Neuroimmune Cross Talk

  • G. Juhász
Reference work entry


Immune system and the nervous system share the job of keeping the homeostatic control and responding to changes in external and internal environment. Similarity of their functions and common use of receptors, ligands and other cell-to-cell communication molecules by cells of nervous and immune system origin supports the idea that the two systems function in close cooperation. This chapter intends to provide an overview of the field of neuroimmune cross talk including innervation of immune system, innate immune system of the brain, commonly used mediators and transmitters, and the similarity of neuronal and immune synapse. We did not focus on autoimmune diseases of the brain and only barely touch the medical neuroimmunology because we aimed to give a survey of basic facts and principles of neuroimmune cross talk, providing a firm background for understanding medical consequences of interaction between the two systems.


Microglia Cell Vasoactive Intestinal Polypeptide Vagal Nerve Brain Macrophage Immune Synapse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations:


adrenocorticotropic hormone


antigen-presenting cell


brain-derived nerve growth factor


Calcitonin gene-related peptide


Corticotrophin-releasing factor


corticotropin-releasing hormone


integrin-mediated cell adhesion molecules




mitogen-activated protein kinase


monocyte chemoattractant protein


Neuronal cell adhesion molecules


nitric oxide synthase


nerve growth factor


paraventricular nucleus


receptor activity-modulating protein;


