Cholinergic Transmission

  • B. Lendvai
Reference work entry


The cholinergic system can modulate cognitive functions efficiently in the brain acting on a rich assembly of metabotropic and ionotropic receptors. The cholinergic system operates through the cooperation of the muscarinic and the nicotinic subsystems. While muscarinic ACh receptors mediate slow responses with considerable delay, nicotinic facilitation, following activation of nicotinic ACh receptors, evokes relatively fast responses. In some cases muscarinic and nicotinic ACh receptors form a dual control striatal on certain cell types, such as the spiny interneurons of the striatum. On important aspect of nicotinic transmission is that it modulates, rather than mediate, fast synaptic transmission. Desensitization of these receptors leads to a loss of function that is a key factor in the effect of nicotine during smoking. Desensitization extends the possible states of cholinergic transmission and increases the computational power of the neuron. As most nicotinic receptors are found in nonsynaptic localizations, especially on axons. They can directly release transmitters from presynaptic boutons. Importance of studies on nicotinic and muscarinic effects is highlighted by the fact that cholinergic therapy is the mainstay treatment for Alzheimer's disease. The current view that nonsynaptic communication is dominant in cholinergic transmission also support the future perspective of drug therapy targeting high affinity nonsynaptic receptors.


Pyramidal Neuron Nicotinic Receptor Stratum Radiatum Cholinergic Transmission Ciliary Ganglion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations:








central nervous system


Gamma-aminobutyric acid


muscarinic acetylcholine receptors


nicotinic acetylcholine receptors




  1. Adams CE, Stitzel JA, Collins AC, Freedman R. 2001. Alpha7-nicotinic receptor expression and the anatomical organization of hippocampal interneurons. Brain Res 922: 180–190.CrossRefPubMedGoogle Scholar
  2. Alkondon M, Pereira EF, Albuquerque EX. 2003. NMDA and AMPA receptors contribute to the nicotinic cholinergic excitation of CA1 interneurons in the rat hippocampus. J Neurophysiol 90: 1613–1625.CrossRefPubMedGoogle Scholar
  3. Alkondon M, Pereira EF, Cortes WS, Maelicke A, Albuquerque EX. 1997. Choline is a selective agonist of α7 nicotinic acetylcholine receptors in the rat brain neurons. Eur J Neurosci 9: 2734–2742.CrossRefPubMedGoogle Scholar
  4. Anagnostaras SG, Murphy GG, Hamilton SE, Mitchell SL, Rahnama NP, et al. 2003. Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nat Neurosci 6: 51–58.CrossRefPubMedGoogle Scholar
  5. Aramakis VB, Metherate R. 1998. Nicotine selectively enhances NMDA receptor-mediated synaptic transmission during postnatal development in sensory neocortex. J Neurosci 18: 8485–8495.PubMedGoogle Scholar
  6. Bennett BD, Wilson CJ. 1999. Spontaneous activity of neostriatal cholinergic interneurons in vitro. J Neurosci 19: 5586–5596.PubMedGoogle Scholar
  7. Chang KT, Berg DK. 1999. Nicotinic acetylcholine receptors containing α7 subunits are required for reliable synaptic transmission in situ. J Neurosci 19: 3701–3710.PubMedGoogle Scholar
  8. Chiodini FC, Tassonyi E, Hulo S, Bertrand D, Muller D. 1999. Modulation of synaptic transmission by nicotine and nicotinic antagonists in hippocampus. Brain Res Bull 48: 623–628.CrossRefPubMedGoogle Scholar
  9. Dani JA, Heinemann S. 1996. Molecular and cellular aspects of nicotine abuse. Neuron 16: 905–908.CrossRefPubMedGoogle Scholar
