Encyclopedia of Complexity and Systems Science

2009 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

EarthquakeLocation, Direct, Global-Search Methods

  • Anthony Lomax
  • Alberto Michelini
  • Andrew Curtis
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30440-3_150

Definition of the Subject

An earthquake location specifies the place and time of occurrence of energy release from a seismic event. A location together witha measure of size forms a concise description of the most important characteristics of an earthquake. The location may refer to the earthquake'sepicenter, hypocenter, or centroid, or to another observed or calculated property of the earthquake that can be spatially and temporallylocalized. A location is called absolute if it is determined or specified within a fixed, geographiccoordinate system and a fixed time base (e. g., Coordinated Universal Time, UTC); a location is called relative if it is determined or specified with respect to another spatio‐temporal object (e. g., an earthquake orexplosion) which may have unknown or uncertain absolute location.

For rapid hazard assessment and emergency response , an earthquake location provides information such as the locality of potential damage or thesource region of a possible tsunami...

This is a preview of subscription content, log in to check access.


Primary Literature

  1. 1.
    Aki K, Richards PG (1980) Quantitative Seismology. Freeman, New YorkGoogle Scholar
  2. 2.
    Anderson K (1981) Epicentral location using arrival time order. Bull Seism Soc Am 71:541–545Google Scholar
  3. 3.
    Baker T, Granat R, Clayton RW (2005) Real-time Earthquake Location Using Kirchhoff Reconstruction. Bull Seism Soc Am 95:699–707Google Scholar
  4. 4.
    Billings SD (1994) Simulated annealing for earthquake location. Geophys J Int 118:680–692ADSGoogle Scholar
  5. 5.
    Buland R (1976) The mechanics of locating earthquakes. Bull Seism Soc Am 66:173–187Google Scholar
  6. 6.
    Calvert A, Gomez F, Seber D, Barazangi M, Jabour N, Ibenbrahim A, Demnati A (1997) An integrated geophysical investigation of recent seismicity in the Al-Hoceima region of North Morocco. Bull Seism Soc Am 87:637–651Google Scholar
  7. 7.
    ervený V (2001) Seismic Ray Theory. Cambridge University Press, CambridgeGoogle Scholar
  8. 8.
    Cua G, Heaton T (2007) The Virtual Seismologist (VS) Method: a Bayesian Approach to Earthquake Early Warning. In: Gasparini P, Gaetano M, Jochen Z (eds) Earthquake Early Warning Systems. Springer, BerlinGoogle Scholar
  9. 9.
    Curtis A (1999) Optimal experiment design: Cross-borehole tomographic examples. Geophys J Int 136:637–650ADSGoogle Scholar
  10. 10.
    Curtis A (1999) Optimal design of focussed experiments and surveys. Geophys J Int 139:205–215ADSGoogle Scholar
  11. 11.
    Curtis A (2004) Theory of model-based geophysical survey and experimental design Part A – Linear Problems. Lead Edge 23(10):997–1004Google Scholar
  12. 12.
    Curtis A (2004) Theory of model-based geophysical survey and experimental design Part B – Nonlinear Problems. Lead Edge 23(10):1112–1117Google Scholar
  13. 13.
    Curtis A, Michelini A, Leslie D, Lomax A (2004) A deterministic algorithm for experimental design applied to tomographic and microseismic monitoring surveys. Geophys J Int 157:595–606Google Scholar
  14. 14.
    Dreger D, Uhrhammer R, Pasyanos M, Frank J, Romanowicz B (1998) Regional an far-regional earthqauke locations and source parameters using sparse broadband networks: A test on the Ridgecrest sequence. Bull Seism Soc Am 88:1353–1362Google Scholar
  15. 15.
    Ekström G (2006) Global Detection and Location of Seismic Sources by Using Surface Waves. Bull Seism Soc Am 96:1201–1212. doi:10.1785/0120050175
  16. 16.
    Font Y, Kao H, Lallemand S, Liu CS, Chiao LY (2004) Hypocentral determination offshore Eastern Taiwan using the Maximum Intersection method. Geophys J Int 158:655–675ADSGoogle Scholar
  17. 17.
    Geiger L (1912) Probability method for the determination of earthquake epicenters from the arrival time only (translated from Geiger's 1910 German article). Bull St Louis Univ 8:56–71Google Scholar
