Encyclopedia of Complexity and Systems Science

2009 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Genetic and Evolutionary Algorithms and Programming: General Introduction and Application to Game Playing

  • Michael Orlov
  • Moshe Sipper
  • Ami Hauptman
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30440-3_243

Definition of the Subject

Evolutionary algorithms are a family of search algorithms inspiredby the process of (Darwinian) evolution in nature. Common to all thedifferent family members is the notion of solving problems byevolving an initially random population of candidate solutions,through the application of operators inspired by natural geneticsand natural selection, such that in time fitter (i. e., better)solutions emerge. The field, whose origins can be traced back to the1950s and 1960s, has come into its own over the past two decades,proving successful in solving multitudinous problems from highlydiverse domains including (to mention but a few): optimization,automatic programming, electronic‐circuit design,telecommunications, networks, finance, economics, image analysis,signal processing, music, and art.

Introduction

The first approach to artificial intelligence, the field whichencompasses evolutionary computation, is arguably dueto Turing [31]. Turing asked the famous question:...

This is a preview of subscription content, log in to check access.

Bibliography

  1. 1.
    Abelson H, Sussman GJ, Sussman J (1996) Structure and Interpretation of ComputerPrograms, 2nd edn. MIT Press, CambridgezbMATHGoogle Scholar
  2. 2.
    Azaria Y, Sipper M (2005) GP‐Gammon: Genetically programmingbackgammon players. Genet Program Evolvable Mach 6(3):283–300. doi:10.1007/s10710-005-2990-0Google Scholar
  3. 3.
    Azaria Y, Sipper M (2005) GP‐Gammon: Using genetic programming to evolve backgammon players. In: Keijzer M, Tettamanzi A, Collet P, van Hemert J, Tomassini M (eds) Proceedings of 8th European Conference on Genetic Programming (EuroGP2005). Lecture Notes in Computer Science, vol 3447. Springer, Heidelberg, pp 132–142. doi:10.1007/b107383
  4. 4.
    Bain M (1994) Learning logical exceptions in chess. Ph D thesis, University ofStrathclyde, Glasgow, Scotland.citeseer.ist.psu.edu/bain94learning.html
  5. 5.
    Bonanno G (1989) The logic of rational play in games of perfect information.Papers 347, California Davis – Institute of Governmental Affairs.http://ideas.repec.org/p/fth/caldav/347.html
  6. 6.
    Charness N (1991) Expertise in chess: The balance between knowledge and search.In: Ericsson KA, Smith J (eds) Toward a general theory of Expertise:Prospects and limits. Cambridge University Press, CambridgeGoogle Scholar
  7. 7.
    Cramer NL (1985) A representation for the adaptive generation of simplesequential programs. In: Grefenstette JJ (ed) Proceedings of the 1stInternational Conference on Genetic Algorithms. Lawrence Erlbaum Associates, Mahwah, pp 183–187Google Scholar
  8. 8.
    Epstein SL (1999) Game playing: The next moves. In: Proceedings of theSixteenth National Conference on Artificial Intelligence. AAAI Press, MenloPark, pp 987–993Google Scholar
  9. 9.
    Fogel DB (2006) Evolutionary Computation: Toward a New Philosophy of MachineIntelligence, 3rd edn. Wiley-IEEE Press, HobokenGoogle Scholar
  10. 10.
    Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial Intelligence Through SimulatedEvolution. Wiley, New YorkzbMATHGoogle Scholar
  11. 11.
    Fürnkranz J (1996) Machine learning in computer chess: The next generation.Int Comput Chess Assoc J 19(3):147–161.citeseer.ist.psu.edu/furnkranz96machine.html
  12. 12.
    Hauptman A, Sipper M (2005) Analyzing the intelligence ofa genetically programmed chess player. In: Late Breaking Papers at the 2005Genetic and Evolutionary Computation Conference, distributed onCD-ROM at GECCO-2005, Washington DCGoogle Scholar
  13. 13.
    Hauptman A, Sipper M (2005) GP‐EndChess: Using genetic programming to evolve chessendgame players. In: Keijzer M, Tettamanzi A, Collet P, van Hemert J, Tomassini M (eds)Proceedings of 8th European Conference on Genetic Programming (EuroGP2005). Lecture Notes inComputer Science, vol 3447. Springer, Heidelberg, pp 120–131. doi:10.1007/b107383Google Scholar