  10. Dani JA, Ji D, Zhou FM. 2001. Synaptic plasticity and nicotine addiction. Neuron 31: 349–352.CrossRefPubMedGoogle Scholar
  11. Derbenev AV, Linn CL, Guth PS. 2005. Muscarinic ACh receptor activation causes transmitter release from isolated frog vestibular hair cells. J Neurophysiol 94: 3134–3142.CrossRefPubMedGoogle Scholar
  12. Descarries L, Mechawar N. 2000. Ultrastructural evidence for diffuse transmission by monoamine and acetylcholine neurons of the central nervous system. Prog Brain Res 125: 27–47.CrossRefPubMedGoogle Scholar
  13. Didier M, Berman SA, Lindstrom J, Bursztajn S. 1995. Characterization of nicotinic acetylcholine receptors expressed in primary cultures of cerebellar granule cells. Mol Brain Res 30: 17–28.CrossRefPubMedGoogle Scholar
  14. Dong H, Xiang YY, Farchi N, Ju W, Wu Y, et al. 2004. Excessive expression of acetylcholinesterase impairs glutamatergic synaptogenesis in hippocampal neurons. J Neurosci 24: 8950–8960.CrossRefPubMedGoogle Scholar
  15. Drachman DA. 1977. Memory and cognitive function in man: Does the cholinergic system have a specific role? Neurology 27: 783–790.PubMedGoogle Scholar
  16. Eckenstein F, Baughman RW. 1984. Two types of cholinergic innervation in cortex, one co-localized with vasoactive intestinal polypeptide. Nature 309: 153–155.CrossRefPubMedGoogle Scholar
  17. Fabian-Fine R, Skehel P, Errington ML, Davies HA, Sher E, et al. 2001. Ultrastructural distribution of the α7 nicotinic acetylcholine receptor subunit in rat hippocampus. J Neurosci 21: 7993–8003.PubMedGoogle Scholar
  18. Frazier CJ, Buhler AV, Weiner JL, Dunwiddie TV. 1998a. Synaptic potentials mediated via α-bungarotoxin-sensitive nicotinic acetylcholine receptors in rat hippocampal interneurons. J Neurosci 18: 8228–8235.Google Scholar
  19. Frazier CJ, Rollins YD, Breese CR, Leonard S, Freedman R, et al. 1998b. Acetylcholine activates an α-bungarotoxin-sensitive nicotinic current in rat hippocampal interneurons, but not pyramidal cells. J Neurosci 18: 1187–1195.Google Scholar
  20. Freedman R, Hall M, Adler LE, Leonard S. 1995. Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biol Psychiatry 38: 22–33.CrossRefPubMedGoogle Scholar
  21. Ge S, Dani JA. 2005. Nicotinic acetylcholine receptors at glutamate synapses facilitate long-term depression or potentiation. J Neurosci 25: 6084–6091.CrossRefPubMedGoogle Scholar
  22. Gil Z, Connors BW, Amitai Y. 1997. Differential regulation of neocortical synapses by neuromodulators and activity. Neuron 19: 679–686.CrossRefPubMedGoogle Scholar
  23. Girod R, Role LW. 2001. Long-lasting enhancement of glutamatergic synaptic transmission by acetylcholine contrasts with response adaptation after exposure to low-level nicotine. J Neurosci 21: 5182–5190.PubMedGoogle Scholar
  24. Golebiewski H, Eckersdorf B, Konopacki J. 2002. Septal cholinergic mediation of hippocampal theta in the cat. Brain Res Bull 58: 323–335.CrossRefPubMedGoogle Scholar
  25. Graham AJ, Ray MA, Perry EK, Jaros E, Perry RH, et al. 2003. Differential nicotinic acetylcholine receptor subunit expression in the human hippocampus. J Chem Neuroanat 25: 97–113.CrossRefPubMedGoogle Scholar
  26. Gray R, Rajan AS, Radcliffe KA, Yakehiro M, Dani JA. 1996. Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature 383: 713–716.CrossRefPubMedGoogle Scholar
  27. Gulledge AT, Stuart GJ. 2005. Cholinergic inhibition of neocortical pyramidal neurons. J Neurosci 25: 10308–10320.CrossRefPubMedGoogle Scholar
