Encyclopedia of Complexity and Systems Science

2009 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Agent Based Modeling and Simulation

  • Stefania Bandini
  • Sara Manzoni
  • Giuseppe Vizzari
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30440-3_12

Definition of the Subject

Agent‐Based Modeling and Simulation – an approach to the modeling and simulation of a systemin which the overall behavior is determined by the local action and interaction of a set of agents situated in an environment. Every agent choosesthe action to be carried out on the basis of its own behavioral specification, internal state and perception of the environment. The environment, besidesenabling perceptions, can regulate agents' interactions and constraint their actions.

Introduction

Computer simulation represents a way to exploita computational model to evaluate designs and plans without actually bringing them into existence in the real world (e. g. architecturaldesigns, road networks and traffic lights), but also to evaluate theories and models of complex systems (e. g. biological or social systems) byenvisioning the effect of the modeling choices, with the aim of gaining insight of their functioning. The use of these“synthetic environments ” is...

This is a preview of subscription content, log in to check access

Bibliography

  1. 1.
    Adami C (1998) Introduction to Artificial Life. Springer, NewYorkMATHGoogle Scholar
  2. 2.
    Agha G (1986) Actors: A Model of Concurrent Computation in DistributedSystems. MIT press, CambridgeGoogle Scholar
  3. 3.
    Alfi V, Galla T, Marsili M, Pietronero L (eds) (2007) Interacting Agents,Complexity and Inter-Disciplinary Applications (IACIA)Google Scholar
  4. 4.
    Balmer M, Nagel K (2006) Shape morphing of intersection layouts using curb sideoriented driver simulation. In: van Leeuwen JP, Timmermans HJ (eds) Innovations in Design & Decision Support Systems in Architecture and UrbanPlanning. Springer, Dordrecht, pp 167–183Google Scholar
  5. 5.
    Bandini S, Manzoni S, Simone C (2002) Heterogeneous agents situated inheterogeneous spaces. Appl Artific Intell 16:831–852Google Scholar
  6. 6.
    Bandini S, Manzoni S, Vizzari G (2004) Situated cellular agents: a model tosimulate crowding dynamics. IEICE Transactions on Information and Systems: Special Issues on Cellular Automata E87-D,pp 669–676Google Scholar
  7. 7.
    Bandini S, Petta P, Vizzari G (eds) (2006) International Symposium on AgentBased Modeling and Simulation (ABModSim 2006), vol Cybernetics and Systems. Austrian Society for Cybernetic Studies (2006) 18th European Meeting onCybernetics and Systems Research (EMCSR 2006)Google Scholar
  8. 8.
    Bandini S, Celada F, Manzoni S, Puzone R, Vizzari G (2006) Modelling the immunesystem with situated agents. In: Apolloni B, Marinaro M, Nicosia G, Tagliaferri R (eds) Proceedings of WIRN/NAIS 2005. Lecture Notes inComputer Science, vol 3931. Springer, Berlin, pp 231–243Google Scholar
  9. 9.
    Bandini S, Federici ML, Vizzari G (2007) Situated cellular agents approach tocrowd modeling and simulation. Cybernet Syst 38:729–753MATHGoogle Scholar
  10. 10.
    Bar-Yam Y (1997) Dynamics of Complex Systems. Addison-Wesley,ReadingMATHGoogle Scholar
  11. 11.
    Batty M (2001) Agent based pedestrian modeling. Env Plan B: Plan Des28:321–326Google Scholar
  12. 12.
    Bazzan ALC, Wahle J, Klügl F (1999) Agents in trafficmodelling – from reactive to social behaviour. In: Burgard W, Christaller T, Cremers AB (eds) KI-99: Advances in Artificial Intelligence, 23rdAnnual German Conference on Artificial Intelligence, Bonn, Germany, 13–15 September 1999. Lecture Notes in Computer Science,vol 1701. Springer, Berlin, pp 303–306Google Scholar
  13. 13.
    Brooks RA (1986) A robust layered control system for a mobile robot.IEEE J Robot Autom 2:14–23MathSciNetGoogle Scholar
  14. 14.
    Brooks RA (1990) Elephants don't play chess. Robot Autonom Syst6:3–15Google Scholar
