Advertisement

Chemistry, Tissue and Cellular Distribution, and Developmental Profiles of Neural Sphingolipids

  • G. Tettamanti
  • L. Anastasia
Reference work entry

Abstract:

Sphingolipids constitute a class of lipids characterized by the presence of a long chain aminoalcohol (sphingoid base) and are particularly abundant in the nervous system. They include simple molecular species(sphingosine - or sphinganine -, sphingosine-1-phosphate, ceramide, ceramide-1-phosphate), and the ceramide containing complex sphingolipids (sphingomyelin, cerebrosides, sulfatides, neutral glycosphingolipids, acidic glycosphingolipids-gangliosides-, etc.). First, the chemical details are reported of both the naturally occurring sphingolipids, mostly present at the level of cellular membranes, and the synthetic sphingolipids, derivatives of sphingolipids, and mimetics of sphingolipids, that are extremely useful for biological investigations. Owing to the compositional complexity of sphingolipids, the analytical approaches employed for their detection, structural characterization, quantification, and “in situ” detection, are also briefly reviewed, in order to provide a basic and rationale background to investigators interested in the field. Then, the compositional profiles of sphingolipids in the nervous system of different animals, with particular emphasis to humans, are described, illustrating the analogies and differences, with regard to regional, cellular and subcellular localization of the individual sphingolipid species, with special attention to gangliosides, that display the wider array of composition. The differences in the long chain base and fatty acid composition, together with those in the saccharide composition in glycosphingolipids are also outlined, as a necessary chemical premise to understand the intricacy of the related metabolic pathways and to acknowledge the specifically distinct features of their functional implications. Finally, the developmental profiles of sphingolipids in the course of neural development and ageing in the different animals are described, illustrating common trends and peculiar differences among animals.

References

  1. Abe T, Norton WT. 1979. The characterization of sphingolipids of oligodendroglia from calf brain. J Neurochem 32: 823–832.PubMedGoogle Scholar
  2. Abe A, Shayman JA, Radin NS. 1996. A novel enzyme that catalyzes the esterification of N-acetylsphingosine. Metabolism of C2-ceramides. J Biol Chem 271: 14383–14389.PubMedGoogle Scholar
  3. Acquotti D, Sonnino S. 2000. Use of nuclear magnetic resonance spectroscopy in evaluation of ganglioside structure, conformation, and dynamics. Methods Enzymol 312: 247–272.PubMedGoogle Scholar
  4. Acquotti D, Sonnino S, Masserini M, Casella L, Fronza G, et al. 1986. A new chemical procedure for the preparation of gangliosides carrying fluorescent or paramagnetic probes on the lipid moiety. Chem Phys Lipids 40: 71–86.PubMedGoogle Scholar
  5. Adams J, Ann Q. 1993. Structure determination of sphingolipids by mass spectrometry. Mass Spectrom Rev 12: 51–85.Google Scholar
  6. Albrecht B, Pohlentz G, Sandhoff K, Schwarzmann G. 1997. Synthesis and mass spectrometric characterization of digoxigenin and biotin labeled ganglioside GM1 and their uptake by and metabolism in cultured cells. Chem Phys Lipids 86: 37–50.PubMedGoogle Scholar
  7. Allende ML, Panzetta P. 1994. In vitro modulation of changes in ganglioside patterns of differentiating neurons in the presence of anti-GM1 antibody. J Neurosci Res 37: 497–505.PubMedGoogle Scholar
  8. Allende ML, Panzetta P. 1995. Complex gangliosides affect GD3 accessibility to antibody in developing neuronal cells. Dev Brain Res 90: 102–110.Google Scholar
  9. Ando S. 1983. Gangliosides in the nervous system. Neurochem Int 5: 507–537.PubMedGoogle Scholar
  10. Ando S, Hirabayashi Y, Kon K, Inagaki F, Tate S, et al. 1992. A trisialoganglioside containing a sialyl alpha 2–6 N-acetylgalactosamine residue is a cholinergic-specific antigen, Chol-1 alpha. J Biochem 111: 287–290.PubMedGoogle Scholar
  11. Ando S, Yamakawa T. 1971. Application of trifluoroacetyl derivatives to sugar and lipid chemistry. I. Gas chromatographic analysis of common constituents of glycolipids. J Biochem 70: 335–340.PubMedGoogle Scholar
  12. Ando S, Yu RK. 1977. Isolation and characterization of a novel tetrasialoganglioside GT1a from human brain. J Biol Chem 252: 6247–6250.PubMedGoogle Scholar
  13. Ando S, Yu RK. 1984. Fatty acid and long chain base composition of gangliosides isolated from adult human brain. J Neurosci Res 12: 205–211.PubMedGoogle Scholar
  14. Aquino DA, Bisby MA, Ledeen RW. 1985. Retrograde axonal transport of gangliosides and glycoproteins in the moto neuron of rat sciatic nerve. J Neurochem 45: 1262–1267.PubMedGoogle Scholar
  15. Ariga T, Blaine GM, Yoshino H, Dawson G, Kanda T, et al. 1995. Glycosphingolipid composition of murine neuroblastoma cells: O-acetylesterase gene downregulates the expression of O-acetylated GD3. Biochemistry 34: 11500–11507.PubMedGoogle Scholar
  16. Ariga T, Kobayashi K, Kuroda Y, Yu RK, Suzuki M, et al. 1987a. Characterization of tumor-associated fucogangliosides from PC 12 pheochromocytoma cells. J Biol Chem 262: 14146–14153.PubMedGoogle Scholar
  17. Ariga T, Kohriyama T, Freddo L, Latov N, Saito M, et al. 1987b. Characterization of sulphated glucuronic acid containing glycolipids reacting with IgM-proteins in patients with neuropathy. J Biol Chem 262: 848–853.PubMedGoogle Scholar
  18. Ariga T, Kusunoki S, Asano K, Oshima M, Asano M, et al. 1990. Localization of sulfated glucuronyl glycolipids in human dorsal root and sympathetic ganglia. Brain Res 519: 57–64.PubMedGoogle Scholar