  28. Haga K, Haga T. 1990. Dual regulation by G proteins of agonistdependent phosphorylation of muscarinic acetylcholine receptors. FEBS Lett 268: 43–47.CrossRefPubMedGoogle Scholar
  29. Hamilton SE, Loose MD, Qi M, Levey AI, Hille B, et al. 1997. Disruption of the m1 receptor gene ablates muscarinic receptor-dependent M current regulation and seizure activity in mice. Proc Natl Acad Sci USA 94: 13311–13316.CrossRefPubMedGoogle Scholar
  30. Hatton GI, Yang QZ. 2002. Synaptic potentials mediated by α7 nicotinic acetylcholine receptors in supraoptic nucleus. J Neurosci 22: 29–37.PubMedGoogle Scholar
  31. Hefft S, Hulo S, Bertrand D, Muller D. 1999. Synaptic transmission at nicotinic acetylcholine receptors in rat hippocampal organotypic cultures and slices. J Physiol 515: 769–776.CrossRefPubMedGoogle Scholar
  32. Henningfield JE, Stapleton JM, Benowitz NL, Grayson RF, London ED. 1993. Higher levels of nicotine in arterial than in venous blood after cigarette smoking. Drug Alcohol Depend 33: 23–29.CrossRefPubMedGoogle Scholar
  33. Hill JA, Zoli M, Bourgeois J-P, Changeux J-P. 1993. Immunocytochemical localization of neural nicotinic receptor: The β2-subunit. J Neurosci 13: 1551–1568.PubMedGoogle Scholar
  34. Horch HL, Sargent PB. 1995. Perisynaptic surface distribution of multiple classes of nicotinic acetylcholine receptors on neurons in the chicken ciliary ganglion. J Neurosci 15: 7778–7795.PubMedGoogle Scholar
  35. Jakubik J, Bacakova L, El-Fakahany EE, Tucek S. 1997. Positive cooperativity of acetylcholine and other agonists with allosteric ligands on muscarinic acetylcholine receptors. Mol Pharmacol 52: 172–179.PubMedGoogle Scholar
  36. Ji D, Lape R, Dani JA. 2001. Timing and location of nicotinic activity enhances or depresses hippocampal synaptic plasticity. Neuron 31: 131–141.CrossRefPubMedGoogle Scholar
  37. Jones S, Yakel JL. 1997. Functional nicotinic ACh receptors on interneurones in the rat hippocampus. J Physiol 504: 603–610.CrossRefPubMedGoogle Scholar
  38. Kawai H, Zago W, Berg DK. 2002. Nicotinic α7 receptor clusters on hippocampal GABAergic neurons: Regulation by synaptic activity and neurotrophins. J Neurosci 22: 7903–7912.PubMedGoogle Scholar
  39. Khiroug L, Giniatullin R, Klein RC, Fayuk D, Yakel JL. 2003. Functional mapping and Ca2+ regulation of nicotinic acetylcholine receptor channels in rat hippocampal CA1 neurons. J Neurosci 23: 9024–9031.PubMedGoogle Scholar
  40. Khiroug L, Giniatullin R, Sokolova E, Talantova M, Nistri A. 1997. Imaging of intracellular calcium during desensitization of nicotinic acetylcholine receptors of rat chromaffin cells. Br J Pharmacol 122: 1323–1332.CrossRefPubMedGoogle Scholar
  41. Kiss JP, Vizi ES, Westerink BHC. 1999. Effect of neostigmine on the hippocampal noradrenaline release: Role of cholinergic receptors. Neuroreport 10: 81–86.CrossRefPubMedGoogle Scholar
  42. Kofalvi A, Sperlagh B, Zelles T, Vizi ES. 2000. Long-lasting facilitation of 4-amino-n-[2,3-3H]butyric acid ([3H]GABA) release from rat hippocampal slices by nicotinic receptor activation. J Pharmacol Exp Ther 295: 453–462.PubMedGoogle Scholar
  43. Konopacki J, Bland BH, Roth SH. 1988. Evidence that activation of in vitro hippocampal theta rhythm only involves muscarinic receptors. Brain Res 455: 110–114.CrossRefPubMedGoogle Scholar
  44. Koos T, Tepper JM. 2002. Dual cholinergic control of fast-spiking interneurons in the neostriatum. J Neurosci 22: 529–535.PubMedGoogle Scholar
  45. Kulak JM, Nguyen TA, Olivera BM, McIntosh JM. 1997. α-Conotoxin MII blocks nicotine- stimulated dopamine release in rat striatal synaptosomes. J Neurosci 17: 5263–5270.PubMedGoogle Scholar