  18. 18.
    Gentili S, Michelini A (2006) Automatic picking of P and S phases using a neural tree. J Seism 10:39–63. doi:10.1007/s10950-006-2296-6
  19. 19.
    Goldberg DE (1989) Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, ReadingzbMATHGoogle Scholar
  20. 20.
    Hammersley JM, Handscomb DC (1967) Monte Carlo Methods. Methuen, LondonGoogle Scholar
  21. 21.
    Horiuchi S, Negishi H, Abe K, Kamimura A, Fujinawa Y (2005) An Automatic Processing System for Broadcasting Earthquake Alarms. Bull Seism Soc Am 95:708–718Google Scholar
  22. 22.
    Husen S, Smith RB (2004) Probabilistic Earthquake Relocation in Three-Dimensional Velocity Models for the Yellowstone National Park Region, Wyoming. Bull Seism Soc Am 94:880–896Google Scholar
  23. 23.
    Husen S, Kissling E, Deichmann N, Wiemer S, Giardini D, Baer M (2003) Probabilistic earthquake location in complex three-dimensional velocity models: Application to Switzerland. J Geophys Res 108:2077–2102Google Scholar
  24. 24.
    Johnson CE, Lindh A, Hirshorn B (1994) Robust regional phase association. US Geol Surv Open-File Rep pp 94–621Google Scholar
  25. 25.
    Kawakatsu H (1998) On the real-time monitoring of the long-period seismic wavefield. Bull Earthq Res Inst 73:267–274Google Scholar
  26. 26.
    Kennett BLN (1992) Locating oceanic earthquakes – the influence of regional models and location criteria. Geophys J Int 108:848–854ADSGoogle Scholar
  27. 27.
    Kennett BLN (2006) Non-linear methods for event location in a global context. Phys Earth Planet Inter 158:46–54ADSGoogle Scholar
  28. 28.
    Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680MathSciNetADSzbMATHGoogle Scholar
  29. 29.
    Lahr JC (1999) HYPOELLIPSE: A Computer Program for Determining Local Earthquake Hypocentral Parameters, Magnitude, and First-Motion Pattern (Y2K Compliant Version) 1999 Version 1.0. US Geological Survey Open-File Report, pp 99–23. http://jclahr.com/science/software/hypoellipse/hypoel/hypoman/hypomst_pdf.pdf
  30. 30.
    Lepage GP (1978) A new algorithm for adaptive multi-dimensional integration. J Comput Phys 27:192–203ADSzbMATHGoogle Scholar
  31. 31.
    Lomax A (2005) A Reanalysis of the Hypocentral Location and Related Observations for the Great 1906 California Earthquake. Bull Seism Soc Am 91:861–877Google Scholar
  32. 32.
    Lomax A (2008) Location of the Focus and Tectonics of the Focal Region of the California Earthquake of 18 April 1906. Bull Seism Soc Am98:846–860Google Scholar
  33. 33.
    Lomax A, Curtis A (2001) Fast, probabilistic earthquake location in 3D models using oct-tree importance sampling. Geophys Res Abstr 3:955. www.alomax.net/nlloc/octtree
  34. 34.
    Lomax A, Virieux J, Volant P, Berge C (2000) Probabilistic earthquake location in 3D and layered models: Introduction of a Metropolis-Gibbs method and comparison with linear locations. In: Thurber CH, Rabinowitz N (eds) Advances in Seismic Event Location. Kluwer, AmsterdamGoogle Scholar
  35. 35.
    Lomax A, Zollo A, Capuano P, Virieux J (2001) Precise, absolute earthquake location under Somma-Vesuvius volcano using a new 3D velocity model. Geophys J Int 146:313–331ADSGoogle Scholar
  36. 36.
    Maurer HR, Boerner DE (1998) Optimized and robust experimental design. Geoph J Int 132:458–468ADSGoogle Scholar
  37. 37.
    Milne J (1886) Earthquakes and Other Earth Movements. Appelton, New YorkGoogle Scholar
  38. 38.
    Moser TJ, van Eck T, Nolet G (1992) Hypocenter determination in strongly heterogeneous earth models using the shortest path method. J Geophys Res 97:6563–6572ADSGoogle Scholar
  39. 39.
    Moser TJ, Nolet G, Snieder R (1992) Ray bending revisited. Bull Seism Soc Am 82:259–288Google Scholar
  40. 40.
    Mosegaard K, Tarantola A (1995) Monte Carlo sampling of solutions to inverse problems. J Geophys Res 100:12431–12447ADSGoogle Scholar
  41. 41.
    Myers SC, Schultz CA (2000) Improving Sparse Network Seismic Location with Bayesian Kriging and Teleseismically Constrained Calibration Events. Bull Seism Soc Am 90:199–211Google Scholar