  15. 15.
    Brueckner S (2000) An analytic approach to pheromone-based coordination. In:ICMAS IEEE Comp Soc, pp 369–370Google Scholar
  16. 16.
    Cabri G, Leonardi L, Zambonelli F (2000) MARS: a programmablecoordination architecture for mobile agents. IEEE Inter Comp 4:26–35Google Scholar
  17. 17.
    Davidsson P, Logan B, Takadama K (eds) (2005) Multi-Agent andMulti-Agent-Based Simulation, Joint Workshop MABS (2004), New York, 19 July 2004, Revised Selected Papers. In: Davidsson P, Logan B, Takadama K (eds)MABS. Lecture Notes in Computer Science, vol 3415. Springer, BerlinGoogle Scholar
  18. 18.
    Dosi G, Fagiolo G, Roventini A (2006) An evolutionary model of endogenousbusiness cycles. Comput Econ 27:3–34MATHGoogle Scholar
  19. 19.
    Edmonds B (2001) The use of models – making MABS more informative.In: Multi-Agent-Based Simulation, Second International Workshop MABS (2000), Boston MA, USA, July (2000), Revised and Additional Papers. Lecture Notes inComputer Science, vol 1979. Springer, Berlin, pp 15–32Google Scholar
  20. 20.
    Englemore RS, Morgan T (eds) (1988) Blackboard Systems. Addison-Wesley,ReadingGoogle Scholar
  21. 21.
    Epstein JM, Axtell R (1996) Growing Artificial Societies. MIT Press,BostonGoogle Scholar
  22. 22.
    Ferber J (1999) Multi–Agent Systems. Addison-Wesley,LondonGoogle Scholar
  23. 23.
    Ferber J, Muller J (1996) Influences and reaction: A model of situatedmultiagent systems. In: Proceedings of the 2nd International Conference on Multiagent SystemsGoogle Scholar
  24. 24.
    Fikes RE, Nilsson NJ (1971) STRIPS: a new approach to the application oftheorem proving to problem solving. Artif Intell 2:189–208MATHGoogle Scholar
  25. 25.
    Franklin S, Graesser A (1997) Is it an agent, or justa program?: A taxonomy for autonomous agents. In: Müller JP, Wooldridge M, Jennings NR (eds) Intelligent Agents III, Agent Theories,Architectures, and Languages ECAI '96 Workshop (ATAL), Budapest, 12–13 August 1996. Lecture Notes in Computer Science, vol 1193. Springer,Berlin, pp 21–36Google Scholar
  26. 26.
    Gelernter D (1985) Generative communication in Linda. ACM Trans Program LangSyst 7:80–112MATHGoogle Scholar
  27. 27.
    Gelernter D, Carriero N (1992) Coordination languages and their significance.Commun ACM 35:97–107Google Scholar
  28. 28.
    Genesereth MR, Ketchpel SP (1994) Software agents. Commun ACM37(7):48–53Google Scholar
  29. 29.
    Genesereth MR, Nilsson N (1987) Logical Foundations of ArtificialIntelligence. Morgan Kaufmann, San MateoMATHGoogle Scholar
  30. 30.
    Georgeff M (1984) A theory of action in multi–agent planning. In:Proceedings of the AAAI84, pp 121–125Google Scholar
  31. 31.
    Gilbert N, Troitzsch KG (2005) Simulation for the Social Scientist 2ndedn. Open University Press, MaidenheadGoogle Scholar
  32. 32.
    Goles E, Martinez S (1990) Neural and automata networks, dynamical behaviorand applications. Kluwer, NorwellMATHGoogle Scholar
  33. 33.
    Gouaich A, Michel F, Guiraud Y (2005) MIC: A deployment environment forautonomous agents. In: Environments for Multi-Agent Systems, First International Workshop (E4MAS 2004). Lecture Notes in Computer Science,vol 3374. Springer, Berlin, pp 109–126Google Scholar
  34. 34.
    Gruber TR (1995) Toward principles for the design of ontologies used forknowledge sharing. Int J Hum Comp Stud 43:907–928Google Scholar
  35. 35.
    Hales D, Edmonds B, Norling E, Rouchier J (eds) (2003)Multi-Agent-Based Simulation III, 4th International Workshop MABS (2003), Melbourne, 14 July 2003. Revised Papers. In: Hales D, Edmonds B,Norling E, Rouchier J (eds) MABS. Lecture Notes in Computer Science, vol 2927. Springer, BerlinGoogle Scholar
  36. 36.
    Hassas S, Serugendo GDM, Phan D (eds) (2007) Multi-Agents for modellingComplex Systems (MA4CS). http://bat710.univ-lyon1.fr/%7Efarmetta/MA4CS07
  37. 37.
    Helbing D, Schweitzer F, Keltsch J, Molnár P (1997) Active walker modelfor the formation of human and animal trail systems. Phys Rev E 56:2527–2539Google Scholar