  46. Lazareno S, Birdsall NJ. 1995. Detection, quantitation, and verification of allosteric interactions of agents with labeled and unlabeled ligands at G protein-coupled receptors: Interactions of strychnine and acetylcholine at muscarinic receptors. Mol Pharmacol 48: 362–78.PubMedGoogle Scholar
  47. Lena C, Changeux J-P, Mulle C. 1993. Evidence for ‘preterminal’ nicotine receptors on GABAergic axons in the rat interpeduncular nucleus. J Neurosci 13: 2680–2688.PubMedGoogle Scholar
  48. Lena C, Changeux J-P. 1997. Role of Ca2+ ions in nicotinic facilitation of GABA release in mouse thalamus. J Neurosci 17: 576-585.PubMedGoogle Scholar
  49. Lendvai B, Sershen H, Lajtha A, Santha E, Baranyi M, et al. 1996. Differential mechanisms involved in the effect of nicotinic agonists DMPP and lobeline to release [3H]5-HT from rat hippocampal slices. Neuropharmacology 35: 1769–1777.CrossRefPubMedGoogle Scholar
  50. Lester RA, Dani JA. 1994. Time-dependent changes in central nicotinic acetylcholine channel kinetics in excised patches. Neuropharmacology 33: 27–34.CrossRefPubMedGoogle Scholar
  51. Levey AI, Edmunds SM, Koliatsos V, Wiley RG, Heilman CJ. 1995. Expression of m1-m4 muscarinic acetylcholine receptor proteins in rat hippocampus and regulation by cholinergic innervation. J Neurosci 15: 4077–4092.PubMedGoogle Scholar
  52. Levin ED, Rezvani AH. 2000. Development of nicotinic drug therapy for cognitive disorders. Eur J Pharmacol 393: 141–146.CrossRefPubMedGoogle Scholar
  53. Liang SD, Vizi ES. 1997. Positive feedback modulation of acetylcholine release from isolated superior cervical ganglion. J Pharmacol Exp Ther 280: 650–655.PubMedGoogle Scholar
  54. Lukas RJ. 1991. Effects of chronic nicotinic ligand exposure on functional activity of nicotinic acetylcholine receptors expressed by cells of the PC12 rat pheochromocytoma or the TE671/RD human clonal line. J Neurochem 56: 1134–1145.CrossRefPubMedGoogle Scholar
  55. Maggi L, Le Magueresse C, Changeux JP, Cherubini E. 2003. Nicotine activates immature “silent” connections in the developing hippocampus. Proc Natl Acad Sci USA 100: 2059–2064.CrossRefPubMedGoogle Scholar
  56. Mann EO, Greenfield SA. 2003. Novel modulatory mechanisms revealed by the sustained application of nicotine in the guinea-pig hippocampus in vitro. J Physiol 551.2: 539–550.CrossRefGoogle Scholar
  57. Mansvelder HD, McGehee DS. 2000. Long-term potentiation of excitatory inputs to brain reward areas by nicotine. Neuron 27: 349–357.CrossRefPubMedGoogle Scholar
  58. McGehee DS, Role LW. 1995. Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. Annu Rev Physiol 57: 521–546.CrossRefPubMedGoogle Scholar
  59. McGehee DS, Heath MJ, Gelber S, Devay P, Role LW. 1995. Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science 269: 1692–1696.CrossRefPubMedGoogle Scholar
  60. McQuiston AR, Madison DV. 1999. Nicotinic receptor activation excites distinct subtypes of interneurons in the rat hippocampus. J Neurosci 19: 2887–2896.PubMedGoogle Scholar
  61. Mulle C, Choquet D, Korn H, Changeux JP. 1992. Calcium influx through nicotinic receptor in rat central neurons: Its relevance to cellular regulation. Neuron 8: 135–143.CrossRefPubMedGoogle Scholar
  62. Newhouse PA, Potter A, Singh A. 2004. Effects of nicotinic stimulation on cognitive performance. Curr Opin Pharmacol 4: 36–46.CrossRefPubMedGoogle Scholar
  63. Nicoll RA, Malenka RC, Kauer JA. 1990. Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system. Physiol Rev 70: 513–565.PubMedGoogle Scholar