  19. Ariga T, Macala RT, Saito M, Margolis RM, Greene LA, et al. 1988. Lipid composition of PC12 pheochromocytoma cells: Characterization of globoside as a major neutral glycolipid. Biochemistry 27: 52–58.PubMedGoogle Scholar
  20. Ariga T, Yu RK. 1998. The role of globo-series glycolipids in neuronal cell differentiation – a review. Neurochem Res 23: 291–393.PubMedGoogle Scholar
  21. Avrova N. 1971. Brain ganglioside patterns of vertebrates. J Neurochem 18: 667–674.PubMedGoogle Scholar
  22. Avrova NF, Chenykaeva EY, Obukhova EL. 1973. Ganglioside composition and content of rat brain subcellular fractions. J Neurochem 20: 997–1004.PubMedGoogle Scholar
  23. Avrova NF, Li Y-T, Obukhova EL. 1979. On the composition and structure of individual gangliosides from the brain of elasmobranches. J Neurochem 32: 1807–1815.PubMedGoogle Scholar
  24. Avrova N, Ghidoni R, Karpova OB, Nalivayeva NN, Malesci A, et al. 1986. Systematic position of fish species and ganglioside composition and content. Comp Biochem Physiol 83B: 669–676.Google Scholar
  25. Avrova NF, Zabelinski SA. 1971. Fatty acids and long chain bases of vertebrate brain gangliosides. J Neurochem 18: 675–681.PubMedGoogle Scholar
  26. Barranger JA, Ginns EI. 1989. Glucosyl-ceramide Lipidoses Gaucher Disease, 6th ed. New York: McGraw Hill Inc.Google Scholar
  27. Baumberger F, Vasella A. 1986. Stereoelectronic control in the reductive denitration of tertiary nitro ethers. A synthesis of ‘C-gangliosides. Helv Chim Acta 6: 1205–1215.Google Scholar
  28. Bayley H, Knowles JR. 1977. Photoaffinity labelling. Methods Enzymol 46: 69–114.PubMedGoogle Scholar
  29. Bernardi A, Arosio P, Sonnino S. 2002. Mimicking gangliosides by design: Mimics of GM1 headgroup. Neurochem Res 27: 539–545.PubMedGoogle Scholar
  30. Bernardi A, Brocca P, Checchia A, Sonnino S, Zuccotto F. 1999. Sugar mimics: An artificial receptor for cholera toxin. J Am Chem Soc 121: 2032–2036.Google Scholar
  31. Bernstein MA, Hall LD. 1982. De novo sequencing of oligosaccharides by proton NMR spectroscopy. J Am Chem Soc 104: 5553–5555.Google Scholar
  32. Bielawska A, Greenberg MS, Perry D, Jayadov S, Shayman J, et al. 1996. (1S,2R)-d-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol as an inhibitor of ceramidase. J Biol Chem 271: 12646–12654.PubMedGoogle Scholar
  33. Bielawska A, Szulc Z, Hannun YA. 2000. Synthesis of key precursors of radiolabeled sphingolipids. Methods Enzymol 311: 518–535.PubMedGoogle Scholar
  34. Bogoch S. 1960. Demonstration of serum precipitin to brain ganglioside. Nature 185: 392–393.PubMedGoogle Scholar
  35. Bommer R, Schmidt RR. 1989. Synthesis of lactoneotetraosyl ceramide. Liebigs Ann Chem 1989: 1107–1111.Google Scholar
  36. Brante G. 1949. Studies on lipids in the nervous system with special reference in quantitative chemical determination and topical distribution. Acta Physiol Scand 18(Suppl. 63): 1–189.Google Scholar
  37. Breckenridge WC, Gombos G, Morgan IG. 1972. The lipid composition of adult rat brain synaptosomal plasma membranes. Biochim Biophys Acta 266: 695–707.PubMedGoogle Scholar
  38. Breckenridge WC, Morgan IG, Zanetta JP, Vincendon G. 1973. Adult rat brain synaptic vesicles. II. Lipid composition. Biochim Biophys Acta 320: 681–686.PubMedGoogle Scholar
  39. Brunner J. 1993. New photolabeling and crosslinking methods. Annu Rev Biochem 62: 483–514.PubMedGoogle Scholar
  40. Bushnev AS, Liotta D. 2000. Practical synthesis of N-palmitoylsphingomyelin and N-palmitoyldihydrosphingomyelin. Methods Enzymol 311A: 535–547.Google Scholar
  41. Bussink AP, van Swieten PF, Ghaurali K, Scheij S, van Eijk M, et al. 2007. N-azidoacetyl mannosamine -mediated chemical tagging of gangliosides. J Lipid Res 48: 1417–1421.PubMedGoogle Scholar
  42. Byun HS, Erukulla RK, Bittman RJ. 1994. Synthesis of Sphingomyelin and ceramide 1-phosphate from ceramide without protection of the allylic hydroxyl group. J Org Chem 59: 6495–6498.Google Scholar
  43. Carter HE, Fujino U. 1956. Biochemistry of the spingolipides. IX. Configuration of cerebrosides. J Biol Chem 221: 879–884.PubMedGoogle Scholar
  44. Castro-Palombino JC, Simon B, Speer O, Leist M, Schmidt RR. 2001. Synthesis of ganglioside GD3 and its comparison with bovine GD3 with regard to oligodendrocyte apoptosis mitochondrial damage. Chem Eur J 7: 2178–2184.Google Scholar
  45. Chiba M, Tsuchihashi K, Suetake K, Ibayashi Y, Gasa S, et al. 1994. Photoaffinity labeling of lipoproteins in human cerebrospinal fluid with a heterobifunctional derivative of galactosylsphingosine. Biochem Mol Biol Int 32: 961–971.PubMedGoogle Scholar
  46. Chigorno V, Pitto M, Cardace G, Acquotti D, Kirschner G, et al. 1985. Association of gangliosides to fibroblasts in culture: A study performed with GM1[14C]-labelled at the sialic acid acetyl group. Glycoconj J 2: 279–291.Google Scholar
  47. Chigorno V, Sonnino S, Ghidoni R, Tettamanti G. 1982a. Densitometric quantification of brain gangliosides separated by two-dimensional thin layer chromatography. Neurochem Int 4: 397–403.PubMedGoogle Scholar
  48. Chigorno V, Sonnino S, Ghidoni R, Tettamanti G. 1982b. Isolation and characterization of a tetrasialoganglioside from mouse brain containing 9-0-acetyl N-acetylneuraminic acid. Neurochem Int 4: 531–539.PubMedGoogle Scholar
  49. Chigorno V, Sonnino S, Ghidoni R, Toffano G, Venerando B, et al. 1984. Changes in rabbit cerebrum and cerebellum gangliosides during postata life. A study especially referring to alkali labile gangliosides. Neurochem Int 6: 191–197.PubMedGoogle Scholar
  50. Chou DK, Schwarting GA, Evans JE, Jungalwala FB. 1987. Sulfoglucuronyl-neolacto series of glycolipids in peripheral nerves reacting with HNK-1 antibody. J Neurochem 49: 865–873.PubMedGoogle Scholar
