  33. 33.
    Jaynes E (1957) Information theory and statistical mechanics. Phys Rev 106(4):620–630MathSciNetADSzbMATHCrossRefGoogle Scholar
  34. 34.
    Kaneko K (1985) Spatiotemporal intermittency in coupled map lattices. Progr Theor Phys 74(5):1033–1044ADSzbMATHCrossRefGoogle Scholar
  35. 35.
    Kawasaki K (1972) Kinetics of Ising model. In: Domb CM, Green MS (eds) Phase Transitions and Critical Phenomena, vol 2. Academic Press, New York, p 443Google Scholar
  36. 36.
    Kirkpatrick S, Gelatt Jr CG, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680MathSciNetADSzbMATHCrossRefGoogle Scholar
  37. 37.
    Lawniczak A, Dab D, Kapral R, Boon JP (1991) Reactive lattice gas automata. Phys D 47(1–2):132–158MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Lorenz E (1996) History of chaos: http://library.thinkquest.org/3120/old_htdocs.1/text/fraz1.txt Accessed 25 May 2008
  39. 39.
    Marinari E, Parisi G (1992) Simulated tempering: A new Monte Carlo scheme. Europhys Lett 19:451–458ADSCrossRefGoogle Scholar
  40. 40.
    May R (1976) Simple mathematical models with very complicated dynamics. Nature 261:459–467ADSCrossRefGoogle Scholar
  41. 41.
    Metropolis N, Hewlett J, Rota GC (eds) (1980) A History of Computing in the Twentieth Century. Academic Press, New YorkzbMATHGoogle Scholar
  42. 42.
    Mezard M, Parisi G, Virasoro MA (1987) Spin Glass Theory and Beyond. World Scientific Lecture Notes in Physics, vol 9. World Scientific, SingaporeGoogle Scholar
  43. 43.
    Newman ME (2005) Power laws, pareto distributions and zipf's law. Contemp Phys 46:323–351ADSCrossRefGoogle Scholar
  44. 44.
    Niss M (2005) History of the Lenz–Ising model 1920–1950: From ferromagnetic to cooperative phenomena. Arch Hist Exact Sci 59(3):267–318MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Nordfalk J, Alstrøm P (1996) Phase transitions near the “game of life”. Phys Rev E 54(2):R1025–R1028Google Scholar
  46. 46.
    Onsager L (1944) Crystal statistics. i. a two-dimensional model with an order-disorder transition. Phys Rev 65:117–149MathSciNetADSzbMATHCrossRefGoogle Scholar
  47. 47.
    Politi A, Livi R, Oppo GL, Kapral R (1993) Unpredictable behaviour of stable systems. Europhys Lett 22(8):571–576ADSCrossRefGoogle Scholar
  48. 48.
    Rabiner L (1989) A tutorial on hidden markov models and selected applications in speech recognition. Proc IEEE 77(2):257–286CrossRefGoogle Scholar
  49. 49.
    Rapaport DC (2004) The Art of Molecular Dynamics Simulation. Cambridge University Press, CambridgezbMATHCrossRefGoogle Scholar
  50. 50.
    Repast – recursive porus agent simulation toolkit. http://repast.sourceforge.net/ Accessed 25 May 2008
  51. 51.
    Rothman DH, Zaleski S (2004) Lattice-Gas Cellular Automata. Monographs and Texts in Statistical Physics. Collection Alea-Saclay, ParisGoogle Scholar
  52. 52.
    Sornette D (2006) Critical Phenomena in Natural Sciences. Springer Series in Synergetics. Springer, BerlinGoogle Scholar
  53. 53.
    Stauffer D, Aharony A (1994) Introduction To Percolation Theory. Taylor Francis, LondonGoogle Scholar
  54. 54.
    Succi S (2001) The Lattice Boltzmann Equation For Fluid Dynamics and Beyond. Numerical Mathematics and Scientific Computation. Oxford University Press, OxfordGoogle Scholar
  55. 55.
    Swendsen R, Wang JS (1987) Nonuniversal critical dynamics in Monte Carlo simulations. Phys Rev Lett 58(2):86–88ADSCrossRefGoogle Scholar
  56. 56.
    van Kampen NG (1992) Stochastic Processes in Physics and Chemistry. North-Holland, AmsterdamGoogle Scholar
  57. 57.
    Von Neumann universal constructor. http://en.wikipedia.org/wiki/Von_Neumann_Universal_Constructor Accessed 25 May 2008
  58. 58.
    Watts D, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–441ADSCrossRefGoogle Scholar
  59. 59.
    Wilensky U (1999) Netlogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling. Northwestern University, Evanston; Accessed 25 May 2008
  60. 60.
    Wolf-Gladrow D (2004) Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction. Lecture Notes in Mathematics, vol 1725. Springer, BerlinGoogle Scholar
  61. 61.
    Wolfram S (1983) Statistical mechanics of cellular automata. Rev Mod Phys 55:601–644MathSciNetADSzbMATHCrossRefGoogle Scholar
  62. 62.
    Wright W (1989) Simcity. http://simcitysocieties.ea.com/ Accessed 25 May 2008

Books and Reviews

  1. 63.
    Bungartz H-J, Mundani R-P, Frank AC (2005) Bubbles, jaws, moose tests, and more: The wonderful world of numerical simulation, Springer VideoMATH. Springer, Berlin (DVD)Google Scholar
  2. 64.
    Gould H, Tobochnik J, Christian W (2007) An Introduction to Computer Simulation Methods: Applications to Physical Systems. Addison-Wesley, New YorkGoogle Scholar
  3. 65.
    Landau RH (2005) A First Course in Scientific Computing: Symbolic, Graphic, and Numeric Modeling Using Maple, Java, Mathematica, and Fortran90. Princeton University Press, PrincetonGoogle Scholar
  4. 66.
    Chopard B, Droz M (2005) Cellular automata modeling of physical systems. In: Collection Alea-Saclay: Monographs and Texts in Statistical Physics. Cambridge University Press, CambridgeGoogle Scholar
  5. 67.
    Boccara N (2004) Modeling complex systems. In: Graduate Texts in Contemporary Physics. Springer, BerlinGoogle Scholar
  6. 68.
    Deisboeck S, Kresh JY (eds) (2006) Complex systems science in biomedicine. In: Topics in Biomedical Engineering. Springer, New YorkGoogle Scholar
  7. 69.
    Resnick M (1994) Turtles, Termites, and Traffic Jams. Explorations in Massively Parallel Microworlds. In: Complex Adaptive Systems. MIT Press, CambridgeGoogle Scholar
  8. 70.
    Shalizi C, Cosma's Home Page http://www.cscs.umich.edu/%7Ecrshalizi/
  9. 71.

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Franco Bagnoli
    • 1
  1. 1.University of FlorenceFlorenceItaly