Encyclopedia of Complexity and Systems Science

2009 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Evacuation Dynamics: Empirical Results, Modeling and Applications

  • Andreas Schadschneider
  • Wolfram Klingsch
  • Hubert Klüpfel
  • Tobias Kretz
  • Christian Rogsch
  • Armin Seyfried
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30440-3_187

Definition of the Subject

Today, there are many occasions on which a large number of people gathers in a rather small area. Office buildings and apartment housesgrow larger and more complex. Very large events related to sports, entertainment or cultural and religious events are held all over the world ona regular basis. This brings about serious safety issues for the participants and for the organizers who must be prepared for any case of emergencyor critical situation. Usually in such cases the participants must be guided away from the dangerous area as quickly as possible. Therefore theunderstanding of the dynamics of large groups of people is very important.

In general, evacuation is egress from an area, a building or a vessel due toa potential or actual threat. In the cases described above, the dynamics of the evacuation processes are quite complex due to the large number ofpeople and their interaction, external factors such as fire, complex building geometries, etc. Evacuation...
This is a preview of subscription content, log in to check access.

Notes

Acknowledgments

The authors would like to acknowledge the contribution of Tim Meyer-König (the developer of PedGo) and Michael Schreckenberg, Ansgar Kirchner,Bernhard Steffen for many fruitful discussions and valuable hints.

Bibliography

Primary Literature

  1. 1.
    Abe K (1986) The Science of Human Panic. Brain, Tokyo (in Japanese)Google Scholar
  2. 2.
    AlGadhi SAH, Mahmassani HS, Herman R (2002) A speed-concentration relation for bi-directional crowd movements with strong interaction. In: Schreckenberg M, Sharma SD (eds) Pedestrian and Evacuation Dynamics. Springer, Berlin, pp 3–20Google Scholar
  3. 3.
    American Sociological Association (2002) In disasters, panic is rare, altruism dominates. Technical report, American Sociological AssociationGoogle Scholar
  4. 4.
    Ashe B, Shields TJ (1999) Analysis and modelling of the unannounced evacuation of a large retail store. Fire Mater 23:333–336Google Scholar
  5. 5.
    Ben-Jacob E (1997) From snowflake formation to growth of bacterial colonies, Part II. Cooperative formation of complex colonial patterns. Contemp Phys 38:205ADSGoogle Scholar
  6. 6.
    Biham O, Middleton AA, Levine D (1992) Self-organization and a dynamical transition in traffic-flow models. Phys Rev A 46:R6124ADSGoogle Scholar
  7. 7.
    Blue VJ, Adler JL (2000) Cellular automata microsimulation of bi-directional pedestrian flows. J Trans Res Board 1678:135–141Google Scholar
  8. 8.
    Blue VJ, Adler JL (2002) Flow capacities from cellular automata modeling of proportional spilts of pedestrians by direction. In: Schreckenberg M, Sharma SD (eds) Pedestrian and Evacuation Dynamics. Springer, Berlin, pp 115–121Google Scholar
  9. 9.
    Blythe RA et al (2007) Nonequilibrium steady states of matrix product form: a solver's guide. Math Theor 40:R333–R441, doi:10.1088/1751-8113/40/46/R01 MathSciNetADSMATHGoogle Scholar
  10. 10.
    Bolay K (1998) Nichtlineare Phänomene in einem fluid-dynamischen Verkehrsmodell. Diploma Thesis, Stuttgart UniversityGoogle Scholar
  11. 11.
    Boyce KE, Shields TJ, Silcock GWH (1999) Toward the Characterization of Building Occupancies for Fire Safety Engineering: Capabilities of Disabled People Moving Horizontally and on an Incline. Fire Technol 35:51–67Google Scholar
  12. 12.
    Bryan JL (1995) Behavioral response to fire and smoke. In: DiNenno PJ, Beyler CL, Custer RLP, Walton WD, Watts JM, Drysdale D, Hall JR (eds) SFPE Handbook of Fire Protection Engineering, 2nd edn. National Fire Protection Association, Quincy, p 263Google Scholar
  13. 13.
    Burstedde C, Klauck K, Schadschneider A, Zittartz J (2001) Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A 295:507–525ADSMATHGoogle Scholar
  14. 14.
    Burstedde C, Kirchner A, Klauck K, Schadschneider A, Zittartz J (2002) Cellular automaton approach to pedestrian dynamics – applications. In: Schreckenberg M, Sharma SD (eds) Pedestrian and Evacuation Dynamics. Springer, Berlin, pp 87–98Google Scholar
  15. 15.
    Chakrabarti J, Dzubiella J, Löwen H (2004) Reentrance effect in the lane formation of driven colloids. Phys Rev E 70:012401Google Scholar
  16. 16.
    Chowdhury D, Santen L, Schadschneider A (2000) Statistical physics of vehicular traffic and some related systems. Phys Rep 329(4–6):199–329MathSciNetADSGoogle Scholar
  17. 17.
    Clarke L (2002) Panic: Myth or reality? Contexts 1(3):21–26Google Scholar
  18. 18.
    Coleman JS (1990) Foundation of Social Theory. Belknap, Cambridge, Chap 9Google Scholar
  19. 19.
    Daamen W (2004) Modelling Passenger Flows in Public Transport Facilities. Ph.D. thesis, Technical University of DelftGoogle Scholar
  20. 20.
    Daamen W, Hoogendoorn SP (2006) Flow-density relations for pedestrian traffic. In: Schadschneider A, Pöschel T, Kühne R, Schreckenberg M, Wolf DE (eds) Traffic and Granular Flow 05. Springer, Berlin, pp 315–322Google Scholar
  21. 21.