  51. Chou DK, Suzuki Y, Jungalwala FB. 1996. Expression of neolactoglycolipids: sialosyl-, disialosyl-, O-acetyldisialosyl- and fucosyl- derivatives of neolactotetraosyl ceramide and neolactohexaosyl ceramide in the developing cerebral cortex and cerebellum. Glycoconj J 13: 295–305.PubMedGoogle Scholar
  52. Chou DKH, Dodd J, Jessel TM, Costello CE, Jungalwala FB. 1989. Identification of alpha-galactose (alpha-fucose)-asialo-GM1 glycolipid expressed by subsets of rat dorsal root ganglion neurons. J Biol Chem 264:3409–3415.PubMedGoogle Scholar
  53. Chou DKH, Prasadarao N, Koul O, Jungalwala FB. 1991. Developmental expression of HNK-1-reactive antigens in rat cerebral cortex and molecular heterogeneity of sulfoglucuronyl neolactotetrosylceramide in CNS versus PNS. J Neurochem 57: 852–859.PubMedGoogle Scholar
  54. Chou KH, Flores S, Jungalwala FB. 1990. Identification of disialosyl paragloboside and O-acetyldisialosyl paragloboside in cerebellum and embryonic cerebrum. J Neurochem 54: 1598–1607.PubMedGoogle Scholar
  55. Chou KH, Ilyas AA, Evans JE, Quarles RH, Jungawala FB. 1985. Structure of a glycolipid reacting with monoclonal IgM in neuropathy and with HNK-1. Biochem Biophys Res Commun 128: 383–388.PubMedGoogle Scholar
  56. Cisar J, Kabat EA, Dorner MM, Liao J. 1975. Binding properties of immunoglobulin combining sites specific for terminal or nonterminal antigenic determinants in dextran. J Exp Med 142: 435–459.PubMedGoogle Scholar
  57. Collins BE, Yang LJ, Mukhopadhyay G, Filbin MT, Kiso M, et al. 1997. Sialic acid specificity of myelin-associated glycoprotein binding. J Biol Chem 272: 1248–1235.PubMedGoogle Scholar
  58. Costello CE, Juhaz P, Perreault H. 1994. New mass spectral approaches to ganglioside structure determinations. Progr Brain Res 101: 45–61.Google Scholar
  59. Crook SJ, Boggs JM, Vistnes AI, Koshy KM. 1986. Factors affecting surface expression of glycolipids: Influence of lipid environment and ceramide composition on antibody recognition of cerebroside sulfate in liposomes. Biochemistry 25: 7488–7494.PubMedGoogle Scholar
  60. Csuk R, Hugener M, Vasella A. 1988. A new synthesis of N-acetylneuraminic acid. Helv Chim Acta 71: 609–618.Google Scholar
  61. Curfman C, Liotta D. 2000. Synthesis of sphingosine and sphingoid bases. Methods Enzymol 311A: 391–440.Google Scholar
  62. Cuzner ML, Davison AN. 1968. The lipid composition of rat brain myelin and subcellular fractions during development. Biochem J 106: 29–34.PubMedGoogle Scholar
  63. Dabrowski J, Hanfland P, Egge H. 1982. Analysis of glycosphingolipids by high-resolution proton nuclear magnetic resonance spectroscopy. Methods Enzymol 83: 69–86.PubMedGoogle Scholar
  64. Dagan A, Agmon V, Gatt S, Dinur T. 2000. Synthesis of fluorescent substrates and their application to study of sphingolipid metabolism in vitro and in intact cells. Methods Enzymol 312: 293–304.PubMedGoogle Scholar
  65. Dell A. 1987. F.A.B.-mass spectrometry of carbohydrates. Adv Carbohydr Chem Biochem 45: 19–72.PubMedGoogle Scholar
  66. De Rosa M, Park HJ, Mylyaganum M, Binnincton B, Lund N, et al. 2008. The medium is the message: Glycosphingolipids and their soluble analogues. Biochim Biophys Acta 1780: 347–352.PubMedGoogle Scholar
  67. Desai NN, Spiegel S. 1991. Sphingosyl-phosphorylcholine is a remarkably potent mitogen for a variety of cell lines. Biochem Biophys Res Commun 181: 361–366.PubMedGoogle Scholar
  68. Dinur T, Grabowski GA, Desnick JR, Gatt S. 1984. Synthesis of a fluorescent derivative of glucosyl ceramide for the sensitive determination of glucocerebrosidase activity. Anal. Biochem. 136: 223–234.PubMedGoogle Scholar
  69. Dresslers KA, Kolesnick RN. 1990. Ceramide 1-phosphate, a novel phospholipid in human leukemia (HL-60) cells. Synthesis via ceramide from sphingomyelin. J Biol Chem 265: 14917–14921.Google Scholar
  70. Dreyfus H, Urban PF, Edel-Harth S, Mandel P. 1975. Development patterns of gangliosides and of phospholipids in chicken retina and brain. J Neurochem 25: 245–250.PubMedGoogle Scholar
  71. Dreyfus H, Urban PF, Harth S, Preti A, Mandel P. 1976. Retinal gangliosides: Composition, evolution with age. Biosynthetic and metabolic approaches. Adv Espl Med Biol 71: 163–188.Google Scholar
  72. Eisenbarth GS, Walsh FS, Nirenberg M. 1979. Monoclonal antibody to a plasma membrane antigen of neurons. Proc Natl Acad Sci USA 76: 4913–4917.PubMedGoogle Scholar
  73. El Rassi Z. 1999. Recent developments in capillary electrophoresis and capillary electrochromatography of carbohydrate species. Electrophoresis 20: 3134–3144.PubMedGoogle Scholar
  74. Fantini J. 2000. Synthetic soluble analogs of glycolipids for studies of virus-glycolipid interactions. Methods Enzymol 311: 626–638.PubMedGoogle Scholar
  75. Fantini J, Hammache D, Delezay O, Yahi N, Andrè-Barrès C, et al. 1997. Synthetic soluble analogs of galactosylceramide (GalCer) bind to the V3 domain of HIV-1 gp120 and inhibit HIV-1-induced fusion and entry. J Biol Chem 272: 7245–7252.PubMedGoogle Scholar
  76. Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH Jr, et al. 2005. A comprehensive classification system for lipids. J Lipid Res 46: 839–861.PubMedGoogle Scholar
  77. Feizi T, Childs RA. 1994. Neoglycolipids: Probes in structure/function assignments to oligosaccharides. Methods Enzymol 242: 205–217.PubMedGoogle Scholar
  78. Feizi T, Stoll MS, Yuen CT, Chai W, Lawson AM. 1994. Neoglycolipids: Probes of oligosaccharide structure, antigenicity, and function. Methods Enzymol 230: 484–519.PubMedGoogle Scholar
  79. Fenderson BA, Andrews PW, Nudelman E, Clausen H, Hakomori SI. 1997. Glycolipid core structure switching from globo- to lacto- and ganglio-series during retinoic acid-induced differentiation of TERA-2-derived human embryonal carcinoma cells. Dev Biol 122: 21–34.Google Scholar