  42. 42.
    Nicholson T, Gudmundsson Ó, Sambridge M (2004) Constraints on earthquake epicentres independent of seismic velocity models. Geophys J Int 156:648–654Google Scholar
  43. 43.
    Nicholson T, Sambridge M, Gudmundsson Ó (2004) Three-dimensional empirical traveltimes: construction and applications. Geophys J Int 156:307–328Google Scholar
  44. 44.
    Podvin P, Lecomte I (1991) Finite difference computations of traveltimes in very contrasted velocity models: a massively parallel approach and its associated tools. Geophys J Int 105:271–284Google Scholar
  45. 45.
    Press WH, Flannery BP, Saul AT, Vetterling WT (1992) Numerical Recipes, 2nd edn. Cambridge Univ Press, New YorkGoogle Scholar
  46. 46.
    Presti D, Troise C, De Natale G (2004) Probabilistic Location of Seismic Sequences in Heterogeneous Media. Bull Seism Soc Am 94:2239–2253Google Scholar
  47. 47.
    Pujol J (2000) Joint event location – The JHD technique and applications to data from local seismic networks. In: Thurber CH, Rabinowitz N (eds) Advances in Seismic Event Location. Kluwer, AmsterdamGoogle Scholar
  48. 48.
    Rabinowitz N (2000) Hypocenter location using a constrained nonlinear simplex minimization method. In: Thurber CH, Rabinowitz N (eds) Advances in Seismic Event Location. Kluwer, AmsterdamGoogle Scholar
  49. 49.
    Rabinowitz N, Steinberg DM (2000) A statistical outlook on the problem of seismic network configuration. In: Thurber CH, Rabinowitz N (eds) Advances in Seismic Event Location. Kluwer, AmsterdamGoogle Scholar
  50. 50.
    Rawlinson N, Sambridge M (2004) Wave front evolution in strongly heterogeneous layered media using the fast marching method. Geophys J Int 156:631–647ADSGoogle Scholar
  51. 51.
    Rawlinson N, Sambridge M (2004) Multiple reflection and transmission phases in complex layered media using a multistage fast marching method. Geophys 69:1338–1350Google Scholar
  52. 52.
    Reid HF (1910) The Mechanics of the Earthquake. Vol II of: The California Earthquake of 18 April 1906. Report of the State Earthquake Investigation Commission, Lawson AC (Chairman). Carnegie Institution of Washington Publication, vol 87 (reprinted 1969)Google Scholar
  53. 53.
    Rothman DH (1985) Nonlinear inversion, statistical mechanics, and residual statics estimation. Geophysics 50:2784–2796ADSGoogle Scholar
  54. 54.
    Rydelek P, Pujol J (2004) Real-Time Seismic Warning with a Two-Station Subarray. Bull Seism Soc Am 94:1546–1550Google Scholar
  55. 55.
    Sambridge M (1998) Exploring multi-dimensional landscapes without a map. Inverse Probl 14:427–440MathSciNetADSzbMATHGoogle Scholar
  56. 56.
    Sambridge M (1999) Geophysical inversion with a Neighbourhood algorithm, vol I. Searching a parameter space. Geophys J Int 138:479–494ADSGoogle Scholar
  57. 57.
    Sambridge M (1999) Geophysical inversion with a neighbourhood algorithm, vol II. Appraising the ensemble. Geophys J Int 138:727–746ADSGoogle Scholar
  58. 58.
    Sambridge M (2003) Nonlinear inversion by direct search using the neighbourhood algorithm. In: International Handbook of Earthquake andEngineering Seismology, vol 81B. Academic Press, Amsterdam, pp 1635–1637Google Scholar
  59. 59.
    Sambridge M, Drijkoningen G (1992) Genetic algorithms in seismic waveform inversion. Geophys J Int 109:323–342ADSGoogle Scholar
  60. 60.
    Sambridge M, Gallagher K (1993) Earthquake hypocenter location using genetic algorithms. Bull Seism Soc Am 83:1467–1491Google Scholar
  61. 61.
    Sambridge M, Kennett BLN (1986) A novel method of hypocentre location. Geophys J R Astron Soc 87:679–697Google Scholar
  62. 62.
    Sambridge M, Mosegaard K (2002) Monte Carlo Methods In Geophysical Inverse Problems. Rev Geophys 40:1009–1038ADSGoogle Scholar
  63. 63.
    Satriano C, Lomax A, Zollo A (2007) Optimal, Real-time Earthquake Location for Early Warning. In: Gasparini P, Gaetano M, Jochen Z (eds) Earthquake Early Warning Systems. Springer, BerlinGoogle Scholar
  64. 64.
    Satriano C, Lomax A, Zollo A (2007) Real-time evolutionary earthquake location for seismic early warning. Bull Seism Soc Am 98:1482–1494Google Scholar