  64. Oh MM, Wu WW, Power JM, Disterhoft JF. 2005. Galantamine increases excitability of CA1 hippocampal pyramidal neurons. Neuroscience Oct 19; [Epub ahead of print].Google Scholar
  65. Olpe HR, Klebs K, Kung E, Campiche P, Glatt A, et al. 1987. Cholinomimetics induce theta rhythm and reduce hippocampal pyramidal cell excitability. Eur J Pharmacol 142: 275–283.CrossRefPubMedGoogle Scholar
  66. Picciotto MR, Zoli M, Rimondini R, Lena C, Marubio LM, et al. 1998. Acetylcholine receptors containing the β2 subunit are involved in the reinforcing properties of nicotine. Nature 391: 173–177.CrossRefPubMedGoogle Scholar
  67. Pidoplichko VI, De Biasi M, Williams JT, Dani JA. 1997. Nicotine activates and desensitizes midbrain dopamine neurons. Nature 390: 401–404.CrossRefPubMedGoogle Scholar
  68. Radcliffe KA, Dani JA. 1998. Nicotinic stimulation produces multiple forms of increased glutamatergic synaptic transmission. J Neurosci 18: 7075–7083.PubMedGoogle Scholar
  69. Rezvani AH, Levin ED. 2001. Cognitive effects of nicotine. Biol Psychiatry 49: 258–267.CrossRefPubMedGoogle Scholar
  70. Roerig B, Nelson DA, Katz LC. 1997. Fast synaptic signaling by nicotinic acetylcholine and serotonin 5-HT3 receptors in developing visual cortex. J Neurosci 17: 8353–8362.PubMedGoogle Scholar
  71. Role LW, Berg DK. 1996. Nicotinic receptors in the development and modulation of CNS synapses. Neuron 16: 1077–1085.CrossRefPubMedGoogle Scholar
  72. Rowell PP, Duggan DS. 1998. Long-lasting inactivation of nicotinic receptor function in vitro by treatment with high concentrations of nicotine. Neuropharmacology 37: 103–111.CrossRefPubMedGoogle Scholar
  73. Sarter M, Parikh V. 2005. Choline transporters, cholinergic transmission and cognition. Nat Rev Neurosci 6: 48–56.CrossRefPubMedGoogle Scholar
  74. Seguela P, Wadiche J, Dineley-Miller K, Patrick JW. 1993. Molecular cloning, functional properties, and distribution of rat brain α7: A nicotinic cation channel highly permeable to calcium. J Neurosci 13: 596–604.PubMedGoogle Scholar
  75. Sershen H, Balla A, Lajtha A, Vizi ES. 1997. Characterization of nicotinic receptors involved in the release of norepinephrine from hippocampus. Neuroscience 77: 121–130.CrossRefPubMedGoogle Scholar
  76. Sharma G, Vijayaraghavan S. 2003. Modulation of presynaptic store calcium induces release of glutamate and postsynaptic firing. Neuron 38: 929–939.CrossRefPubMedGoogle Scholar
  77. Shoop RD, Chang KT, Ellisman MH, Berg DK. 2001. Synaptically driven calcium transients via nicotinic receptors on somatic spines. J Neurosci 21: 771–781.PubMedGoogle Scholar
  78. Soliakov L, Wonnacott S. 1996. Voltage sensitive Ca2+ channels involved in nicotinic receptor-mediated 3Hdopamine release from rat striatal synaptosomes. J Neurochem 67: 163–170.CrossRefPubMedGoogle Scholar
  79. Szasz BK, Mayer A, Zsilla G, Lendvai B, Vizi ES, et al. 2005. Carrier-mediated release of monoamines induced by the nicotinic acetylcholine receptor agonist DMPP. Neuropharmacology 49: 400–409.CrossRefPubMedGoogle Scholar
  80. Towart LA, Alves SE, Znamensky V, Hayashi S, McEwen BS, et al. 2003. Subcellular relationships between cholinergic terminals and estrogen receptor-alpha in the dorsal hippocampus. J Comp Neurol 463: 390–401.CrossRefPubMedGoogle Scholar
  81. Tsubokawa H, Ross WN. 1997. Muscarinic modulation of spike backpropagating in the apical dendrites of hippocampal CA1 pyramidal neurons. J Neurosci 17: 5782–5791.PubMedGoogle Scholar