  14. 14.
    Hauptman A, Sipper M (2007) Emergence of complex strategies inthe evolution of chess endgame players. Adv Complex Syst 10(1):35–59. doi:10.1142/s0219525907001082zbMATHGoogle Scholar
  15. 15.
    Hauptman A, Sipper M (2007) Evolution of an efficient search algorithm for the mate-in-n problem in chess. In: Ebner M, O'Neill M, Ekárt A, Vanneschi L, Esparcia-Alcázar AI (eds) Proceedings of 10th European Conference on Genetic Programming (EuroGP2007). Lecture Notes in Computer Science vol. 4455. Springer, Heidelberg, pp 78–89. doi:10.1007/978-3-540-71605-1_8
  16. 16.
    Holland JH (1975) Adaptation in Natural and ArtificialSystems: An Introductory Analysis with Applications to Biology,Control, and Artificial Intelligence. University of Michigan Press,Ann Arbor (2nd edn. MIT Press, Cambridge, 1992)Google Scholar
  17. 17.
    Holland JH (1992) Adaptation in Natural and Artificial Systems, 2nd edn. MIT Press, CambridgeGoogle Scholar
  18. 18.
    Kilinç S, Jain V, Aggarwal V, Cam U (2006) Catalogue ofvariable frequency and single‐resistance‐controlled oscillatorsemploying a single differential difference complementary currentconveyor. Frequenz: J RF‐Eng Telecommun 60(7–8):142–146Google Scholar
  19. 19.
    Koza JR (1992) Genetic Programming: On the Programming of Computers by Means ofNatural Selection. MIT Press, CambridgezbMATHGoogle Scholar
  20. 20.
    Koza JR, Keane MA, Streeter MJ, Mydlowec W, Yu J, Lanza G (2003) GeneticProgramming IV: Routine Human‐Competitive Machine Intelligence. Kluwer, NorwellGoogle Scholar
  21. 21.
    Laird JE, van Lent M (2000) Human‐level AI's killer application: Interactivecomputer games. In: AAAI-00: Proceedings of the 17th National Conference onArtificial Intelligence. MIT Press, Cambridge, pp 1171–1178Google Scholar
  22. 22.
    Lohn JD, Hornby GS, Linden DS (2005) An evolved antenna for deployment onNASA's Space Technology 5 mission. In: O'Reilly UM, Yu T, Riolo R, WorzelB (eds) Genetic Programming Theory and Practice II, Genetic Programming,vol 8, chap 18. Springer, pp 301–315. doi:10.1007/0-387-23254-0_18Google Scholar
  23. 23.
    Montana DJ (1995) Strongly typed genetic programming. Evol Comput3(2):199–230. doi:10.1162/evco.1995.3.2.199 Google Scholar
  24. 24.
    Peña-Reyes CA, Sipper M (2001) Fuzzy CoCo:A cooperative‐coevolutionary approach to fuzzy modeling. IEEE TransFuzzy Syst 9(5):727–737. doi:10.1009/91.963759
  25. 25.
    Preble S, Lipson M, Lipson H (2005) Two‐dimensional photonic crystals designedby evolutionary algorithms. Appl Phys Lett 86(6):061111. doi:10.1063/1.1862783 ADSGoogle Scholar
  26. 26.
    Schwefel HP (1995) Evolution and Optimum Seeking. Wiley, New YorkGoogle Scholar
  27. 27.
    Shichel Y, Ziserman E, Sipper M (2005) GP‐Robocode: Using genetic programmingto evolve robocode players. In: Keijzer M, Tettamanzi A, Collet P, van HemertJ, Tomassini M (eds) Genetic Programming: 8th European Conference, EuroGP2005, Lausanne, Switzerland, March 30–April 1, 2005. Lecture Notes inComputer Science, vol 3447. Springer, Berlin, pp 143–154. doi:10.1007/b107383
  28. 28.
    Sipper M (2002) Machine Nature: The Coming Age of Bio‐Inspired Computing.McGraw‐Hill, New YorkGoogle Scholar
  29. 29.
    Sipper M, Azaria Y, Hauptman A, Shichel Y (2007) Designing an evolutionary strategizingmachine for game playing and beyond. IEEE Trans Syst, Man, Cybern,Part C: Appl Rev 37(4):583–593Google Scholar
  30. 30.
    Stanley KO, Miikkulainen R (2002) Evolving neural networks through augmentingtopologies. Evol Comput 10(2):99–127. doi:10.1162/106365602320169811 Google Scholar
  31. 31.
    Turing AM (1950) Computing machinery and intelligence. Mind 59(236):433–460.http://links.jstor.org/sici?sici=0026-4423(195010)2:59:236<433:CMAI>2.0.CO;2-5 MathSciNetGoogle Scholar
  32. 32.
    Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEETrans Evol Comput 1(1):67–82. doi:10.1109/4235.585893 Google Scholar
  33. 33.
    Yao X (1999) Evolving artificial neural networks. Proc IEEE87(9):1423–1447. doi:10.1009/5.784219 Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Michael Orlov
    • 1
  • Moshe Sipper
    • 1
  • Ami Hauptman
    • 1
  1. 1.Department of Computer ScienceBen‐Gurion UniversityBeer-ShevaIsrael