Encyclopedia of Complexity and Systems Science

2009 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Genome Organization

  • Gustavo Glusman
  • Arian F. A. Smit
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30440-3_245


With rare exceptions, all known living organisms encode their genetic material in the form of double‐stranded DNA, in one or more chromosomes,collectively referred to as the “genome”. A cell lacking its genome cannot survive for long, since it cannot produce new transcripts inresponse to environmental challenges. For example, red blood cells lose their DNA and can only function as oxygen shuttles until they break down. Thegenome includes most of the information needed by the cells to stay alive, to differentiate into new cell types, and to perform their functions in thecontext of the organism. As such, it is the ultimate resource for identifying the full set of components in the living system. Eukaryotic genomes are muchlarger than strictly needed to encode the relatively modest set of genes in them, but several mechanisms give rise to a very complextranscriptome.


In 1920, the German botanist Hans Winkler wrote: “I propose the expression Genom for the haploid...

This is a preview of subscription content, log in to check access.


Primary Literature

  1. 1.
    Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195Google Scholar
  2. 2.
    Aparicio S, Chapman J, Stupka E, Putnam N, Chia JM et al (2002) Whole‐genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297:1301–1310ADSGoogle Scholar
  3. 3.
    Aravin AA, Hannon GJ, Brennecke J (2007) The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science 318:761–764ADSGoogle Scholar
  4. 4.
    Bailey JA, Eichler EE (2006) Primate segmental duplications: Crucibles of evolution, diversity and disease. Nat Rev Genet 7:552–564Google Scholar
  5. 5.
    Bailey JA, Liu G, Eichler EE (2003) An Alu transposition model for the origin and expansion of human segmental duplications. Am J Hum Genet 73:823–834Google Scholar
  6. 6.
    Bartel DP (2004) MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 116:281–297Google Scholar
  7. 7.
    Batada NN, Hurst LD (2007) Evolution of chromosome organization driven by selection for reduced gene expression noise. Nat Genet 39:945–949Google Scholar
  8. 8.
    Behm-Ansmant I, Kashima I, Rehwinkel J, Sauliere J, Wittkopp N et al (2007) mRNA quality control: An ancient machinery recognizes and degrades mRNAs with nonsense codons. FEBS Lett 581:2845–2853Google Scholar
  9. 9.
    Bennetzen JL (2007) Patterns in grass genome evolution. Curr Opin Plant Biol 10:176–181Google Scholar
  10. 10.
    Berget SM (1995) Exon recognition in vertebrate splicing. J Biol Chem 270:2411–2414Google Scholar
  11. 11.
    Berget SM, Moore C, Sharp PA (1977) Spliced segments at the 5′ terminus of adenovirus 2 late mRNA. Proc Natl Acad Sci USA 74:3171–3175ADSGoogle Scholar
  12. 12.
    Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR et al (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447:799–816ADSGoogle Scholar
  13. 13.
    Blasco MA (2007) Telomere length, stem cells and aging. Nat Chem Biol 3:640–649Google Scholar
  14. 14.
    Blow N (2007) Genomics: The personal side of genomics. Nature 449:627–630ADSGoogle Scholar
  15. 15.
    Bolzer A, Kreth G, Solovei I, Koehler D, Saracoglu K et al (2005) Three‐dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol 3:e157Google Scholar
  16. 16.
    Bourc'his D, Bestor T (2004) Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431:96–99ADSGoogle Scholar
  17. 17.
    Bourgeois CF, Lejeune F, Stevenin J (2004) Broad specificity of SR (serine/arginine) proteins in the regulation of alternative splicing of pre‐messenger RNA. Prog Nucleic Acid Res Mol Biol 78:37–88Google Scholar
  18. 18.
    Bourque G, Zdobnov EM, Bork P, Pevzner PA, Tesler G (2005) Comparative architectures of mammalian and chicken genomes reveal highly variable rates of genomic rearrangements across different lineages. Genome Res 15:98–110Google Scholar
  19. 19.