  80. Flowers HM. 1966. Substituted cerebrosides Part II. Synthetic dihydrosulfatides. Carbohydr Res 2: 371–379.Google Scholar
  81. Folch-Pi J. 1955. Composition of the brain in relation to maturation. Biochemistry of the Developing Nervous System. Waelsch H, editor. New York: Academic Press; pp. 121–136.Google Scholar
  82. Fong JW, Ledeen RW, Kundu SR, Brostoff SW. 1976. Gangliosides of peripheral nerve myelin. J Neurochem 26: 157–162.PubMedGoogle Scholar
  83. Fotinou C, Emsley P, Black I, Ando H, Ishida H, et al. 2001. The crystal structure of tetanus toxin Hc fragment complexed with a synthetic GT1b analogue suggests cross-linking between ganglioside receptors and the toxin. J Biol Chem 276: 32274–32281.PubMedGoogle Scholar
  84. Fredman P, Brezicka T, Holmgren J, Lindholm L, Nilsson O, et al. 1986. Binding specificity of monoclonal antibodies to ganglioside Fuc-GM1. Biochim Biophys Acta 875: 316–323.PubMedGoogle Scholar
  85. Fredman P, Magnani JL, Nirenberg M, Ginsburg V. 1984. Monoclonal antibody A2B5 reacts with many gangliosides in neuronal tissue. Arch Biochem Biophys 233: 661–666.PubMedGoogle Scholar
  86. Fukushima K, Hirota M, Terasaki PI, Wakisaka A, Togashi H, et al. 1984. Characterization of sialosylated Lewis X as a new tumor-associated antigen. S Cancer Res 44: 5279–5285.Google Scholar
  87. Galanos C, Lűderitz O, Westphal O. 1971. Preparation and properties of antisera against the lipid – A component of bacterial lipopolysaccharides. Eur J Biochem 24: 116–122.PubMedGoogle Scholar
  88. Galli C, Fumagalli R. 1968. Lipid composition of the central nervous system of marine vertebrates. J Neurochem 15: 35–40.PubMedGoogle Scholar
  89. Galustian C, Lawson AM, Komba S, Ishida H, Kiso M, et al. 1997. Sialyl-Lewis(x) sequence 6-O-sulfated at N-acetylglucosamine rather than at galactose is the preferred ligand for L-selectin and de-N-acetylation of the sialic acid enhances the binding strength. Biochem Biophys Res Commun 240: 748–751.PubMedGoogle Scholar
  90. Gammon CM, Ledeen RW. 1985. Evidence for the èresence of a ganglioside transfer protein in brain. J Neurochem 44: 979–982.PubMedGoogle Scholar
  91. Gasa S, Mitsuyama T, Makita A. 1983. Proton nuclear magnetic resonance of neutral and acidic glycosphingolipids. J Lipid Res 24: 174–182.PubMedGoogle Scholar
  92. Gatt S. 1966. Enzymic hydrolysis of sphingolipids: Hydrolysis of ceramide glucoside by an enzyme from ox brain. Biochem J 101: 687–691.PubMedGoogle Scholar
  93. Gatt S, Barenholz Y, Goldberg R, Dinur T, Besley G, et al. 1981. Assay of enzymes of lipid metabolism with colored and fluorescent derivatives of natural lipids. Methods Enzymol 72: 351–375.PubMedGoogle Scholar
  94. Gaver RC, Sweeley CC. 1966. Chemistry and metabolism of sphingolipids. 3-Oxo derivatives of N-acetylsphingosine and N-acetyldihydrosphingosine. J Am Chem Soc 88: 3643–3649.PubMedGoogle Scholar
  95. Ghidoni R, Sonnino S, Masserini M, Orlando P, Tettamanti G. 1981. Specific tritium labeling of gangliosides at the 3-position of sphingosines. J Lipid Res 22: 1286–1295.PubMedGoogle Scholar
  96. Ghidoni R, Sonnino S, Tettamanti G, Bauman N, Reuter G, et al. 1980. Isolation and characterization of a trisialoganglioside from mouse brain, containing 9-O-acetyl-N-acetylneuraminic acid. J Biol-Chem 255: 6990–6995.PubMedGoogle Scholar
  97. Ghidoni R, Sonnino S, Tettamanti G, Wiegandt H, Zambotti V. 1976. On the structure of two new gangliosides from beef brain. J Neurochem 27: 511–515.PubMedGoogle Scholar
  98. Ghidoni R, Tettamanti G, Zambotti V. 1977. Labeling of natural substrates for the radiochemical assay of enzymes involved in lipid storage diseases: a general procedure for tritiation of gangliosides. Biochem Exp Biol 13: 61–69.PubMedGoogle Scholar
  99. Gigg R. 1980. Synthesis of glycolipids. Chem Phys Lipids 26: 287–404.PubMedGoogle Scholar
  100. Goodyear CS, O’Hanlon GM, Plomp JJ, Wagner ER, Morrison I, et al. 1999. Monoclonal antibodies raised against Guillain-Barré syndrome-associated Campylobacter jejuni lipopolysaccharides react with neuronal gangliosides and paralyze muscle-nerve preparations. J Clin Invest 104: 697–708.PubMedGoogle Scholar
  101. Graf L, Rapport MM. 1965. Immunochemical studies of organ and tumor lipids. XVI. Gel diffusion analysis of the cytolipin K system. Int Arch Allergy Appl Immunol 28: 171–177.PubMedGoogle Scholar
  102. Graf L, Yariv J, Rapport MM. 1965. Immunochemical studies of organ and tumor lipids. XV. The reactivity of anti-lactose sera with cytolipin H. Immunochemistry 2: 145–153.PubMedGoogle Scholar
  103. Haga Y, Hatanaka K, Hakomori SI. 2008. Effect of lipid mimetics of GM3 and lyso-GM3 dimer on EGF receptor-tyrosine kinase and EGF-induced signal transduction. Biochim Biophys Acta 1780: 393–404.PubMedGoogle Scholar
  104. Hajra AK, Bowen DM, Kishimoto Y, Radin NS. 1966. Cerebroside galactosidase of brain. J Lipid Res 7: 379–386.PubMedGoogle Scholar
  105. Hakomori SI. 1981. Glycosphingolipids in cellular interaction, differentiation, and oncogenesis. Annu Rev Biochem 50: 733–764.PubMedGoogle Scholar
  106. Hakomori S. 2008. Structure and function of glycosphingolipids and sphingolipids: Recollections and future trends. Biochim Biophys Acta 1780: 325–346.PubMedGoogle Scholar
  107. Hakomori SI, Igarashi Y. 1993. Gangliosides and glycosphingolipids as modulators of cell growth, adhesion, and transmembrane signaling. Adv Lipid Res 25: 147–162.PubMedGoogle Scholar
  108. Hakomori SI, Patterson CM, Nudelman E, Sekiguchi K. 1983. A monoclonal antibody directed to N-acetylneuraminosyl-alpha 2 leads to 6-galactosyl residue in gangliosides and glycoproteins. J Biol Chem 258: 11819–11822.PubMedGoogle Scholar