    Daamen W, Bovy PHL, Hoogendoorn SP (2002) Modelling pedestrians in transfer stations. In: Schreckenberg M, Sharma SD (eds) Pedestrian and Evacuation Dynamics. Springer, Berlin, pp 59–73Google Scholar
  22. 22.
    de Gelder B, Snyder J, Greve D, Gerard G, Hadjikhani N (2004) Fear fosters flight: A mechanism for fear contagion when perceiving emotion expressed by a whole body. Proc Natl Acad Sci 101(47):16701–16706ADSGoogle Scholar
  23. 23.
    Derrida B (1998) An exactly soluble non-equilibrium system: The asymmetric simple exclusion process. Phys Rep 301:65MathSciNetADSGoogle Scholar
  24. 24.
    Dieckmann D (1911) Die Feuersicherheit in Theatern. Jung, München (in German)Google Scholar
  25. 25.
    DiNenno PJ (ed) (2002) SFPE Handbook of Fire Protection Engineering, 3rd edn. National Fire Protection Association, BethesdaGoogle Scholar
  26. 26.
    DiNenno PJ, Beyler CL, Custer RLP, Walton WD, Watts JM, Drysdale D, Hall JR (eds) (1995) SFPE Handbook of Fire Protection Engineering, 2nd edn. National Fire Protection Association, QuincyGoogle Scholar
  27. 27.
    Dogliani M (2002) An overview of present and under-development IMO's requirements concerning evacuation from ships. In: Schreckenberg M, Sharma SD (eds) Pedestrian and Evacuation Dynamics. Springer, Berlin, pp 339–354Google Scholar
  28. 28.
    Dzubiella J, Hoffmann GP, Löwen H (2002) Lane formation in colloidal mixtures driven by an external field. Phys Rev E 65:021402Google Scholar
  29. 29.
    Ehm M, Linxweiler J (2004) Berechnungen von Evakuierungszeiten bei Sonderbauten mit dem Programm buildingExodus. Technical report, TU BraunschweigGoogle Scholar
  30. 30.
    El Yacoubi S, Chopard B, Bandini S (eds) (2006) Cellular Automata – 7th International Conference on Cellular Automata for Research and Industry, ACRI 2006, Perpignan. Springer, BerlinMATHGoogle Scholar
  31. 31.
    Federal Aviation Administration FAA (1990) Emergency evacuation – cfr sec. 25.803. Regulation CFR Sec. 25.803Google Scholar
  32. 32.
    Fischer H (1933) Über die Leistungsfähigkeit von Türen, Gängen und Treppen bei ruhigem, dichtem Verkehr. Dissertation, Technische Hochschule Dresden (in German)Google Scholar
  33. 33.
    Frantzich H (1996) Study of movement on stairs during evacuation using video analysing techniques. Technical report, Department of Fire Safety Engineering, Lund Institute of TechnologyGoogle Scholar
  34. 34.
    Frisch U, Hasslacher B, Pomeau Y (1986) Lattice-gas automata for the Navier-Stokes equation. Phys Rev Lett 56:1505ADSGoogle Scholar
  35. 35.
    Fruin JJ (1971) Pedestrian Planning and Design. Metropolitan Association of Urban Designers and Environmental Planners, New YorkGoogle Scholar
  36. 36.
    Fruin JJ (1993) The causes and prevention of crowd disasters. In: Smith RA, Dickie JF (eds) Engineering for Crowd Safety. Amsterdam, ElsevierGoogle Scholar
  37. 37.
    Fujiyama T (2006) Collision avoidance of pedestrians on stairs. Technical report, Centre for Transport Studies. University College London, LondonGoogle Scholar
  38. 38.
    Fujiyama T, Tyler N (2004) An explicit study on walking speeds of pedestrians on stairs. In: 10th International Conference on Mobility and Transport for Elderly and Disabled People, Hamamatsu, Japan, May 2004Google Scholar
  39. 39.
    Fujiyama T, Tyler N (2004) Pedestrian Speeds on Stairs: An Initial Step for a Simulation Model. In: Proceedings of 36th Universities Transport Studies Group Conference, Life Science Centre, Newcastle upon Tyne, Jan 2004Google Scholar
  40. 40.
    Fukui M, Ishibashi Y (1999) Jamming transition in cellular automaton models for pedestrians on passageway. J Phys Soc Jpn 68:3738ADSGoogle Scholar
  41. 41.
    Fukui M, Ishibashi Y (1999) Self-organized phase transitions in cellular automaton models for pedestrians. J Phys Soc Jpn 68:2861ADSGoogle Scholar
  42. 42.
    Galbreath M (1969) Time of evacuation by stairs in high buildings. Fire Res Note 8, NRCCGoogle Scholar
  43. 43.
    Galea ER (2002) Simulating evacuation and circulation in planes, trains, buildings and ships using the EXODUS software. In: Schreckenberg M, Sharma SD (eds) Pedestrian and Evacuation Dynamics. Springer, Berlin pp 203–226Google Scholar
  44. 44.
    Galea ER (ed) (2003) Pedestrian and Evacuation Dynamics 2003. CMS Press, LondonGoogle Scholar
  45. 45.
    Gipps PG, Marksjö B (1985) A micro-simulation model for pedestrian flows. Math Comput Simul 27:95–105Google Scholar
  46. 46.
    Graat E, Midden C, Bockholts P (1999) Complex evacuation; effects of motivation level and slope of stairs on emergency egress time in a sports stadium. Saf Sci 31:127–141Google Scholar
  47. 47.
    Grosshandler W, Sunder S, Snell J (2003) Building and fire safety investigation of the world trade center disaster. In: Galea ER (ed) Pedestrian and Evacuation Dynamics 2003. CMS Press, London, pp 279–281Google Scholar
  48. 48.