  65. 65.
    Sen M, Stoffa PL (1995) Global optimization methods in geophysical inversion. Elsevier, Amsterdam, p 281zbMATHGoogle Scholar
  66. 66.
    Sethian JA (1999) Level set methods and fast marching methods. Cambridge University Press, CambridgezbMATHGoogle Scholar
  67. 67.
    ShannonCE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423MathSciNetzbMATHGoogle Scholar
  68. 68.
    Shearer PM (1994) Global seismic event detection using a matched filter on long-period seismograms. J Geophys Res 99:13,713–13,735ADSGoogle Scholar
  69. 69.
    Shearer PM (1997) Improving local earthquake locations using the L1 norm and waveform cross correlation: Application to the Whittier Narrows, California, aftershock sequence. J Geophys Res 102:8269–8283ADSGoogle Scholar
  70. 70.
    Steinberg DM, Rabinowitz N, Shimshoni Y, Mizrachi D (1995) Configuring a seismographic network for optimal monitoring of fault lines and multiple sources. Bull Seism Soc Am 85:1847–1857Google Scholar
  71. 71.
    Stummer P, Maurer HR, Green AG (2004) Experimental Design: Electrical resistivity data sets that provide optimum subsurface information. Geophysics 69:120–139ADSGoogle Scholar
  72. 72.
    Tarantola A (1987) Inverse problem theory: Methods for data fitting and model parameter estimation. Elsevier, AmsterdamzbMATHGoogle Scholar
  73. 73.
    Tarantola A (2005) Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM, PhiladephiazbMATHGoogle Scholar
  74. 74.
    Tarantola A, Valette B (1982) Inverse problems = quest for information. J Geophys Res 50:159–170Google Scholar
  75. 75.
    Thurber CH, Kissling E (2000) Advances in travel-time calculations for three-dimensional strucutres. In: Thurber CH, Rabinowitz N (eds) Advances in Seismic Event Location. Kluwer, AmsterdamGoogle Scholar
  76. 76.
    Uhrhammer RA (1980) Analysis of small seismographic station networks. Bull Seism Soc Am 70:1369–1379Google Scholar
  77. 77.
    Um J, Thurber C (1987) A fast algorithm for two-point seismic ray tracing. Bull Seism Soc Am 77:972–986Google Scholar
  78. 78.
    van den Berg J, Curtis A, Trampert J (2003) Bayesian, nonlinear experimental design applied to simple, geophysical examples. Geophys J Int 55(2):411–421. Erratum: 2005. Geophys J Int 161(2):265Google Scholar
  79. 79.
    Vidale JE (1988) Finite-difference calculation of travel times. Bull Seism Soc Am 78:2062–2078Google Scholar
  80. 80.
    Winterfors E, Curtis A (2007) Survey and experimental design for nonlinear problems. Inverse Problems (submitted)Google Scholar
  81. 81.
    WitherM, Aster R, Young C (1999) An automated local and regional seismicevent detection and location system using waveform correlation. BullSeism Soc Am 8:657–669Google Scholar
  82. 82.
    Withers M, Aster R, Young C, Beiriger J, Harris M, Moore S, Trujillo J (1998) A comparison of select trigger algorithms for automated global seismic phase and event detection. Bull Seism Soc Am 88:95–106Google Scholar
  83. 83.
    Wittlinger G, Herquel G, Nakache T (1993) Earthquake location in strongly heterogeneous media. Geophys J Int 115:759–777ADSGoogle Scholar
  84. 84.
    Zhou H (1994) Rapid 3-D hypocentral determination using a master station method. J Geophys Res 99:15439–15455ADSGoogle Scholar

Books and Reviews

  1. 85.
    Gasparini P, Gaetano M, Jochen Z (eds) (2007) Earthquake Early Warning Systems. Springer, BerlinGoogle Scholar
  2. 86.
    Lee WHK, Stewart SW (1981) Principles and applications of microearthquake networks. Academic Press, New YorkGoogle Scholar
  3. 87.
    Thurber CH, Rabinowitz N (eds) (2000) Advances in Seismic Event Location. Kluwer, AmsterdamzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Anthony Lomax
    • 1
  • Alberto Michelini
    • 2
  • Andrew Curtis
    • 3
  1. 1.ALomax ScientificMouans-SartouxFrance
  2. 2.Istituto Nazionale di Geofisica e VulcanologiaRomaItaly
  3. 3.ECOSSE (Edinburgh Collaborative of Subsurface Science and Engineering), Grant Institute of GeoSciencesThe University of EdinburghEdinburghUnited Kingdom