  109. Hakomori SI, Teather C, Andrews H. 1968. Organizational difference of cell surface “hematoside” in normal and virally transformed cells. Biochem Biophys Res Commun 33: 563–568.PubMedGoogle Scholar
  110. Hanada K, Kumagai K, Yasuda S, Miura Y, Kawano N, et al. 2003. Molecular machinery for non-vesicular trafficking of ceramide. Nature 426: 803–809.PubMedGoogle Scholar
  111. Hanai N, Dohi T, Nores GA, Hakomori S. 1988. A novel ganglioside, de-N-acetyl-GM3 (II3NeuNH2LacCer), acting as a strong promoter for epidermal growth factor receptor kinase and as a stimulator for cell growth. J Biol Chem 263: 6296–6301.PubMedGoogle Scholar
  112. Hanai N, Nores GA, MacLeod C, Torres-Mendez CR, Hakomori S. 1988. Ganglioside-mediated modulation of cell growth: Specific effects of GM3 and lyso-GM3 in tyrosine phosphorylation of the epidermal growth factor receptor. J Biol Chem 263: 10915–10921.PubMedGoogle Scholar
  113. Hannun YA, Bell RM. 1993. The sphingomyelin cycle: A prototypic sphingolipid signaling pathway. Adv Lipid Res 25: 27–41.PubMedGoogle Scholar
  114. Hansson HA, Holmgren J, Svennerholm L. 1977. Ultrastructural localization of cell membrane GM1 ganglioside by cholera toxin. Proc Natl Acad Sci USA 74: 3782–3786.PubMedGoogle Scholar
  115. Hasegawa A, Ando T, Kato M, Ishida H, Kiso M. 1994. Synthesis of deoxy-L-fucose-containing sialyl Lewis X ganglioside analogues. Carbohydr Res 25: 67–80.Google Scholar
  116. Hasegawa A, Kiso K. 1994. Synthesis of sialyl Lewis X ganglioside and analogs. Methods Enzymol 242: 158–173.PubMedGoogle Scholar
  117. Hasegawa A, Morita M, Kojima Y, Ishida H, Kiso M. 1991. Synthesis of cerebroside, lactosyl ceramide, and ganglioside GM3 analogs containing beta-thioglycosidically linked ceramide. Carbohydr Res 214: 43–53.PubMedGoogle Scholar
  118. Hatanaka Y, Hashimoto M, Hidari K, Sanai Y, Nagai Y, et al. 1995. A carbene-generating biotinylated lactosylceramide analog as novel photoreactive substrate for GM3 synthase. Bioorg Med Chem Lett 5: 2859–2962.Google Scholar
  119. Heller RA, Kronke MJ. 1984. Tumor necrosis factor receptor-mediated signaling pathways. J Cell Biol 12: 5–9.Google Scholar
  120. Hikita T, Tadano-Aritomi K, Iida-Tanaka N, Levery SB, Ishizuka I, et al. 2002. Cationic glycosphingolipids in neuronal tissues and their possible biological significance. Neurochem Res 27: 575–581.PubMedGoogle Scholar
  121. Hilbig H, Rahmann H. 1980. Variability in brain gangliosides of fishes. J Neurochem 34: 236–240.PubMedGoogle Scholar
  122. Hirabayashi Y, Hyogo A, Nakao T, Tsuchiya K, Suzuki Y, et al. 1990. Isolation and characterization of extremely minor gangliosides, GM1b and GD1 alpha, in adult bovine brains as developmentally regulated antigens. J Biol Chem 265: 8144–8151.PubMedGoogle Scholar
  123. Holm M, Mansson J-E, Vanier MT, Svennerholm L. 1972. Ganglioside of human, bovine and rabbit retina. Biochim Biophys Acta 280: 356–364.PubMedGoogle Scholar
  124. Hotta K, Ishida M, Kiso M, Hasegawa A. 1995. Synthetic studies on sialoglycoconjugates 66: First total synthesis of a cholinergic neuron-specific ganglioside GQ1bα1. J Carbohydr Chem 14: 491–506.Google Scholar
  125. Igarashi Y, Hakomori SI. 1989. Enzymatic synthesis of N,N-dimethyl-sphingosine: Demonstration of the sphingosine: N-methyltransferase in mouse brain. Biochem Biophys Res Commun 164: 1411–1416.PubMedGoogle Scholar
  126. Igisu H, Suzuki K. 1984. Analysis of galactosylsphingosine (psychosine) in the brain. J Lipid Res 25: 1000–1006.PubMedGoogle Scholar
  127. Ishida H, Kiso M, Hasegawa A. 1994. Synthesis of ganglioside analogs containing sulfur in place of oxygen at the linkage positions. Methods Enzymol 242: 183–196.PubMedGoogle Scholar
  128. Ishikawa Y, Gasa S, Minami R, Makita A. 1987. Characterization of neutral glycosphingolipids from fetal human brain: Evidence for stage-specific expression of the globo, ganglio, and neolacto series in the central nervous system. J Biochem 101: 1369–1375.PubMedGoogle Scholar
  129. Ishikawa D, Taki T. 2000. Thin-layer chromatography blotting using polyvinylidene difluoride membrane (far-eastern blotting) and its applications. Methods Enzymol 312: 145–157.PubMedGoogle Scholar
  130. Ishizuka I, Kloppenburg M, Wiegandt H. 1970. Characterization of gangliosides from fish brain. Biochim Biophys Acta 210: 299–305.PubMedGoogle Scholar
  131. Ishizuka I, Wiegandt H. 1972. An isomer of trisialoganglioside and the structure of tetra- and pentasialoganglioside from fish brain. Biochim Biophys Acta 260: 279–289.PubMedGoogle Scholar
  132. Ito H, Ishida H, Collins BE, Fromholt SE, Schnaar RL, et al. 2003. Systematic synthesis and MAG-binding activity of novel sulfated GM1b analogues as mimics of Chol-1 (alpha-series) gangliosides: Highly active ligands for neural siglecs. Carbohydr Res 338: 1621–1639.PubMedGoogle Scholar
  133. Ito H, Ishida M, Kiso M, Hasegawa A. 1997. First total synthesis of ganglioside GT1a alpha. Carbohydr Res 304: 187–189.PubMedGoogle Scholar
  134. Ito M, Kita K, Kurita T, Sueyoshi N, Izu H. 2000a. Enzymatic N-deacylation of sphingolipids. Methods Enzymol 311: 297–303.PubMedGoogle Scholar
  135. Ito M, Kurita T, Kita K. 1995. A novel enzyme that cleaves the N-acyl linkage of ceramides in various glycosphingolipids as well as sphingomyelin to produce their lyso forms. J Biol Chem 270: 24370–24374.PubMedGoogle Scholar
  136. Ito M, Mitsutake S, Tani M, Kita K. 2000b. Enzymatic synthesis of [14C]ceramide, [14C]glycosphingolipids, and omega-aminoceramide. Methods Enzymol 311: 682–689.PubMedGoogle Scholar
  137. Ito Y, Numata M, Sugimoto M, Ogawa T. 1989. Highly stereoselective synthesis of ganglioside GD3. J Am Chem Soc 111: 8508–8510.Google Scholar
  138. IUPAC-IUB Joint Commission on Biochemical Nomenclature. 1998. Nomenclature of glycolipids, Recommendations 1997. Eur J Biochem 257: 293-298.Google Scholar