  38. 38.
    Henein CM, White T (2005) Agent-based modelling of forces in crowds. In:Davidsson P, Logan B, Takadama K (eds) Multi-Agent and Multi-Agent-Based Simulation, Joint Workshop MABS (2004), New York 19 July 2004. Revised SelectedPapers. Lecture Notes in Computer Science, vol 3415. Springer, Berlin, pp 173–184Google Scholar
  39. 39.
    Klügl F, Herrler R, Oechslein C (2003) From simulated to realenvironments: How to use sesam for software development. In: Schillo M, Klusch M, Müller JP, Tianfield H (eds) MATES. Lecture Notes in ComputerScience, vol 2831. Springer, Berlin, pp 13–24Google Scholar
  40. 40.
    Klügl F, Fehler M, Herrler R (2005) About the role of the environment inmulti-agent simulations. In: Weyns D, Parunak HVD, Michel F (eds) Environments for Multi-Agent Systems, First International Workshop E4MAS (2004), NewYork 19 July 2004. Revised Selected Papers. vol 3374, pp 127–149Google Scholar
  41. 41.
    Langton C (1995) Artificial life: An overview. MIT Press,CambridgeGoogle Scholar
  42. 42.
    Latombe JC (1991) Robot Motion Planning. Kluwer,BostonGoogle Scholar
  43. 43.
    Luck M, McBurney P, Sheory O, Willmott S (eds) (2005) Agent Technology:Computing as Interaction. University of Southampton, SouthamptonGoogle Scholar
  44. 44.
    Mamei M, Zambonelli F, Leonardi L (2002) Co-fields: towards a unifyingapproach to the engineering of swarm intelligent systems. In: Engineering Societies in the Agents World III: Third International Workshop (ESAW2002). Lecture Notes in Artificial Intelligence, vol 2577. Springer, Berlin, pp 68–81Google Scholar
  45. 45.
    Moss S, Davidsson P (eds) (2001) Multi-Agent-Based Simulation,Second International Workshop MABS (2000), Boston, July, (2000), Revised and Additional Papers. Lecture Notes in Computer Science,vol 1979. Springer, BerlinGoogle Scholar
  46. 46.
    Murata T (1989) Petri nets: properties, analysis and applications. Proc IEEE77:541–580Google Scholar
  47. 47.
    North MJ, Collier NT, Vos JR (2006) Experiences creating three implementationsof the repast agent modeling toolkit. ACM Trans Model Comp Sim 16:1–25Google Scholar
  48. 48.
    Omicini A, Zambonelli F (1999) Coordination for Internet applicationdevelopment. Autono Agents Multi-Agent Syst 2:251–269 Special Issue: Coordination Mechanisms for Web AgentsGoogle Scholar
  49. 49.
    Picco GP, Murphy AL, Roman GC (1999) Lime: Linda meets mobility. In:Proceedings of the 21st International Conference on Software Engineering (ICSE 99) ACM Press, Los Angeles,pp 368–377Google Scholar
  50. 50.
    Pyka A, Fagiolo G (2007) Agent-Based Modelling: A Methodology forNeo-Schumpeterian Economics. In: Hanusch H, Pyka A (eds) Elgar Companion to Neo-Schumpeterian Economics. Edward Elgar Publishing,pp 467–487Google Scholar
  51. 51.
    Rao A, Georgeff M (1991) Modeling rational agents withina BDI‐architecture. In: Proc Knowledge Representation and Reasoning (KR&R 1991)Google Scholar
  52. 52.
    Rao A, Georgeff M (1995) BDI agents: from theory to practice. In: Proceedingsof the International Conference on Multi-Agent SystemsGoogle Scholar
  53. 53.
    Russel S, Norvig P (1995) Artificial Intelligence: A Modern Approach.Prentice Hall, Upper Saddle RiverGoogle Scholar
  54. 54.
    Schadschneider A, Kirchner A, Nishinari K (2002) CA approach to collectivephenomena in pedestrian dynamics. In: Bandini S, Chopard B, Tomassini M (eds) Cellular Automata, 5th International Conference on Cellular Automata forResearch and Industry ACRI 2002. Lecture Notes in Computer Science, vol 2493. Springer, Berlin, pp 239–248Google Scholar
  55. 55.
    Sichman JS, Antunes L (eds) (2006) Multi-Agent-Based Simulation VI,International Workshop MABS (2005), Utrecht, The Netherlands, 25 July 2005, Revised and Invited Papers. In: Sichman JS, Antunes L (eds)MABS. Lecture Notes in Computer Science, vol 3891. Springer, BerlinGoogle Scholar