    C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: A platform for investigating biology. Science 282:2012–2018ADSGoogle Scholar
  20. 20.
    Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC et al (2005) The transcriptional landscape of the mammalian genome. Science 309:1559–1563ADSGoogle Scholar
  21. 21.
    Cartegni L, Chew SL, Krainer AR (2002) Listening to silence and understanding nonsense: Exonic mutations that affect splicing. Nat Rev Genet 3:285–298Google Scholar
  22. 22.
    Casola C, Hucks D, Feschotte C (2008) Convergent domestication of pogo-Like Transposases into centromere‐binding proteins in fission yeast and mammals. Mol Biol Evol 25(1):29–41Google Scholar
  23. 23.
    Cavalier-Smith T (1978) Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNAC-value paradox. J Cell Sci 34:247–278Google Scholar
  24. 24.
    Cavalier-Smith T, Beaton MJ (1999) The skeletal function of non-genic nuclear DNA: New evidence from ancient cell chimaeras. Genetica 106:3–13Google Scholar
  25. 25.
    Chen FC, Wang SS, Chen CJ, Li WH, Chuang TJ (2006) Alternatively and constitutively spliced exons are subject to different evolutionary forces. Mol Biol Evol 23:675–682Google Scholar
  26. 26.
    Chen WH, Lv G, Lv C, Zeng C, Hu S (2007) Systematic analysis of alternative first exons in plant genomes. BMC Plant Biol 7:55Google Scholar
  27. 27.
    Cheng J, Kapranov P, Drenkow J, Dike S, Brubaker S et al (2005) Transcriptional maps of 10 human chromosomes at 5‑nucleotide resolution. Science 308:1149–1154ADSGoogle Scholar
  28. 28.
    Chimpanzee Genome Sequencing Consortium (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437:69–87Google Scholar
  29. 29.
    Clark AG, Eisen MB, Smith DR, Bergman CM, Oliver B et al (2007) Evolution of genes and genomes on the drosophila phylogeny. Nature 450:203–218ADSGoogle Scholar
  30. 30.
    Conti E, Izaurralde E (2005) Nonsense‐mediated mRNA decay: Molecular insights and mechanistic variations across species. Curr Opin Cell Biol 17:316–325Google Scholar
  31. 31.
    Doolittle WF, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284:601–603ADSGoogle Scholar
  32. 32.
    Duret L, Eyre-Walker A, Galtier N (2006) A new perspective on isochore evolution. Gene 385:71–74Google Scholar
  33. 33.
    Egan ES, Fogel MA, Waldor MK (2005) Divided genomes: Negotiating the cell cycle in prokaryotes with multiple chromosomes. Mol Microbiol 56:1129–1138Google Scholar
  34. 34.
    Esnault C, Heidmann O, Delebecque F, Dewannieux M, Ribet D et al (2005) APOBEC3G cytidine deaminase inhibits retrotransposition of endogenous retroviruses. Nature 433:430–433Google Scholar
  35. 35.
    Fiers W, Contreras R, Duerinck F, Haegeman G, Iserentant D et al (1976) Complete nucleotide sequence of bacteriophage MS2 RNA: Primary and secondary structure of the replicase gene. Nature 260:500–507ADSGoogle Scholar
  36. 36.
    Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE et al (1998) Potent and specific genetic interference by double‐stranded RNA in Caenorhabditis elegans. Nature 391:806–811ADSGoogle Scholar
  37. 37.
    Fitch DH, Bailey WJ, Tagle DA, Goodman M, Sieu L et al (1991) Duplication of the gamma‐globin gene mediated by L1 long interspersed repetitive elements in an early ancestor of simian primates. Proc Natl Acad Sci USA 88:7396–7400ADSGoogle Scholar
  38. 38.
    Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF et al (1995) Whole‐genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512ADSGoogle Scholar
  39. 39.
    Force A, Lynch M, Pickett FB, Amores A, Yan YL et al (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545Google Scholar
  40. 40.
    Forrest AR, Taylor DF, Crowe ML, Chalk AM, Waddell NJ et al (2006) Genome‐wide review of transcriptional complexity in mouse protein kinases and phosphatases. Genome Biol 7:R5Google Scholar
  41. 41.
    Frith MC, Carninci P, Kai C, Kawai J, Bailey TL et al (2007) Splicing bypasses 3′ end formation signals to allow complex gene architectures. Gene 403:188–193Google Scholar
  42. 42.
    Galagan J, Selker E (2004) RIP: The evolutionary cost of genome defense. Trends Genet 20:417–423Google Scholar
  43. 43.
    Gerstein MB, Bruce C, Rozowsky JS, Zheng D, Du J et al (2007) What is a gene, post‐ENCODE? History and updated definition. Genome Res 17:669–681Google Scholar
  44. 44.
    Gilad Y, Man O, Glusman G (2005) A comparison of the human and chimpanzee olfactory receptor gene repertoires. Genome Res 15:224–230Google Scholar
  45. 45.
    Gladyshev EA, Arkhipova IR (2007) Telomere‐associated endonuclease‐deficient Penelope‐like retroelements in diverse eukaryotes. Proc Natl Acad Sci USA 104:9352–9357ADSGoogle Scholar
  46. 46.
    Glusman G, Qin S, El-Gewely MR, Siegel AF, Roach JC et al (2006) A third approach to gene prediction suggests thousands of additional human transcribed regions. PLoS Comput Biol 2:e18ADSGoogle Scholar
  47. 47.
    Gott JM (2003) Expanding genome capacity via RNA editing. C R Biol 326:901–908Google Scholar
  48. 48.
    Gregory TR (2001) Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol Rev Camb Philos Soc 76:65–101Google Scholar
  49. 49.
    Gregory TR (2002) Genome size and developmental complexity. Genetica 115:131–146MathSciNetGoogle Scholar
  50. 50.
    Griffiths-Jones S (2007) Annotating noncoding RNA genes. Annu Rev Genomics Hum Genet 8:279–298Google Scholar
  51. 51.
    Han K, Lee J, Meyer TJ, Wang J, Sen SK et al (2007) Alu recombination‐mediated structural deletions in the chimpanzee genome. PLoS Genet 3:1939–1949Google Scholar
  52. 52.
    Hedges SB, Chen H, Kumar S, Wang DY, Thompson AS et al (2001) A genomic timescale for the origin of eukaryotes. BMC Evol Biol 1:4Google Scholar
  53. 53.
    Holmes R, Malim M, Bishop K (2007) APOBEC‐mediated viral restriction: Not simply editing? Trends Biochem Sci 32:118–128Google Scholar
  54. 54.
    International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921Google Scholar
  55. 55.
    Itaya M, Tsuge K, Koizumi M, Fujita K (2005) Combining two genomes in one cell: Stable cloning of the Synechocystis PCC6803 genome in the bacillus subtilis 168 genome. Proc Natl Acad Sci USA 102:15971–15976ADSGoogle Scholar
  56. 56.
    Jiang N, Bao Z, Zhang X, Eddy SR, Wessler SR (2004) Pack-MULE transposable elements mediate gene evolution in plants. Nature 431:569–573ADSGoogle Scholar
  57. 57.
    Jiang Z, Tang H, Ventura M, Cardone MF, Marques-Bonet T et al (2007) Ancestral reconstruction of segmental duplications reveals punctuated cores of human genome evolution. Nat Genet 39:1361–1368Google Scholar
  58. 58.
    Johnson JM, Castle J, Garrett-Engele P, Kan Z, Loerch PM et al (2003) Genome‐wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 302:2141–2144ADSGoogle Scholar
  59. 59.