  139. Iwamori M, Nagai Y. 1981. Comparative study on ganglioside compositions of various rabbit tissues. Tissue-specificity in ganglioside molecular species of rabbit thymus. Biochim Biophys Acta 665: 214–220.PubMedGoogle Scholar
  140. Jatzkewitz H, Nowoczek G. 1967. Synthese [35S]-markierter d-Galaktose-sulfate und Ceramid-galaktose-sulfate (= Cerebrosid-sulfate). Chem Ber 100: 1667–1679.Google Scholar
  141. Ji L, Zhang G, Uematsu S, Akahori Y, Hirabayashi Y. 1995. Induction of apoptotic DNA fragmentation and cell death by natural ceramide. FEBS Lett 358: 211–214.PubMedGoogle Scholar
  142. Jungalwala FB. 1994. Expression and biological functions of sulfoglucuronyl glycolipids (SGGLs) in the nervous system–a review. Neurochem Res 19: 945–957.PubMedGoogle Scholar
  143. Kameyama A, Ishida H, Kiso M, Hasegawa A. 1991. Total synthesis of sialyl Lewis X. Carbohydr Res 209: C1–C4.PubMedGoogle Scholar
  144. Kanfer JN, Bates S. 1970. Sphingolipid metabolism. II. The biosynthesis of 3-keto-dihydrosphingosine by a partially-purified enzyme from rat brain. Lipids 5: 718–720.PubMedGoogle Scholar
  145. Kannagi R. 2000. Monoclonal anti-glycosphingolipid antibodies. Methods Enzymol 312: 160–179.PubMedGoogle Scholar
  146. Kannagi R, Stroup R, Cochran NA, Urdal DL, Young WW Jr, et al. 1983. Factors affecting expression of glycolipid tumor antigens: Influence of ceramide composition and coexisting glycolipid on the antigenicity of gangliotriaosylceramide in murine lymphoma cells. Cancer Res 43: 4997–5005.PubMedGoogle Scholar
  147. Karlsson KA. 1970. Sphingolipid long chain bases. Chem Phys Lipids 5: 6–43.PubMedGoogle Scholar
  148. Kato K, Sasakawa H, Kaniya Y, Utsumi M, Nakano M, et al. 2008. 920 MKZ ultra-high field NMR approaches to structural glycobiology. Biochim Biophys Acta 1780: 619–625.PubMedGoogle Scholar
  149. Kawashima I, Kotani M, Ozawa H, Suzuki M, Tai T. 1994. Generation of monoclonal antibodies specific for ganglioside lactones: Evidence of the expression of lactone on human melanoma cells. Int J Cancer 58: 263–268.PubMedGoogle Scholar
  150. Kishimoto Y, Davies WE, Radin NS. 1965. Developing rat brain: Changes in cholesterol, galactolipids, and the individual fatty acids of gangliosides and glycerophosphatides. J Lipid Res 6: 532–536.PubMedGoogle Scholar
  151. Klein RA, Egge H. 1994. Recent developments in the MS and NMR analysis of gangliosides. Glycobiology and the Brain. Nicolini M, Zatta PF, editors. Oxford: Pergamon Press; pp. 245–273.Google Scholar
  152. Klenk E. 1942. Uber die ganglioside, eine neue gruppe von zuckerhaltigen gehirnlipoiden. Hoppe-Seylers. Z Physiol Chem 273: 76–86.Google Scholar
  153. Klenk E, Gielen W. 1961. Research on the constitution of a ganglioside from human brain and the separation of the mixture into the components. Hoppe-Seyler’s Z. Physiol Chem 326: 144–157.Google Scholar
  154. Knoll F, Kolter T, Sandhoff K. 2000. Sphingolipid photoaffinity labels. Method Enzymol 311: 568–600.Google Scholar
  155. Koeller KM, Wong CH. 2000. Complex carbohydrate synthesis tools for glycobiologists: Enzyme-based approach and programmable one-pot strategies. Glycobiology 10: 1157–1169.PubMedGoogle Scholar
  156. Koerner TA, Prestegard JH, Yu RK. 1987. Oligosaccharide structure by two-dimensional proton nuclear magnetic resonance spectroscopy. Methods Enzymol 138: 38–59.PubMedGoogle Scholar
  157. Kőhler G, Milstein C. 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256: 495–497.PubMedGoogle Scholar
  158. Kohriyama T, Kusunoki S, Ariga T, Yoshino JE, De Vries GH, et al. 1987. Subcellular localization of sulfated glucuronic acid-containing glycolipids reacting with anti-myelin-associated glycoprotein antibody. J Neurochem 48: 1516–1522.PubMedGoogle Scholar
  159. Koike K, Sugimoto M, Nakahara Y, Ogawa T. 1987a. Total synthesis of cerebrosides: 2S, 3R, 4E)-1-O-β-d-galactopyranosyl-N-(2’R and 2’S)-2’-hydroxytetracosanoyl-sphinganine. Carbohydr Res 162: 237–246.Google Scholar
  160. Koike K, Sugimoto M, Sato S, Ito Y, Nakahara Y, et al. 1987b. Total synthesis of globotriaosyl-E and Z-ceramides and isoglobotriaosyl-E-ceramide. Carbohydr Res 163: 189–208.PubMedGoogle Scholar
  161. Kolesnick RN. 1992. Ceramide: A novel second messenger. Trends Cell Biol 2: 232–236.PubMedGoogle Scholar
  162. Kolter T, Proja RL, Sandhoff K. 2002. Combinatorial ganglioside biosynthesis. J Biol Chem 277: 25859–25852.PubMedGoogle Scholar
  163. Komori T, Kondo S, Ando H, Ishida H, Kiso M. 2002. A first total synthesis of a novel sulfated ganglioside, 3’-O-sulfo-GM1b. Carbohydr Res. 337: 1679–1686.PubMedGoogle Scholar
  164. Kopaczyk KC, Radin NS. 1965. In vivo conversions of cerebroside and ceramide in rat brain. J Lipid Res 6: 140–145.PubMedGoogle Scholar
  165. Kostinen AMP, Kostinen PM. 1993. Synthetic studies towards amino alcohols. Diastereocontrolled reduction of (′-chiral (,(-enones. Tetrahedron Lett 34: 6765–6768.Google Scholar
  166. Kotani M, Kawashima I, Ozawa H, Ogura K, Ishizuka I, et al. 1994. Immunohistochemical localization of minor gangliosides in the rat central nervous system. Glycobiology 4: 855–865.PubMedGoogle Scholar
  167. Kotani M, Kawashima I, Ozawa H, Terashima T, Tai T. 1993. Differential distribution of major gangliosides in rat central nervous system detected by specific monoclonal antibodies. Glycobiology 3: 137–146.PubMedGoogle Scholar
  168. Kotani M, Terashima T, Tai T. 1995. Developmental changes of ganglioside expressions in postnatal rat cerebellar cortex. Brain Res 700: 40–58.PubMedGoogle Scholar
  169. Kracun I, Rosner H, Dmovsek V, Vukelic Z, Cosovic C, et al. 1992. Gangliosides in the human brain development and aging. Neurochem Int 20: 421–431.PubMedGoogle Scholar