    Hamacher HW, Tjandra SA (2002) Mathematical modelling of evacuation problems – a state of the art. In: Schreckenberg M, Sharma SD (eds) Pedestrian and Evacuation Dynamics. Springer, Berlin, pp 227–266Google Scholar
  49. 49.
    Hankin BD, Wright RA (1958) Passenger flow in subways. Oper Res Q 9:81–88Google Scholar
  50. 50.
    Helbing D (1992) A fluid-dynamic model for the movement of pedestrians. Complex Syst 6:391–415MathSciNetMATHGoogle Scholar
  51. 51.
    Helbing D (2001) Traffic and related self-driven many-particle systems. Rev Mod Phys 73:1067–1141ADSGoogle Scholar
  52. 52.
    Helbing D, Molnár P (1995) Social force model for pedestrian dynamics. Phys Rev E 51:4282–4286Google Scholar
  53. 53.
    Helbing D, Farkas I, Vicsek T (2000) Freezing by heating in a driven mesoscopic system. Phys Rev Let 84:1240–1243ADSGoogle Scholar
  54. 54.
    Helbing D, Farkas I, Vicsek T (2000) Simulating dynamical features of escape panic. Nature 407:487–490ADSGoogle Scholar
  55. 55.
    Helbing D, Farkas I, Molnár P, Vicsek T (2002) Simulation of pedestrian crowds in normal and evacuation situations. In: Schreckenberg M, Sharma SD (eds) Pedestrian and Evacuation Dynamics. Springer, Berlin, pp 21–58Google Scholar
  56. 56.
    Helbing D, Buzna L, Werner T (2003) Self-organized pedestrian crowd dynamics and design solutions. Traffic Forum, pp 2003-12Google Scholar
  57. 57.
    Helbing D, Buzna L, Johansson A, Werner T (2005) Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions. Transp Sci 39:1–24Google Scholar
  58. 58.
    Helbing D, Johansson A, Al-Abideen HZ (2007) The dynamics of crowd disasters: An empirical study. Phys Rev E 75:046109ADSGoogle Scholar
  59. 59.
    Helbing D, Johannson A, Al-Abideen HZ (2007) Crowd turbulence: the physics of crowd disasters. In: The Fifth International Conference on Nonlinear Mechanics, ICNM-V, Shanghai, pp 967–969Google Scholar
  60. 60.
    Henderson LF (1971) The statistics of crowd fluids. Nature 229:381–383ADSGoogle Scholar
  61. 61.
    Henderson LF (1974) On the fluid mechanics of human crowd motion. Transp Res 8:509–515Google Scholar
  62. 62.
    Hoogendoorn SP (2003) Walker behaviour modelling by differential games. In: Emmerich H, Nestler B, Schreckenberg M (eds) Interface and transport dynamics. Lecture notes in Computational Science and Engineering, vol 32. Springer, Berlin, pp 275–294Google Scholar
  63. 63.
    Hoogendoorn SP, Bovy PHL (2003) Simulation of pedestrian flows by optimal control and differential games. Optim Control Appl Meth 24:153MathSciNetMATHGoogle Scholar
  64. 64.
    Hoogendoorn SP, Daamen W (2005) Pedestrian behavior at bottlenecks. Transp Sci 39 2:0147–0159Google Scholar
  65. 65.
    Hoogendoorn SP, Bovy PHL, Daamen W (2002) Microscopic pedestrian wayfinding and dynamics modelling. In: Schreckenberg M, Sharma SD (eds) Pedestrian and Evacuation Dynamics. Springer, Berlin, pp 123–154Google Scholar
  66. 66.
    Hoogendoorn SP, Daamen W, Bovy PHL (2003) Microscopic pedestrian traffic data collection and analysis by walking experiments: Behaviour at bottlenecks. In: Galea ER (ed) Pedestrian and Evacuation Dynamics 2003. CMS Press, London, pp 89–100Google Scholar
  67. 67.
    Hoskin K (2004) Fire protection and evacuation procedures of stadia venues in new zealand. Master's thesis, University of CanterburryGoogle Scholar
  68. 68.
    Hughes RL (2000) The flow of large crowds of pedestrians. Math Comput Simul 53:367–370Google Scholar
  69. 69.
    Hughes RL (2002) A continuum theory for the flow of pedestrians. Transp Res Part B 36:507–535Google Scholar
  70. 70.
    International Maritime Organization (IMO) (2000) International Code of Safety for High-Speed Craft, 2000 (2000 HSC Code). Technical report, Resolution MSC 97(73)Google Scholar
  71. 71.
    International Organization for Standardization (2000) ISO-TR-13387-8-1999 Fire safety engineering – part 8: Life safety – occupant behaviour, location and condition. Technical reportGoogle Scholar
  72. 72.
    Jian L, Lizhong Y, Daoling Z (2005) Simulation of bi-direction pedestrian movement in corridor. Physica A 354:619ADSGoogle Scholar
  73. 73.
    Johnson NR (1987) Panic at “The Who Concert Stampede”: An Empirical Assessment. Soc Probl 34(4):362–373Google Scholar
  74. 74.
    Jungermann H, Göhlert C (2000) Emergency evacuation from double-deck aircraft. In: Cottam MP, Harvey DW, Pape RP, Tait J (eds) Foresight and Precaution. Proceedings of ESREL 2000, SARS and SRA. Europe Annual Conference, Rotterdam, pp 989–992Google Scholar
  75. 75.
    Kashiwagi T (ed) (1994) Fire Safety Science – 4th international Symposium Proceedings. Interscience, West Yard House, Guildford. The International Association for Fire Safety Science. Grove, LondonGoogle Scholar
  76. 76.