  82. Ullian EM, Sargent PB. 1995. Pronounced cellular diversity and extrasynaptic location of nicotinic acetylcholine receptor subunit immunreactivities in the chicken pretectum. J Neurosci 15: 7012–7023.PubMedGoogle Scholar
  83. Umbriaco D, Garcia S, Beaulieu C, Descarries L. 1995. Relational features of acetylcholine, noradrenaline, serotonin and GABA axon terminals in the stratum radiatum of adult rat hippocampus (CA1). Hippocampus 5: 605–620.CrossRefPubMedGoogle Scholar
  84. Umbriaco D, Watkins KC, Descarries L, Cozzari C, Hartman BK. 1994. Ultrastructural and morphometric features of the acetylcholine innervation in adult rat parietal cortex: An electron microscopic study in serial sections. J Comp Neurol 348: 351–373.CrossRefPubMedGoogle Scholar
  85. van Koppen CJ, Kaiser B. 2003. Regulation of muscarinic acetylcholine receptor signaling. Pharmacol Ther 98: 197–220.CrossRefPubMedGoogle Scholar
  86. Vernino S, Amador M, Luetje CW, Patrick J, Dani JA. 1992. Calcium modulation and high calcium permeability of neuronal nicotinic acetylcholine receptors. Neuron 8: 127–134.CrossRefPubMedGoogle Scholar
  87. Vijayaraghavan S, Pugh PC, Zhang ZW, Rathouz MM, Berg DK. 1992. Nicotinic receptors that bind agr-bungarotoxin on neurons raise intracellular free Ca2+ . Neuron 8: 353–362.CrossRefPubMedGoogle Scholar
  88. Vizi ES. 2000. Role of high-affinity receptors and membrane transporters in nonsynaptic communication and drug action in the central nervous system. Pharmacol Rev 52: 63–89.PubMedGoogle Scholar
  89. Vizi ES, Lendvai B. 1999. Modulatory role of presynaptic nicotinic receptors in synaptic and non-synaptic chemical communication in the central nervous system. Brain Res Rev 30: 219–235.CrossRefPubMedGoogle Scholar
  90. Vizi ES, Sershen H, Balla A, Mike A, Windish K, et al. 1995. Neurochemical evidence of heterogeneity of presynaptic and somatodendritic nicotinic acetylcholine receptors. Ann NY Acad Sci 757: 84–99.CrossRefPubMedGoogle Scholar
  91. Wess J. 2003. Novel insights into muscarinic acetylcholine receptor function using gene targeting technology. Trends Pharmacol Sci 24: 414–420.CrossRefPubMedGoogle Scholar
  92. Williams BM, Temburni MK, Levey MS, Bertrand S, Bertrand D, et al. 1998. The long internal loop of the α3 subunit targets nAChRs to subdomains within individual synapses on neurons in vivo. Nat Neurosci 1: 557–562.CrossRefPubMedGoogle Scholar
  93. Wonnacott S. 1997. Presynaptic nicotinic ACh receptors. Trends Neurosci 20: 92–98.CrossRefPubMedGoogle Scholar
  94. Xiang Z, Huguenard JR, Prince DA. 1998. Cholinergic switching within neocortical inhibitory networks. Science 281: 985–988.CrossRefPubMedGoogle Scholar
  95. Yamada M, Lamping KG, Duttaroy A, Zhang W, Cui Y, et al. 2001b. Cholinergic dilation of cerebral blood vessels is abolished in M(5) muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci USA 98: 14096–14101.CrossRefGoogle Scholar
  96. Yamada M, Miyakawa T, Duttaroy A, Yamanaka A, Moriguchi T, et al. 2001a. Mice lacking the M3 muscarinic acetylcholine receptor are hypophagic and lean. Nature 410: 207–212.CrossRefGoogle Scholar
  97. Yoder RM, Pang KC. 2005. Involvement of GABAergic and cholinergic medial septal neurons in hippocampal theta rhythm. Hippocampus 15: 381–392.CrossRefPubMedGoogle Scholar
  98. Zhou FM, Liang Y, Dani JA. 2001. Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum. Nat Neurosci 4: 1224–1229.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • B. Lendvai

There are no affiliations available

Personalised recommendations