  170. Kuhn R, Wiegandt H. 1963. Die Konstitution der Ganglio-N-tetrose und des Ganglioside G1. Chem Ber 96: 866–880.Google Scholar
  171. Kuhn R, Wiegandt H. 1964. Weitere Ganglioside aus Menschenhirn. Z Naturforsch 19: 256–257.Google Scholar
  172. Kundu SK. 1981. Thin-layer chromatography of neutral glycosphingolipids and gangliosides. Methods Enzymol 72: 185–204.PubMedGoogle Scholar
  173. Kuziemko GM, Stroh M, Stevens RC. 1996. Cholera toxin binding affinity and specificity for gangliosides determined by surface plasmon resonance. Biochemistry 35: 6375–6384.PubMedGoogle Scholar
  174. Ladish S, Li R. 2000. Purification and analysis of gangliosides. Methods Enzymol 312: 135–145.Google Scholar
  175. Lapetina EG, De Robertis E. 1968. Action of Triton X-100 on lipids and proteolipids of nerve-ending membranes. Life Sci 7: 203–208.Google Scholar
  176. Larsson EA, Olsson U, Whitmore CD, Martins R, Tettamanti G, et al. 2007. Synthesis of reference standards to enable single cell metabolomic studies of tetramethylrhodamine-labeled ganglioside GM1. Carbohydr Res 342: 482–489.PubMedGoogle Scholar
  177. Latov N. 1994. Antibodies to glycoconjugates in neuropathy and motor neuron disease. Progr Brain Res 101: 295–303.Google Scholar
  178. Laughlin ST, Bertozzi CR. 2007. Metabolic labeling of glycans with azido sugars and subsequent glycan-profiling and visualization via Staudinger ligation. Nat Protoc 2: 2930–2944.PubMedGoogle Scholar
  179. Ledeen RW. 1978. Ganglioside structures and distribution: Are they localized at the nerve ending? J Supramol Struct 8: 1–17.PubMedGoogle Scholar
  180. Ledeen RW. 1979. Structure and distribution of gangliosides. Complex Carbohydrates of the Nervous Tissue. Margolis RU, Margolis RK, editors. New York: Plenum Press, pp. 1–23.Google Scholar
  181. Ledeen RW. 1983. Gangliosides. Handbook of Neurochemistry, Vol. 3, 2nd ed. Lajtha A, editor. New York: Plenum Press; pp. 41–90.Google Scholar
  182. Ledeen RW. 1989. Biosynthesis, metabolism and biological effects of gangliosides. Neurobiology of Glycoconjugates. Argolis RU, Margolis RK, editors. New York: Plenum Press; pp. 43–83.Google Scholar
  183. Ledeen RW, Aquino DA, Sbashnig-Agler M, Gammon CM, Vaswani KK. 1987. Fundamentals of neuronal transport of gangliosides. Functional implications. Gangliosides and Modulation of Neuronal Functions. Nato ASI Series, Series H: Cell Biology, Vol. 7. Rahmann H, editor. Berlin: Springer; pp. 259–274.Google Scholar
  184. Ledeen RW, Parsons SM, Diebler FD, Sbashnig-Agler M, Lazerec S. 1988. Ganglioside composition of synaptic vesicles from Torpedo electric organ. J Neurochem 51: 1465–1469.PubMedGoogle Scholar
  185. Ledeen RW, Salsman K. 1965. Structure of Tay-Sachs’ ganglioside. Biochemistry 4: 2225–2233.Google Scholar
  186. Ledeen RW, Skrivanek JA, Nunez J, Sclafani JR, Norton WT, et al. 1981. Implications of the distribution and transport of gangliosides in the nervous system. Gangliosides in Neurological and Neurovascular Function, Development and Repair. Rapport NM, Goria A, editors. New York: Raven Press; pp. 211–223.Google Scholar
  187. Ledeen RW, Wu G. 2006. Phingolipids of the nucleus and their role in nuclear signalling. Biochim Biophys Acta 761: 588–598.Google Scholar
  188. Ledeen RW, Yu RK. 1982. Gangliosides: Structure, isolation, and analysis. Methods Enzymol 83: 139–191.PubMedGoogle Scholar
  189. Ledeen RW, Yu RK, Eng LF. 1973. Gangliosides of human myelin: Sialosylgalactosylceramide (G7) as a major component. J Neurochem 21: 829–839.PubMedGoogle Scholar
  190. Lee PM, Ketis NV, Barber KR, Grant CWM. 1980. Ganglioside headgroup dynamics. Biochim Biophys Acta 601: 302–314.PubMedGoogle Scholar
  191. Lee YC, Lee RT. (eds.) 2003a. Methods Enzymol. Recognition of Carbohydrates in biological systems. Part A: General procedures, Vol. 362, Elsevier: Academic Press.Google Scholar
  192. Lee YC, Lee RT. (eds.) 2003b. Methods Enzymol. Recognition of carbohydrates in biological systems. Part B: Specific Application, Vol. 363, Elsevier: Academic Press.Google Scholar
  193. Lee T, Ou M, Shinazaki K, Malone B, Snyder F. 1996. Biosynthesis of N-acetylsphingosine by platelet-activating factor: Sphingosine CoA-independent transacetylase in HL-60 cells. J Biol Chem 27: 209–217.Google Scholar
  194. Lee MJ, Van Brocklyn JR, Thangada S, Liu CH, Hand AR, et al. 1998. Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science 279: 1552–1555.PubMedGoogle Scholar
  195. Lees A, Sarlieve LL, Neskovic NM, Wintzerith M, Mandel P. 1977. Changes in brain components during the development of mice homozygous for the locus “Dwarf”. Neurochem Res 2: 11–25.Google Scholar
  196. Lehmann F, Wegerhoff R, Rosenberg A, Schauer R, Khola G. 2003. Early variations of the disialoganglioside GD3 in chicken embryonic brain support its role in cell migration. Biochimie 85: 449–454.PubMedGoogle Scholar
  197. Leskawa KC, Dasgupta JL, Chien JL, Hogan EL. 1984. A simplified procedure for the preparation of tritiated GM1 ganglioside and other glycosphingolipids. Anal Biochem 140: 172–177.PubMedGoogle Scholar
  198. Li YT, Li S-C. 1977. Use of enzymes in elucidation of structure. The Glycoconjugates. Horowitz MI, Pigman W, editors. New York: Academic Press; pp. 51–67.Google Scholar
  199. Li YT, Li S-C. 1982. Biosynthesis and catabolism of glycosphingolipids. Adv Carbohydr Chem Biochem 40: 238–288.Google Scholar
  200. Li YT, Li S-C, Ishida H, Kiso M, Raimondi L, et al. 2003. Structural basis for the enzymatic resistance of the GM2 ganglioside. Methods Enzymol 363: 242–264.PubMedGoogle Scholar
  201. Li Y-t, Li S-C, Kiso M, Ishida L, Raimondi L, et al. 2008. Effect of structural modifications of ganglioside GM2 on intra-molecular carbohydrate-to-carbohydrate interaction and enzymatic susceptibility. Biochim Biophys Acta 1780: 353–361.PubMedGoogle Scholar