    Kaufman M (2007) Lane Formation in Counterflow Situations of Pedestrian Traffic. Master's thesis, Universität Duisburg-EssenGoogle Scholar
  77. 77.
    Keating JP (1982) The myth of panic. Fire J May:57–62Google Scholar
  78. 78.
    Kendik E (1983) Determination of the evacuation time pertinent to the projected area factor in the event of total evacuation of high-rise office buildings via staircases. Fire Saf J 5:223–232Google Scholar
  79. 79.
    Kendik E (1984) Die Berechnung der Personenströme als Grundlage für die Bemessung von Gehwegen in Gebäuden und um Gebäude. Ph.D. thesis, TU WienGoogle Scholar
  80. 80.
    Kendik E (1986) Designing escape routes in buildings. Fire Technol 22:272–294Google Scholar
  81. 81.
    Kerner BS (2004) The Physics of Traffic. Springer, HeidelbergGoogle Scholar
  82. 82.
    KirchnerA (2003) Modellierung und statistische Physik biologischer und sozialer Systeme. Dissertation,Universität zu KölnGoogle Scholar
  83. 83.
    Kirchner A, Schadschneider A (2002) Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. Physica A 312:260–276ADSMATHGoogle Scholar
  84. 84.
    Kirchner A, Namazi A, Nishinari K, Schadschneider A (2003) Role of conflicts in the floor field cellular automaton model for pedestrian dynamics. In: Galea ER (ed) Pedestrian and Evacuation Dynamics 2003. CMS Press, London, pp 51Google Scholar
  85. 85.
    Kirchner A, Nishinari K, Schadschneider A (2003) Friction effects and clogging in a cellular automaton model for pedestrian dynamics. Phys Rev E 67:056122ADSGoogle Scholar
  86. 86.
    Kirchner A, Klüpfel H, Nishinari K, Schadschneider A, Schreckenberg M (2004) Discretization effects and the influence of walking speed in cellular automata models for pedestrian dynamics. J Stat Mech 10:P10011Google Scholar
  87. 87.
    Klüpfel H (2003) A Cellular Automaton Model for Crowd Movement and Egress Simulation. Dissertation, University Duisburg–EssenGoogle Scholar
  88. 88.
    Klüpfel H (2006) The simulation of crowds at very large events. In: Schadschneider A, Pöschel T, Kühne R, Schreckenberg M, Wolf DE (eds) Traffic and Granular Flow 05. Springer, Berlin, pp 341–346Google Scholar
  89. 89.
    Klüpfel H, Meyer-König T, Wahle J, Schreckenberg M (2000) Microscopic simulation of evacuation processes on passenger ships. In: Bandini S, Worsch T (eds) Theory and Practical Issues on Cellular Automata. Springer, BerlinGoogle Scholar
  90. 90.
    Klüpfel H, Meyer-König T, Schreckenberg M (2001) Empirical data on an evacuation exercise in a movie theater. Technical report, University Duisburg‐EssenGoogle Scholar
  91. 91.
    Ko SY (2003) Comparison of evacuation times using Simulex and EvacuatioNZ based on trial evacuations. Fire Engineering Research Report 03/9, University of CanterburyGoogle Scholar
  92. 92.
    Kretz T (2007) Pedestrian Traffic – Simulation and Experiments. Dissertation, Universität Duisburg‐EssenGoogle Scholar
  93. 93.
    Kretz T, Grünebohm A, Schreckenberg M (2006) Experimental study of pedestrian flow through a bottleneck. J Stat Mech P10014Google Scholar
  94. 94.
    Kretz T, Grünebohm A, Kaufmann M, Mazur F, Schreckenberg M (2006) Experimental study of pedestrian counterflow in a corridor. J Stat Mech P10001Google Scholar
  95. 95.
    Kretz T, Grünebohm A, Keßel A, Klüpfel H, Meyer-König T, Schreckenberg M (2008) Upstairs walking speed distributions on a long stair. Saf Sci 46:72–78Google Scholar
  96. 96.
    Kuligowski ED, Milke JA (2005) A perfomance-based egress analysis of a hotel building using two models. J Fire Prot Eng 15:287–305Google Scholar
  97. 97.
    Kuligowski ED, Peacock RD (2005) A review of building evacuation models. Technical report 1471. National Institute of Standards and Technology, GaithersburgGoogle Scholar
  98. 98.
    Lakoba TI, Kaup DJ, Finkelstein NM (2005) Modifications of the Helbing-Molnár-Farkas-Vicsek social force model for pedestrian evolution. Simulation 81(5):339–352Google Scholar
  99. 99.
    Lam WHK, Lee JYS, Chan KS, Goh PK (2003) A generalised function for modeling bi-directional flow effects on indoor walkways in Hong Kong. Transp Res A: Policy Pract 37:789–810Google Scholar
  100. 100.
    Laur U, Jaakula H, Metsaveer J, Lehtola K, Livonen H, Karppinen T, Eksborg AL, Rosengren H, Noord O (1997) Final Report on the Capsizing on 28 September 1994 in the Baltic Sea of the Ro-Ro Passenger Vessel MV Estonia. Technical report. The Joint Accident Investigation Commission of Estonia, Finland and SwedenGoogle Scholar
  101. 101.
    LeBon G (1895) Lois Psychlogiques De L'evolution Des Peuples. Alcan, ParisGoogle Scholar
  102. 102.
    Leutzbach W (1988) Introduction to the Theory of Traffic Flow. Springer, BerlinGoogle Scholar
  103. 103.
    Lewin K (1951) Field Theory in Social Science. Harper, New YorkGoogle Scholar
  104. 104.