    Juretic N, Hoen DR, Huynh ML, Harrison PM, Bureau TE (2005) The evolutionary fate of MULE‐mediated duplications of host gene fragments in rice. Genome Res 15:1292–1297Google Scholar
  60. 60.
    Kapitonov VV, Jurka J (2005) RAG1 core and V(D)J recombination signal sequences were derived from transib transposons. PLoS Biol 3:e181Google Scholar
  61. 61.
    Kapranov P, Drenkow J, Cheng J, Long J, Helt G et al (2005) Examples of the complex architecture of the human transcriptome revealed by RACE and high‐density tiling arrays. Genome Res 15:987–997Google Scholar
  62. 62.
    Kapranov P, Willingham AT, Gingeras TR (2007) Genome‐wide transcription and the implications for genomic organization. Nat Rev Genet 8:413–423Google Scholar
  63. 63.
    Kasahara M (2007) The 2R hypothesis: An update. Curr Opin Immunol 19:547–552Google Scholar
  64. 64.
    Keegan LP, Leroy A, Sproul D, O'Connell MA (2004) Adenosine deaminases acting on RNA (ADARs): RNA‐editing enzymes. Genome Biol 5:209Google Scholar
  65. 65.
    Kim E, Magen A, Ast G (2007) Different levels of alternative splicing among eukaryotes. Nucleic Acids Res 35:125–131Google Scholar
  66. 66.
    Kim VN (2006) Small RNAs just got bigger: Piwi‐interacting RNAs (piRNAs) in mammalian testes. Genes Dev 20:1993–197Google Scholar
  67. 67.
    Kim YK, Kim VN (2007) Processing of intronic microRNAs. Embo J 26:775–783Google Scholar
  68. 68.
    Kornblihtt AR (2005) Promoter usage and alternative splicing. Curr Opin Cell Biol 17:262–268Google Scholar
  69. 69.
    Kouzine F, Levens D (2007) Supercoil‐driven DNA structures regulate genetic transactions. Front Biosci 12:4409–4423Google Scholar
  70. 70.
    Kurlender L, Borgono C, Michael IP, Obiezu C, Elliott MB et al (2005) A survey of alternative transcripts of human tissue kallikrein genes. Biochim Biophys Acta 1755:1–14Google Scholar
  71. 71.
    Lai J, Li Y, Messing J, Dooner HK (2005) Gene movement by Helitron transposons contributes to the haplotype variability of maize. Proc Natl Acad Sci USA 102:9068–9073ADSGoogle Scholar
  72. 72.
    Lam BJ, Hertel KJ (2002) A general role for splicing enhancers in exon definition. RNA 8:1233–1241Google Scholar
  73. 73.
    Lareau LF, Inada M, Green RE, Wengrod JC, Brenner SE (2007) Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements. Nature 446:926–929ADSGoogle Scholar
  74. 74.
    Lartigue C, Glass JI, Alperovich N, Pieper R, Parmar PP et al (2007) Genome transplantation in bacteria: Changing one species to another. Science 317:632–638ADSGoogle Scholar
  75. 75.
    Lavorgna G, Dahary D, Lehner B, Sorek R, Sanderson CM et al (2004) In search of antisense. Trends Biochem Sci 29:88–94Google Scholar
  76. 76.
    Lehner B, Williams G, Campbell RD, Sanderson CM (2002) Antisense transcripts in the human genome. Trends Genet 18:63–65Google Scholar
  77. 77.
    Lev-Maor G, Sorek R, Levanon EY, Paz N, Eisenberg E et al (2007) RNA‐editing‐mediated exon evolution. Genome Biol 8:R29Google Scholar
  78. 78.
    Levy S, Sutton G, Ng PC, Feuk L, Halpern AL et al (2007) The diploid genome sequence of an individual human. PLoS Biol 5:e254Google Scholar
  79. 79.