supramolecular activation cluster


toll-like receptor


vasoactive intestinal polypeptide


  1. Bianchi M, Ulrich P, Bloom O, Meistrell M, Zimmerman GA, et al. 1995. An inhibitor of macrophage arginine transport and nitric oxide production (CNI-1493) prevents acute inflammation and endotoxin lethality. Mol Med 1: 254–266.PubMedGoogle Scholar
  2. Black PH. 1994. Central nervous system–immune system interactions: Psychoneuroendocrinology of stress and its immune consequences. Antimicrob Agent Chemother 38: 1–6.Google Scholar
  3. Blalock JE. 2005. The immune system as the sixth sense. J Int Med 257: 126–138.CrossRefGoogle Scholar
  4. Blatteis CM, Li S, Li Z, Perlik V, Feleder C. 2004. Signaling the brain in systemic inflammation: The role of complement. Front Biosci 9: 915–931.CrossRefPubMedGoogle Scholar
  5. Dantzer R, Bluthe R, Laye S, Bret–Dibat J, Parnet P, et al. 1998. Cytokines and sickness behavior. Ann N Y Acad Sci 840: 586–590.CrossRefPubMedGoogle Scholar
  6. De Simoni MG, Imeri L. 1998. Cytokine–neurotransmitter interactions in the brain. Biol Signal Recept 7: 33–44.CrossRefGoogle Scholar
  7. Delgado M, Abad C, Martinez C, Juarranz MG, Arranz A, et al. 2002. Vasoactive intestinal peptide in the immune system: Potential therapeutic role in inflammatory and autoimmune diseases. J Mol Med 80: 16–24.CrossRefPubMedGoogle Scholar
  8. Delgado M, Pozo D, Ganea D. 2004. The significance of vasoactive intestinal peptide in immunomodulation. Pharmacol Rev 249–290.Google Scholar
  9. Dustin ML, Colman DR. 2002. Neural and immunological synaptic relations. Science 298: 785–789.CrossRefPubMedGoogle Scholar
  10. Feltend L. 1991. Neurotransmitter signaling of cells of the immune system, important progress, major gaps. Brain Behav Immun 5: 2–8.CrossRefGoogle Scholar
  11. Floto R, Smith K. 2003. The vagus nerve, macrophages, and nicotine. Lancet 361 (9363): 1069–1070.CrossRefPubMedGoogle Scholar
  12. Graeber MB, Streit WJ, Kreutzberg GW. 1999. The third glial cell type, the microglia: Cellular markers of activation in situ. Acta Histochem Suppl 38: 157–160.Google Scholar
  13. Guillemin GJ, Brew BJ. 2004. Microglia, macrophages, perivascular macrophages and pericytes: A review of function and identification. J Leukocyte Biol 25: 388–396.Google Scholar
  14. Guttereman JU. 1994. Cytokine therapeutics: Lessons from interferon α. Proc Natl Acad Sci USA 91: 1198–1205.CrossRefGoogle Scholar
  15. Hartung HP, Toyka KV. 1989. Substance P, the immune system and inflammation. Int Rev Immunol 4: 229–249.CrossRefPubMedGoogle Scholar
  16. Hedley CAE, Pippa J. 2002. Tyrrell inflammation and infection in clinical stroke. J Cereb Blood Flow Metab 22: 1399–1419.Google Scholar
  17. Hunyady B, Mezey E, Pacak K, Palkovits M. 1997. Demonstration of muscarinic receptor mRNAs in parietal cells, enteric ganglia and immune cells of rat stomach by in situ hybridization histochemistry. Life Sci 60: 1197–1197.CrossRefGoogle Scholar
  18. Kaltschmidt B, Uherek M, Volk B, Baeuerle PB, Kaltschmidt C. 1997. Transcription factor NF-κB is activated in primary neurons by amyloid β peptides and in neurons surrounding early plaques from patients with Alzheimer disease. Proc Natl Acad Sci USA 94: 2642–2647.CrossRefPubMedGoogle Scholar
  19. Khansari DN, Murgo, AJ, Faith RE. 1990. Effects of stress on the immune system. Immunol Today 11: 170–175.CrossRefPubMedGoogle Scholar
  20. Kronfol Z, Pemick DG. 2000. Cytokines and the brain: Implications for clinical psychiatry. Am J Psychiatry 157: 683–694.CrossRefPubMedGoogle Scholar
  21. Larson SJ. 2002. Behavioral and motivational effects of immune-system activation. J Gen Psychol 129: 401–414.CrossRefPubMedGoogle Scholar
  22. Lechin F, van der B, Dijs B, Lechin ME, editors. 2002. Stress, depression and immunity. Neurocircuitry and Neuroautonomic Disorders. Reviews and Therapeutic Strategies. Basel:Karger; pp. 62–65.Google Scholar
  23. Licinio J, Wong M–L. 1997. Pathways and mechanisms for cytokine signaling of the central nervous system. J Clin Invest 100: 2941–2947.CrossRefPubMedGoogle Scholar
  24. Loscher W, Bohme G, Muller F, Pagliusi S. 1985. Improved method for isolating synaptosomes from 11 regions of one rat brain: Electron microscopic and biochemical characterization and use in the study of drug effects on nerve terminal gamma-aminobutyric acid in vivo. J Neurochem 45: 879–889.CrossRefPubMedGoogle Scholar
  25. Mignini F, Streccioni V, Amenta F. 2003. Autonomic innervation of immune organs and neuroimmune modulation. Auton Autacoid Pharmacol 23: 1–25.CrossRefPubMedGoogle Scholar
  26. Mossman KD, Campi G, Groves JT, Dustin ML. 2005. Altered TCR signaling from geometrically repatterned immunological synapses. Science 310: 1191–1193.CrossRefPubMedGoogle Scholar
  27. Opal SM, Huber CE. 2002. Bench-to-bedside review: Toll-like receptors and their role in septic shock. Crit Care 6: 125–136.CrossRefPubMedGoogle Scholar
  28. Pavlov VA, Tracey KJ. 2004. Regulators of innate immune responses and inflammation. Cell Mol Life Sci 61: 2322–2331.CrossRefPubMedGoogle Scholar
  29. Pavlov VA, Wang H, Czura CJ, Friedman SG, Tracey KJ. 2003. The cholinergic anti-inflammatory pathway: A missing neuromodulation. Mol Med 9: 125–134.PubMedGoogle Scholar
  30. Rotwell NJ. 1999. Cytokines-killers in the brain? J Physiol 514: 3–17.CrossRefGoogle Scholar
  31. Roy S, Loh HH. 1996. Effects of opioids on the immune system. Neurochem Res 21: 1375–1386.CrossRefPubMedGoogle Scholar
  32. Rubin LL, Staddon JM. 1999. The cell biology of the blood–brain barrier. Annu Rev Neurosci 22: 11–28.CrossRefPubMedGoogle Scholar
  33. Sharshar T, Hopkins NS, Orlikowski D, Annane D. 2005. Science review, the brain in sepsis-culprit and victim. Crit Care 9: 37–45.CrossRefPubMedGoogle Scholar
  34. Shaw AS, Allen PM. 2001. Kissing cousins: Immunological and neurological synapses. Nat Immunol 2: 575–576.CrossRefPubMedGoogle Scholar
  35. Steven F, Maier L, Goechler E, Fleshner M, Watkins SLR. 1998. The role of the vagus nerve in cytokine-to-brain communication. Ann N Y Acad Sci 840: 289–300.CrossRefGoogle Scholar
  36. Tarkowski E, Andreasen N, Tarkowski A, Blennow K. 2003. Intrathecal inflammation precedes development of Alzheimer's disease. J Neurol Neurosurg Psychiatry 74: 1200–1205.CrossRefPubMedGoogle Scholar
  37. Tracey KJ. 2002. The inflammatory reflex. Nature 420: 853–859.CrossRefPubMedGoogle Scholar
  38. Tsatsaris V, Tarrade A, Merviel P, Garel JM, Segond N, et al. 2002. Calcitonin gene related peptide (CGRP) and CGRP receptor expression at the human implantation site. J Clin Endocrinol Metabol 87: 4383–4390.CrossRefGoogle Scholar
  39. Vega JA, Grcia–Suarez O, Hannestad J, Perez–Perez M, Germana A. 2003. Neurotrophins and the immune system. J Anat 203: 1–19.CrossRefPubMedGoogle Scholar
  40. Vezzani A, Granata T. 2005. Brain inflammation in epilepsy: Experimental and clinical evidence. Epilepsia 46: 1724–1743.CrossRefPubMedGoogle Scholar
  41. Wessler IK, Kirpatrick CJ. 2001. The non-neuronal cholinergic system: An emerging drug target in the airways. Pulm Pharmacol Ther 14: 423–434.CrossRefPubMedGoogle Scholar
  42. Wiedermann CJ, Sertl K, Pert CB. 1987. Neuropeptides and the immune system: Substance P receptors in bronchus-associated lymphoid tissue of rat. Ann N Y Acad Sci 496: 205–210.CrossRefPubMedGoogle Scholar
  43. Williams TC, Frohman LA. 1986. Potential therapeutic indications for growth hormone and growth hormone-releasing hormone in conditions other than growth retardation. Pharmacotherapy 311–318.Google Scholar
  44. Wong PMC, Sultzer BM, Chung S. 2000. The potential of Lps d/Ran cDNA in gene therapy for septic shock. J Hematother Stem Cell Res 9: 629–634.CrossRefPubMedGoogle Scholar
  45. Yasojima K, Schwab C, MCGeer EG, MCGeer PL. 1999. Up-regulated production and activation of the complement system in Alzheimer's disease brain. Am J Pathol 154: 927–936.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • G. Juhász

There are no affiliations available

Personalised recommendations