    Lord J, Meacham B, Moore A, Fahy R, Proulx G (2005) Guide for evaluating the predictive capabilities ofcomputer egress models. Technical report NIST GCR 06–886, NIST,GaithersburgGoogle Scholar
  105. 105.
    Lovas GG (1994) Modeling and simulation of pedestrian traffic flow. Transp Res B 28V:429Google Scholar
  106. 106.
    Maniccam S (2003) Traffic jamming on hexagonal lattice. Physica A 321:653MathSciNetADSMATHGoogle Scholar
  107. 107.
    Maniccam S (2005) Effects of back step and update rule on congestion of mobile objects. Physica A 346:631ADSGoogle Scholar
  108. 108.
    Marconi S, Chopard B (2002) A multiparticle lattice gas automata model for a crowd. In: Cellular Automata. Lecture Notes Computer Science, vol 2493. Springer, Berlin, pp 231Google Scholar
  109. 109.
    Mawson AR (2005) Understanding mass panic and other collective responses to threat and disaster. Psychiatry 68:95–113Google Scholar
  110. 110.
    Melinek SJ, Booth S (1975) An analysis of evacuation times and the movement of crowds in buildings. Technical report CP 96/75, BREGoogle Scholar
  111. 111.
    Meyer-König T, Klüpfel H, Schreckenberg M (2001) A microscopic model for simulating mustering and evacuation processes onboard passenger ships. In: KH Drager (ed) Proceedings of the International Emergency Management Society Conference. The International Emergency Management Society, OsloGoogle Scholar
  112. 112.
    Meyer-König T, Klüpfel H, Schreckenberg M (2002) Assessment and analysis of evacuation processes on passenger ships by microscopic simulation. In: Schreckenberg M, Sharma SD (eds) Pedestrian and Evacuation Dynamics. Springer, Berlin, pp 297–302Google Scholar
  113. 113.
    Mintz A (1951) Non-adaptive group behaviour. J Abnorm Soc Psychol 46:150–159Google Scholar
  114. 114.
    Molnár P (1995) Modellierung und Simulation der Dynamik von Fußgängerströmen. Dissertation, Universität StuttgartGoogle Scholar
  115. 115.
    Mori M, Tsukaguchi H (1987) A new method for evaluation of level of service in pedestrian facilities. Transp Res 21A(3):223–234Google Scholar
  116. 116.
    Morrall JF, Ratnayake LL, Seneviratne PN (1991) Comparison of CBD pedestrian characteristics in Canada and Sri Lanka. In: Transportation Research Record 1294. TRB, National Research Council, Washington DC, pp 57–61Google Scholar
  117. 117.
    MSA (1997) Report on Exercise Invicta. Technical report. Marine Safety Agency, SouthhamptonGoogle Scholar
  118. 118.
    MSC-Circ.1033. Interim guidelines for evacuation analyses for new and existing passenger ships. Technical report, International Maritime Organization, Marine Safety Committee, London, June, 6th 2002. MSC/Circ. 1033Google Scholar
  119. 119.
    MSC-Circ.1166. Guidelines for a simplified evacuation analysis for high-speed passenger craft. Technical report, International Maritime Organisation, 2005Google Scholar
  120. 120.
    Muir HC (1997) Airplane of the 21st century: Challenges in safety and survivability. International Conference on Aviation Safety and Security in the 21st Century, White House Commission on Aviation Safety and Security, WashingtonGoogle Scholar
  121. 121.
    Muir HC, Bottomley DM, Marrison C (1996) Effects of motivation and cabin configuration on emergency aircraft evacuation behavior and rates of egress. Int J Aviat Psychol 6(1):57–77Google Scholar
  122. 122.
    Müller K (1981) Zur Gestaltung und Bemessung von Fluchtwegen für die Evakuierung von Personen aus Bauwerken auf der Grundlage von Modellversuchen. Dissertation, Technische Hochschule MagdeburgGoogle Scholar
  123. 123.
    Müller W (1966) Die Beurteilung von Treppen als Rückzugsweg in mehrgeschossigen Gebäuden. Unser Brandschutz – Wissenschaftlich-Technische Beil 3:65–70; to be continued in 4/1966Google Scholar
  124. 124.
    Müller W (1966) Die Beurteilung von Treppen als Rückzugsweg in mehrgeschossigen Gebäuden. Unser Brandschutz – Wissenschaftlich-Technische Beil 4:93–96; continuation from 3/1966Google Scholar
  125. 125.
    Müller W (1968) Die Überschneidung der Verkehrsströme bei dem Berechnen der Räumungszeit von Gebäuden. Unser Brandschutz – Wissenschaftlich-Technische Beil 4:87–92Google Scholar
  126. 126.
    Müller W (1970) Untersuchung über zulässige Räumungszeiten und die Bemessung von Rückzugswegen in Gebäuden. Habilitation, TU Dresden, DresdenGoogle Scholar
  127. 127.
    Muramatsu M, Nagatani T (2000) Jamming transition in two-dimensional pedestrian traffic. Physica A 275:281–291ADSGoogle Scholar
  128. 128.
    Muramatsu M, Nagatani T (2000) Jamming transition of pedestrian traffic at crossing with open boundary conditions. Physica A 286:377–390ADSMATHGoogle Scholar
  129. 129.
    Muramatsu M, Irie T, Nagatani T (1999) Jamming transition in pedestrian counter flow. Physica A 267:487–498Google Scholar
  130. 130.
    Argebau (2005) MVStättV – Erläuterungen: Musterverordnung über den Bau und Betrieb von Versammlungsstätten. Erläuterungen, Juni 2005Google Scholar
  131. 131.
    Nagai R, Nagatani T (2006) Jamming transition in counter flow of slender particles on square lattice. Physica A 366:503ADSGoogle Scholar
  132. 132.