    Li Q, Lee JA, Black DL (2007) Neuronal regulation of alternative pre-mRNA splicing. Nat Rev Neurosci 8:819–831Google Scholar
  80. 80.
    Lim LP, Burge CB (2001) A computational analysis of sequence features involved in recognition of short introns. Proc Natl Acad Sci USA 98:11193–11198ADSGoogle Scholar
  81. 81.
    Lowe CB, Bejerano G, Haussler D (2007) Thousands of human mobile element fragments undergo strong purifying selection near developmental genes. Proc Natl Acad Sci USA 104:8005–8010ADSGoogle Scholar
  82. 82.
    Lynch M (2006) Streamlining and simplification of microbial genome architecture. Annu Rev Microbiol 60:327–349Google Scholar
  83. 83.
    Lynch M (2006) The origins of eukaryotic gene structure. Mol Biol Evol 23:450–468Google Scholar
  84. 84.
    Lynch M, Conery JS (2003) The origins of genome complexity. Science 302:1401–1404ADSGoogle Scholar
  85. 85.
    Matlin AJ, Clark F, Smith CW (2005) Understanding alternative splicing: Towards a cellular code. Nat Rev Mol Cell Biol 6:386–398Google Scholar
  86. 86.
    Mira A, Ochman H, Moran NA (2001) Deletional bias and the evolution of bacterial genomes. Trends Genet 17:589–596Google Scholar
  87. 87.
    Muhlrad D, Parker R (1999) Aberrant mRNAs with extended 3′ UTRs are substrates for rapid degradation by mRNA surveillance. RNA 5:1299–1307Google Scholar
  88. 88.
    Ni JZ, Grate L, Donohue JP, Preston C, Nobida N et al (2007) Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense‐mediated decay. Genes Dev 21:708–718Google Scholar
  89. 89.
    Nishihara H, Smit AF, Okada N (2006) Functional noncoding sequences derived from SINEs in the mammalian genome. Genome Res 16:864–874Google Scholar
  90. 90.
    Ouellet DL, Perron MP, Gobeil LA, Plante P, Provost P (2006) MicroRNAs in gene regulation: When the smallest governs it all. J Biomed Biotechnol 2006:69616Google Scholar
  91. 91.
    Papp B, Pál C, Hurst LD (2003) Dosage sensitivity and the evolution of gene families in yeast. Nature 424:194–197Google Scholar
  92. 92.
    Peaston AE, Evsikov AV, Graber JH, de Vries WN, Holbrook AE et al (2004) Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev Cell 7:597–606Google Scholar
  93. 93.
    Pisani D, Cotton JA, McInerney JO (2007) Supertrees disentangle the chimerical origin of eukaryotic genomes. Mol Biol Evol 24:1752–1760Google Scholar
  94. 94.
    Poyatos JF, Hurst LD (2007) The determinants of gene order conservation in yeasts. Genome Biol 8:R233Google Scholar
  95. 95.
    Pritham EJ, Feschotte C (2007) Massive amplification of rolling‐circle transposons in the lineage of the bat Myotis lucifugus. Proc Natl Acad Sci USA 104:1895–1900ADSGoogle Scholar
  96. 96.
    Reddy AS (2004) Plant serine/arginine‐rich proteins and their role in pre-mRNA splicing. Trends Plant Sci 9:541–547Google Scholar
  97. 97.
    Reddy AS (2007) Alternative splicing of pre‐messenger RNAs in plants in the genomic era. Annu Rev Plant Biol 58:267–294Google Scholar
  98. 98.
    Rippe K (2007) Dynamic organization of the cell nucleus. Curr Opin Genet Dev 17:373–380Google Scholar
  99. 99.
    Rogozin IB, Makarova KS, Natale DA, Spiridonov AN, Tatusov RL et al (2002) Congruent evolution of different classes of non‐coding DNA in prokaryotic genomes. Nucleic Acids Res 30:4264–4271Google Scholar
  100. 100.