  56. 56.
    Sichman JS, Conte R, Gilbert N (eds) (1998) Multi-Agent Systemsand Agent-Based Simulation, First International Workshop MABS '98, Paris, France, 4–6 July 1998. Proceedings. In: Sichman JS, Conte R,Gilbert N (eds): MABS. Lecture Notes in Computer Science, vol 1534. Springer, BerlinGoogle Scholar
  57. 57.
    Sichman JS, Bousquet F, Davidsson P (eds) (2003)Multi-Agent-Based Simulation, Third International Workshop MABS (2002), Bologna, Italy, 15–16 July 2002, Revised Papers. In: Sichman JS,Bousquet F, Davidsson P (eds) MABS. Lecture Notes in Computer Science, vol 2581. Springer, BerlinGoogle Scholar
  58. 58.
    Torrens P (2002) Cellular automata and multi-agent systems as planning supporttools. In: Geertman S, Stillwell J (eds) Planning Support Systems in Practice. Springer, London, pp 205–222Google Scholar
  59. 59.
    Tummolini L, Castelfranchi C, Ricci A, Viroli M, Omicini A (2004)“Exhibitionists” and “voyeurs” do it better: A shared environment approach for flexible coordination with tacit messages.In: Weyns D, Parunak HVD, Michel F (eds) 1st International Workshop on Environments for MultiAgent Systems (E4MAS 2004),pp 97–111Google Scholar
  60. 60.
    Wahle J, Schreckenberg M (2001) A multi-agent system for on-linesimulations based on real-world traffic data. In: Annual Hawaii International Conference on System Sciences (HICSS-34), IEEE ComputerSocietyGoogle Scholar
  61. 61.
    Weyns D, Holvoet T (2006) From reactive robots to situated multi-agentsystems: a historical perspective on the role of environment in multi-agent systems. In: Dikenelli O, Gleizes MP, Ricci A (eds) EngineeringSocieties in the Agents World VI, 6th International Workshop ESAW (2005). Lecture Notes in Computer Science, vol 3963. Springer, Berlin,pp 63–88Google Scholar
  62. 62.
    Weyns D, Schelfthout K, Holvoet T, Lefever T (2005) Decentralized control ofE'GV transportation systems. In: AAMAS Industrial Applications. ACM Press, Utrecht, pp 67–74Google Scholar
  63. 63.
    Weyns D, Vizzari G, Holvoet T (2006) Environments for situated multi-agentsystems: beyond infrastructure. In: Weyns D, Parunak HVD, Michel F (eds) Environments for Multi-Agent Systems II, Second International Workshop E4MAS(2005), Utrecht, 25 July 2005. Selected Revised and Invited Papers. Lecture Notes in Computer Science, vol 3830. Springer, Berlin, pp 1–17Google Scholar
  64. 64.
    Weyns D, Boucké N, Holvoet T (2006) Gradient field-based task assignmentin an AGV transportation system. In: AAMAS '06: Proceedings of the fifth international joint conference on Autonomous agents and multiagent systems. ACMPress, Hakodate, pp 842–849Google Scholar
  65. 65.
    Weyns D, Brueckner SA, Demazeau Y (eds) (2008) EngineeringEnvironment-Mediated Multi-Agent Systems: International Workshop, EEMMAS 2007, Dresden, Germany, October 2007. Selected Revised and InvitedPapers. Lecture Notes in Computer Science, vol 5049. Springer, BerlinGoogle Scholar
  66. 66.
    Weyns D, Omicini A, Odell J (2007) Environment as a first classabstraction in multiagent systems. Auton Agents Multi-Agent Syst 14:5–30Google Scholar
  67. 67.
    Wolfram S (1986) Theory and Applications of Cellular Automata. World Press,SingaporeMATHGoogle Scholar
  68. 68.
    Wooldridge MJ, Jennings NR (1995) Intelligent agents: theory and practice.Knowl Eng Rev 10:115–152Google Scholar
  69. 69.
    Zambonelli F, Parunak HVD (2003) Signs of a revolution in computerscience and software engineering. In: Petta P, Tolksdorf R, Zambonelli F (eds) Engineering Societies in the Agents World III, Third InternationalWorkshop, ESAW 2002, Madrid, Spain, September 2002, Revised Papers. Lecture Notes in Computer Science, vol 2577. Springer, Berlin,pp 13–28Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Stefania Bandini
    • 1
  • Sara Manzoni
    • 1
  • Giuseppe Vizzari
    • 1
  1. 1.Complex Systems and Artificial Intelligence Research CenterUniversity of Milan-BicoccaMilanItaly