    Nagai R, Fukamachi M, Nagatani T (2006) Evacuation of crawlers and walkers from corridor through an exit. Physica A 367:449–460ADSGoogle Scholar
  133. 133.
    Nagel K, Schreckenberg M (1992) A cellular automaton model for freeway traffic. J Phys I 2:2221Google Scholar
  134. 134.
    Nakayama A, Hasebe K, Sugiyama Y (2005) Instability of pedestrian flow and phase structure in a two-dimensional optimal velocity model. Phys Rev E 71:036121ADSGoogle Scholar
  135. 135.
    Navin PD, Wheeler RJ (1969) Pedestrian flow characteristics. Traffic Eng 39:31–36Google Scholar
  136. 136.
    Nelson HE, Mowrer FW (2002) Emergency movement. In: DiNenno PJ (ed) SFPE Handbook of Fire Protection Engineering, 3rd edn. National Fire Protection Association, Bethesda, p 367Google Scholar
  137. 137.
    National Fire Protection Association (2007) NFPA 130: Standard for Fixed Guideway Transit and Passenger Rail Systems.Google Scholar
  138. 138.
    Norwegian Ministry of Justice and Police (2000) The High-Speed Craft MS Sleipner Disaster, 26 November 1999. Official Norwegian Reports 2000:31, OsloGoogle Scholar
  139. 139.
    Oeding D (1963) Verkehrsbelastung und Dimensionierung von Gehwegen und anderen Anlagen des Fußgängerverkehrs. Forschungsbericht, vol 22. Technische Hochschule BraunschweigGoogle Scholar
  140. 140.
    O'Flaherty CA, Parkinson MH (1972) Movement in a city centre footway. Traffic Eng Control, p 434Google Scholar
  141. 141.
    Okazaki S, Matsushita S (1993) A study of simulation model for pedestrian movement with evacuation and queuing. In: Smith RA, Dickie JF (eds) Proceedings International Conference Engineering Crowd Safety. Elsevier, Amsterdam, pp 271Google Scholar
  142. 142.
    Older SJ (1968) Movement of pedestrians on footways in shopping streets. Traffic Eng Control 10:160–163Google Scholar
  143. 143.
    Owen M, Galea ER, Lawrence PJ, Filippidis L (1998) AASK – aircraft accident statistics and knowledge: a database of human experience in evacuation, derived from aviation accident reports. Aero J 102:353–363Google Scholar
  144. 144.
    Pauls JL (1971) Evacuation drill held in the b. c. hydro building, 26 june 1969. Building Research Note 80, National Republican Congressional CommitteeGoogle Scholar
  145. 145.
    Pauls JL (1995) Movement of people. In: DiNenno PJ, Beyler CL, Custer RLP, Walton WD, Watts JM, Drysdale D, Hall JR (eds) SFPE Handbook of Fire Protection Engineering, 2nd edn. National Fire Protection Association, Quincy, p 263Google Scholar
  146. 146.
    Pauls JL, Fruin JJ, Zupan JM (2007) Minimum stair width for evacuytion, overtaking movement and counterflow – technical bases and suggestions for the past, present and future. In: Waldau N, Gattermann P, Knoflacher H, Schreckenberg M (eds) Pedestrian and Evacuation Dynamics 2005. Springer, Berlin, pp 57–69Google Scholar
  147. 147.
    Paulsen T, Soma H, Schneider V, Wiklund J, Lovas G (1995) Evaluation of simulation models of evacuating from complex spaces. SINTEF Report STF75 A95020. SINTEF, TrondheimGoogle Scholar
  148. 148.
    Polus A, Joseph JL, Ushpiz A (1983) Pedestrian flow and level of service. J Transp Eng 109(1):46–56Google Scholar
  149. 149.
    Popkov V, Schütz G (1999) Steady-state selection in driven diffusive systems with open boundaries. Europhys Lett 48:257Google Scholar
  150. 150.
    Predtechenskii VM, Milinskii AI (1969) Planing for foot traffic flow in buildings. Amerind Publishing, New Dehli, 1978. Translation of: Proekttirovanie Zhdaniis Uchetom Organizatsii Dvizheniya Lyuddskikh Potokov, Stroiizdat Publishers, MoscowGoogle Scholar
  151. 151.
    Predtetschenski WM, Milinski AI (1971) Personenströme in Gebäuden – Berechnungsmethoden für die Modellierung. Müller, Köln-BraunsfeldGoogle Scholar
  152. 152.
    Predtetschenski WM, Cholstschewnikow WW, Völkel H (1972) Vereinfachte Berechnung der Umformung von Personenströmen auf Wegabschnitten mit begrenzter Länge. Unser Brandschutz Wissenschaftlich-Technische Beil 6:90–94Google Scholar
  153. 153.
    Purser DA, Bensilium M (2001) Quantification of behaviour for engineering design standards and escape time calculations. Saf Sci 38(2):158–182Google Scholar
  154. 154.
    Pushkarev B, Zupan JM (1975) Capacity of walkways. Transp Res Rec 538:1–15Google Scholar
  155. 155.
    Quarantelli EL (1960) Images of withdrawal behavior in disasters: Some basic misconceptions. Soc Probl 8:63–79Google Scholar
  156. 156.
    Quarantelli EL (2001) The sociology of panic. In: Smelser NJ, Baltes PB (eds) International Encyclopedia of the Social and Behavioral Sciences. Pergamon, New York, pp 11020–11030Google Scholar
  157. 157.
    Revi A, Singh AK (2007) Cyclone and storm surge, pedestrian evacuation and emergency response in India. In: Waldau N, Gattermann P, Knoflacher H, Schreckenberg M (eds) Pedestrian and Evacuation Dynamics 2005. Springer, Berlin, pp 119–130Google Scholar
  158. 158.