    Rozowsky J, Wu J, Lian Z, Nagalakshmi U, Korbel JO et al (2006) Novel transcribed regions in the human genome. Cold Spring Harb Symp Quant Biol 71:111–116Google Scholar
  101. 101.
    Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448:83–86ADSGoogle Scholar
  102. 102.
    Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR et al (1977) Nucleotide sequence of bacteriophage phi X174 DNA. Nature 265:687–695ADSGoogle Scholar
  103. 103.
    Schell T, Kulozik AE, Hentze MW (2002) Integration of splicing, transport and translation to achieve mRNA quality control by the nonsense‐mediated decay pathway. Genome Biol 3:REVIEWS1006Google Scholar
  104. 104.
    Sémon M, Duret L (2004) Evidence that functional transcription units cover at least half of the human genome. Trends Genet 20:229–232Google Scholar
  105. 105.
    Sémon M, Wolfe K (2007) Consequences of genome duplication. Curr Opin Genet Dev 17:505–512Google Scholar
  106. 106.
    Shamovsky I, Nudler E (2006) Gene control by large noncoding RNAs. Sci STKE 2006:pe40Google Scholar
  107. 107.
    Sharp PA, Burge CB (1997) Classification of introns: U2-type or U12-type. Cell 91:875–879Google Scholar
  108. 108.
    Skotheim RI, Nees M (2007) Alternative splicing in cancer: Noise, functional, or systematic? Int J Biochem Cell Biol 39:1432–1449Google Scholar
  109. 109.
    Smit AF (1999) Interspersed repeats and other mementos of transposable elements in mammalian genomes. Curr Opin Genet Dev 9:657–663Google Scholar
  110. 110.
    Smit AF, Riggs AD (1996) Tiggers and DNA transposon fossils in the human genome. Proc Natl Acad Sci USA 93:1443–1448ADSGoogle Scholar
  111. 111.
    Soller M (2006) Pre‐messenger RNA processing and its regulation: A genomic perspective. Cell Mol Life Sci 63:796–819Google Scholar
  112. 112.
    Sorek R (2007) The birth of new exons: Mechanisms and evolutionary consequences. RNA 13:1603–1608Google Scholar
  113. 113.
    Sorek R, Ast G (2003) Intronic sequences flanking alternatively spliced exons are conserved between human and mouse. Genome Res 13:1631–1637Google Scholar
  114. 114.
    Sorek R, Lev-Maor G, Reznik M, Dagan T, Belinky F et al (2004) Minimal conditions for exonization of intronic sequences: 5′ splice site formation in alu exons. Mol Cell 14:221–231Google Scholar
  115. 115.
    Sorek R, Shamir R, Ast G (2004) How prevalent is functional alternative splicing in the human genome? Trends Genet 20:68–71Google Scholar
  116. 116.
    Stamm S, Ben-Ari S, Rafalska I, Tang Y, Zhang Z et al (2005) Function of alternative splicing. Gene 344:1–20Google Scholar
  117. 117.
    Sterner DA, Carlo T, Berget SM (1996) Architectural limits on split genes. Proc Natl Acad Sci USA 93:15081–15085ADSGoogle Scholar
  118. 118.
    Taneri B, Snyder B, Novoradovsky A, Gaasterland T (2004) Alternative splicing of mouse transcription factors affects their DNA‐binding domain architecture and is tissue specific. Genome Biol 5:R75Google Scholar
  119. 119.
    Valadkhan S (2005) snRNAs as the catalysts of pre-mRNA splicing. Curr Opin Chem Biol 9:603–608Google Scholar
  120. 120.
    Vellai T, Vida G (1999) The origin of eukaryotes: The difference between prokaryotic and eukaryotic cells. Proc Biol Sci 266:1571–1577Google Scholar
  121. 121.