    Rex M, Löwen H (2007) Lane formation in oppositely charged colloids driven by an electric field: Chaining and two-dimensional crystallization. Phys Rev E 75:051402Google Scholar
  159. 159.
    Rickert M, Nagel K, Schreckenberg M, Latour A (1996) Two lane traffic simulations using cellular automata. Physica A 231:534ADSGoogle Scholar
  160. 160.
    Rogsch C (2005) Vergleichende Untersuchungen zur dynamischen Simulation von Personenströmen. Technical report JUEL-4185. Forschungszentrum JülichGoogle Scholar
  161. 161.
    Rogsch C, Klingsch W, Seyfried A, Weigel H (2007) How reliable are commercial software-tools for evacuation calculation? In: Interflam 2007 – Conference Proceedings. Interscience Communication Ltd, Greenwich, London, pp 235–245Google Scholar
  162. 162.
    Rogsch C, Klingsch W, Seyfried A, Weigel H (2007) Prediction accuracy of evacuation times for high-rise buildings and simple geometries by using different software-tools. In Traffic and Granular Flow 2007. PreprintGoogle Scholar
  163. 163.
    Roitman MJ (1966) Die Evakuierung von Menschen aus Bauwerken. Staatsverlag der Deutschen Demokratischen RepublikGoogle Scholar
  164. 164.
    Rothman DH, Zaleski S (1994) Lattice-gas models of phase separation: Interfaces, phase transitions, and multiphase flow. Rev Mod Phys 66:1417ADSGoogle Scholar
  165. 165.
    Rothman DH, Zaleski S (1997) Lattice-Gas Cellular Automata. Cambridge University Press, CambridgeMATHGoogle Scholar
  166. 166.
    Saloma C, Perez GJ (2007) Herding in real escape panic. In: Waldau N, Gattermann P, Knoflacher H, Schreckenberg M (eds) Pedestrian and Evacuation Dynamics 2005. Springer, Berlin, pp 471–479Google Scholar
  167. 167.
    Schadschneider A (2002) Cellular automaton approach to pedestrian dynamics – theory. In: Schreckenberg M, Sharma SD (eds) Pedestrian and Evacuation Dynamics. Springer, Berlin, pp 75–86Google Scholar
  168. 168.
    Schelajew J, Schelajewa E, Semjonow N (2000) Nikolaus II. Der letzte russische Zar. Bechtermünz, AugsburgGoogle Scholar
  169. 169.
    Schneider U, Kath K, Oswald M, Kirchberger H (2006) Evakuierung und Verhalten von Personen im Brandfall unter spezieller Berücksichtigung von schienengebundenen Fahrzeugen. Technical report 12, TU WienGoogle Scholar
  170. 170.
    Schreckenberg M, Sharma SD (eds) (2007) Pedestrian and Evacuation Dynamics. Springer, BerlinMATHGoogle Scholar
  171. 171.
    Schultz M, Lehmann S, Fricke H (2007) A discrete microscopic model for pedestrian dynamics to manage emergency situations in airport terminals. In: Waldau N, Gattermann P, Knoflacher H, Schreckenberg M (eds) Pedestrian and Evacuation Dynamics 2005. Springer, Berlin, pp 389–395Google Scholar
  172. 172.
    Schütz GM (2001) Exactly solvable models for many-body systems. In: Domb C, Lebowitz JL (eds) Phase Transitions and Critical Phenomena, vol 19. Academic Press, AmsterdamGoogle Scholar
  173. 173.
    Seeger PG, John R (1978) Untersuchung der Räumungsabläufe in Gebäuden als Grundlage für die Ausbildung von Rettungswegen, Teil III: Reale Räumungsversuche. Technical report T395. Forschungsstelle für Brandschutztechik an der Universität Karlsruhe (TH)Google Scholar
  174. 174.
    Seyfried A, Steffen B, Klingsch W, Boltes M (2005) The fundamental diagram of pedestrian movement revisited. J Stat Mech P10002Google Scholar
  175. 175.
    Seyfried A, Steffen B, Lippert T (2006) Basics of modelling the pedestrian flow. Physica A 368:232–238ADSGoogle Scholar
  176. 176.
    Seyfried A, Rupprecht T, Passon O, Steffen B, Klingsch W, Boltes M (2007) Capacity estimation for emergency exits and bootlenecks. In: Interflam 2007 – Conference Proceedings. Interscience Communication Ltd, Greenwich, LondonGoogle Scholar
  177. 177.
    Shestopal VO, Grubits SJ (1994) Evacuation model for merging traffic flows in multi-room and multi-storey buildings. In: Kashiwagi T (ed) Fire Safety Science – 4th international Symposium Proceedings. Interscience, West Yard House, Guildford. The International Association for Fire Safety Science. Grove, London, pp 625–632Google Scholar
  178. 178.
    Sime JD (1990) The Concept of Panic. In: Canter D (ed) Fires and Human Behaviour, vol 1. Wiley, London, pp 63–81Google Scholar
  179. 179.
    Smelser NJ (1962) Theory of Collective Behavior. Free Press, New YorkGoogle Scholar
  180. 180.
    Still KG (2001) Crowd Dynamics, Ph.D. thesis, University of WarwickGoogle Scholar
  181. 181.
    Tajima Y, Nagatani T (2002) Clogging transition of pedestrian flow in t-shaped channel. Physica A 303:239–250MathSciNetADSMATHGoogle Scholar
  182. 182.
    Taylor PM (1990) The Hillsborough Stadium Disaster: Inquiry Final Report. Technical report, Great Britain Home OfficeGoogle Scholar
  183. 183.
    Templer J (1992) The Staircase. MIT Press, CambridgeGoogle Scholar
  184. 184.
    Thompson PA, Marchant EW (1994) Simulex; developing new computer modelling techniques for evaluation. In: Kashiwagi T (ed) Fire Safety Science – 4th international Symposium Proceedings. Interscience, West Yard House, Guildford. The International Association for Fire Safety Science. Grove, London, pp 613–624Google Scholar
  185. 185.
    Togawa K (1955) Study on fire escapes basing on the observation of multitude currents. Report of the building research institute. Ministry of Construction, Japan (in Japanese)Google Scholar
  186. 186.
    Tsuji Y (2003) Numerical simulation of pedestrian flow at high densities. In: Galea ER (ed) Pedestrian and Evacuation Dynamics 2003. CMS Press, London, p 27Google Scholar
  187. 187.
    Tubbs JS, Meacham B (2007) Egress Design Solutions – A Guide to Evacuation and Crowd Management Planning. Wiley, New JerseyGoogle Scholar
  188. 188.
    Virkler MR, Elayadath S (1994) Pedestrian density characteristics and shockwaves. In: Akcelik R (ed) Proceedings of the Second International Symposium on Highway Capacity, vol 2. Australian Road Research Board, Sydney, pp 671–684Google Scholar
  189. 189.
    Waldau N (2002) Massenpanik in Gebäuden. Diploma thesis, Technische Universität WienGoogle Scholar
  190. 190.
    Waldau N, Gattermann P, Knoflacher H, Schreckenberg M (eds) (2006) Pedestrian and Evacuation Dynamics 2005. Springer, BerlinGoogle Scholar
  191. 191.
    Weckman LS, Mannikkö S (1999) Evacuation of a theatre: Exercise vs calculations. Fire Mater 23:357–361Google Scholar
  192. 192.
    Weidmann U (1993) Transporttechnik der Fußgänger – Transporttechnische Eigenschaften des Fußgängerverkehrs (Literaturauswertung). Schriftenreihe des IVT 90, ETH Zürich, 3 1993. Zweite, ergänzte Auflage (in German)Google Scholar
  193. 193.
    Weifeng F, Lizhong Y, Weicheng F (2003) Simulation of bi-directional pedestrian movement using a cellular automata model. Physica A 321:633–640ADSMATHGoogle Scholar
  194. 194.
    Wolf DE, Grassberger P (eds) (1996) Friction, Arching, Contact Dynamics. World Scientific, SingaporeGoogle Scholar
  195. 195.
    Yamamoto K, Kokubo S, Nishinari K (2006) New approach for pedestrian dynamics by real-coded cellular automata (rca). In: El Yacoubi S, Chopard B, Bandini S (eds) Cellular Automata – 7th International Conference on Cellular Automata for Research and Industry, ACRI 2006, Perpignan. Springer, Berlin, pp 728–731Google Scholar
  196. 196.
    Yamamoto K, Kokubo S, Nishinari K (2007) Simulation for pedestrian dynamics by real-coded cellular automata (rca). Physica A 379:654ADSGoogle Scholar
  197. 197.
    Yamori K (1998) Going with the flow: Micro-macro dynamics in the macrobehavioral patterns of pedestrian crowds. Psychol Rev 105(3):530–557Google Scholar

Books and Reviews

  1. 198.
    Chopard B, Droz M (1998) Cellular automaton modeling of physical systems. Cambridge University Press, CambridgeGoogle Scholar
  2. 199.
    Chowdhury D, Nishinari K, Santen L, Schadschneider A (2008) Stochastic transport in complex systems: From molecules to vehicles. Elsevier, AmsterdamGoogle Scholar
  3. 200.
    DiNenno PJ (ed) (2002) SFPE Handbook of Fire Protection Engineering. National Fire Protection Association, QuincyGoogle Scholar
  4. 201.
    Galea ER (ed) (2003) Pedestrian and Evacuation Dynamics '03. CMS Press, LondonGoogle Scholar
  5. 202.
    Ped-Net collaboration. Webpage www.ped-net.org (including discussion forum)
  6. 203.
    Predtechenskii VM, Milinskii AI (1978) Planing for foot traffic flow in buildings. Amerint Publishing, New DelhiGoogle Scholar
  7. 204.
    Schadschneider A, Pöschel T, Kühne R, Schreckenberg M, Wolf DE (eds) (2007) Traffic and Granular Flow '05. Springer, Berlin (see also previous issues of this conference series)Google Scholar
  8. 205.
    Tubbs JS, Meacham BJ (2007) Egress Design Solution – A Guide to Evacuation and Crowd Management Planning. Wiley, New JerseyGoogle Scholar
  9. 206.
    Waldau N, Gattermann P, Knoflacher H, Schreckenberg M (eds) (2007) Pedestrian and Evacuation Dynamics '05. Springer, BerlinGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Andreas Schadschneider
    • 1
    • 2
  • Wolfram Klingsch
    • 3
  • Hubert Klüpfel
    • 4
  • Tobias Kretz
    • 5
  • Christian Rogsch
    • 3
  • Armin Seyfried
    • 6
  1. 1.Institut für Theoretische PhysikUniversität zu KölnKölnGermany
  2. 2.Interdisziplinäres Zentrum für Komplexe SystemeBonnGermany
  3. 3.Institute for Building Material Technology and Fire Safety ScienceUniversity of WuppertalWuppertalGermany
  4. 4.TraffGo HT GmbHDuisburgGermany
  5. 5.PTV Planung Transport Verkehr AGKarlsruheGermany
  6. 6.Jülich Supercomputing CentreResearch Centre JülichJülichGermany