    Vinckenbosch N, Dupanloup I, Kaessmann H (2006) Evolutionary fate of retroposed gene copies in the human genome. Proc Natl Acad Sci USA 103:3220–3225ADSGoogle Scholar
  122. 122.
    Vinogradov AE (2004) Evolution of genome size: Multilevel selection, mutation bias or dynamical chaos? Curr Opin Genet Dev 14:620–626Google Scholar
  123. 123.
    von Sternberg R (2002) On the roles of repetitive DNA elements in the context of a unified genomic‐epigenetic system. Ann N Y Acad Sci 981:154–188ADSGoogle Scholar
  124. 124.
    Wang T, Zeng J, Lowe CB, Sellers RG, Salama SR et al (2007) Species‐specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53. Proc Natl Acad Sci USA 104:18613–18618ADSGoogle Scholar
  125. 125.
    Wang Z, Rolish ME, Yeo G, Tung V, Mawson M et al (2004) Systematic identification and analysis of exonic splicing silencers. Cell 119:831–845Google Scholar
  126. 126.
    Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562ADSGoogle Scholar
  127. 127.
    Will CL, Luhrmann R (2005) Splicing of a rare class of introns by the U12‐dependent spliceosome. Biol Chem 386:713–724Google Scholar
  128. 128.
    Xie T, Rowen L, Aguado B, Ahearn ME, Madan A et al (2003) Analysis of the gene-dense major histocompatibility complex class III region and its comparison to mouse. Genome Res 13:2621–2636Google Scholar
  129. 129.
    Xing J, Wang H, Belancio VP, Cordaux R, Deininger PL et al (2006) Emergence of primate genes by retrotransposon‐mediated sequence transduction. Proc Natl Acad Sci USA 103:17608–17613ADSGoogle Scholar
  130. 130.
    Xu Q, Modrek B, Lee C (2002) Genome‐wide detection of tissue‐specific alternative splicing in the human transcriptome. Nucleic Acids Res 30:3754–3766Google Scholar
  131. 131.
    Yelin R, Dahary D, Sorek R, Levanon EY, Goldstein O et al (2003) Widespread occurrence of antisense transcription in the human genome. Nat Biotechnol 21:379–386Google Scholar
  132. 132.
    Zaidi SK, Young DW, Javed A, Pratap J, Montecino M et al (2007) Nuclear microenvironments in biological control and cancer. Nat Rev Cancer 7:454–463Google Scholar
  133. 133.
    Zavolan M, Kondo S, Schonbach C, Adachi J, Hume DA et al (2003) Impact of alternative initiation, splicing, and termination on the diversity of the mRNA transcripts encoded by the mouse transcriptome. Genome Res 13:1290–1300Google Scholar
  134. 134.
    Zheng ZM (2004) Regulation of alternative RNA splicing by exon definition and exon sequences in viral and mammalian gene expression. J Biomed Sci 11:278–294Google Scholar
  135. 135.
    Zuckerkandl E (2002) Why so many noncoding nucleotides? The eukaryote genome as an epigenetic machine. Genetica 115:105–129Google Scholar

Books and Reviews

  1. 136.
    Brown TA (2002) Genomes. Bios Scientific Publishers, OxfordGoogle Scholar
  2. 137.
    Dawkins R (1982) The Extended Phenotype. Oxford University Press, OxfordGoogle Scholar
  3. 138.
    Hartwell L et al (2006) Genetics: From Genes to Genomes. McGraw-Hill, BostonGoogle Scholar
  4. 139.
    Lynch M (2007) The Origins of Genome Architecture. Sinauer, SunderlandGoogle Scholar
  5. 140.
    Margulis L, Sagan D (2003) Acquiring Genomes. Basic Books, New YorkGoogle Scholar
  6. 141.
    Watson JD et al (2003) Molecular Biology of the Gene. CummingsGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Gustavo Glusman
    • 1
  • Arian F. A. Smit
    • 1
  1. 1.Institute for Systems BiologySeattleUSA