  202. Li YT, Mansson J-E, Vanier M-T, Svennerholm L. 1973. Structure of the major glucosamine-containing ganglioside of human tissues. J Biol Chem 248: 2634–2636.PubMedGoogle Scholar
  203. Lingwood CA. 1996. Aglycone modulation of glycolipid receptor function. Glycoconj J 13: 495–503.PubMedGoogle Scholar
  204. Lingwood CA, Mylvaganam M. 2003. Lipid modulation of glycosphingolipid (GSL) receptors: Soluble GSL mimics provide new probes of GSL receptor function. Methods Enzymol 363: 264–283.PubMedGoogle Scholar
  205. Lloyd KO, Gordon CM, Thampoe IJ, Di Benedetto C. 1992. Cell surface accessibility of individual gangliosides in malignant melanoma cells to antibodies is influenced by the total ganglioside composition of the cells. Cancer Res 52: 4948–4953.PubMedGoogle Scholar
  206. Luberto C, Hannun YA. 2000. Use of short-chain ceramides. Methods Enzymol 312: 407–420.PubMedGoogle Scholar
  207. Maccioni HJ, Arce A, Caputto R. 1971. The biosynthesis of gangliosides. Labelling of rat brain gangliosides in vivo. Biochem J 125: 1131–1137.PubMedGoogle Scholar
  208. MacKenzic CR, Hirama T, Lee KK, Altman E, Young NM. 1997. Quantitative analysis of bacterial toxin affinity and specificity for glycolipid receptors by surface plasmon resonance. J Biol Chem 272: 5533–5538.Google Scholar
  209. Magnani JL, Smith DF, Ginsburg V. 1980. Detection of gangliosides that bind cholera toxin: Direct binding of 125I-labeled toxin to thin-layer chromatograms. Anal Biochem 109: 399–402.PubMedGoogle Scholar
  210. Mamelak D, Mylvaganam M, Tanahashi E, Ito H, Ishida H, et al. 2001. The aglycone of sulfogalactolipids can alter the sulfate ester substitution position required for hsc70 recognition. Carbohydr Res 335: 91–100.PubMedGoogle Scholar
  211. Mandel P, Dreyfus H, Matsui Y, Rebel G. 1984. Use of cell culture in ganglioside research. Adv Exp Med Biol 174: 27–38.PubMedGoogle Scholar
  212. Mansson JE, Vanier MT, Svennerholm L. 1978. Changes in the fatty acid and sphingosine composition of the major gangliosides of hu8man brain with age. J Neurochem 30: 273–275.PubMedGoogle Scholar
  213. Manzi AE, Sjoberg E, Diaz SL, Varki A. 1990. Biosynthesis and turnover of O-acetyl and N-acetyl groups in the gangliosides of human melanoma cells. J Biol Chem 265: 13091–13103.PubMedGoogle Scholar
  214. Marcus DM. 1990. Measurement and clinical importance of antibodies to glycosphingolipids. Ann Neurol 27(Suppl.): S53–S55.PubMedGoogle Scholar
  215. Marcus DM, Weng NP. 1994. The structure of human anti-ganglioside antibodies. Progr Brain Res 101: 289–293.Google Scholar
  216. Martinez M, Ballabriga A. 1978. A chemical study on the development of the human forebrain and cerebellum during the brain ‘growth spurt’ period. I. Gangliosides and plasmalogens. Brain Res 159: 351–362.PubMedGoogle Scholar
  217. Masserini M, Freire E, Palestini P, Calappi E, Tettamanti G. 1992. Fuc-GM1 ganglioside mimics the receptor function of GM1 for cholera toxin. Biochemistry 31: 2422–2426.PubMedGoogle Scholar
  218. Mc Ilwain H, Bachelard HS. 1971. Biochemistry and the central nervous system, 4th ed. Edimburgh and London: Churchill Livingstone; p. 32.Google Scholar
  219. Meier EM, Schummer D, Sandhoff K. 1990. Evidence for the presence of water within the hydrophobic core of membranes. Chem Phys Lipids 55: 103–113.PubMedGoogle Scholar
  220. Merat A, Sajjpadi S, Dickerson JWT. 1979. Effect of development on the gangliosides of rabbit brain. Biol Neonate 36: 25–34.PubMedGoogle Scholar
  221. Merrill AH Jr, Hannun YA (eds.). 2000a. Methods Enzymol, Vol. 311, Sphingolipid Metabolism and Cell Signalling. Part. A. Elsevier: Academic Press.Google Scholar
  222. Merrill AH Jr, Hannun YA (eds.). 2000b. Methods Enzymol, Vol. 312, Sphingolipid Metabolism and Cell Signalling. Part. A. Elsevier: Academic Press.Google Scholar
  223. Metelman W, Vukelic Z, Peter-Katalinic J. 2001. Nano-electrospray ionization time-of-flight mass spectrometry of gangliosides from human brain tissue. J Mass Spectrom 36: 21–29.Google Scholar
  224. Molander M, Berthold CH, Persson H, Andersson K, Fredman P. 1997. Monosialoganglioside (GM1) immunofluorescence in rat spinal roots studied with a monoclonal antibody. J Neurocytol 26: 101–111.PubMedGoogle Scholar
  225. Molin K, Mansson JE, Fredman P, Svennerholm L. 1987. Sialosyllactotetraosy-lceramide, 3’-isoLM1, a ganglioside of the lactotetraose series isolated from normal human infant brain. J Neurochem 49: 216–219.PubMedGoogle Scholar
  226. Murase T, Ishida H, Kiso M, Hasegawa A. 1989b. A facile, regio- and stereo-selective synthesis of ganglioside GM3. Carbohydr Res 188: 71–80.PubMedGoogle Scholar
  227. Murase T, Kameyama A, Kartha KPR, Ishida H, Kiso M, et al. 1989a. Synthetic Studies on Sialoglycoconjugates. 5: A Facile, Regio and Stereoselective Synthesis of Ganglioside GM4 and Its Position Isomer1. J Carbohydr Chem 8: 265–283.Google Scholar
  228. Murosuka Y, Watanabe K, Hatanaka K, Hakomori S. 2007. Lyso-GM3, its dimer, and multimer: Their synthesis and their effect on epidermal growth factor-induced receptor tyrosine kinase. Glycoconj J 24: 551–563.Google Scholar
  229. Műthing J. 2000. Analyses of glycosphingolipids by high-performance liquid chromatography. Methods Enzymol 312: 45–64.PubMedGoogle Scholar
  230. Mylvaganam M, Lingwood CA. 1999. Adamantyl globotriaosyl ceramide: A monovalent soluble mimic which inhibits verotoxin binding to its glycolipid receptor. Biochem Biophys Res Commun 257: 391–394.PubMedGoogle Scholar
  231. Nagai Y, Iwamori M. 1984. Ganglioside distribution of different levels of organization and its biological implications. Adv Exptl Med Biol 174: 135–146.Google Scholar
  232. Nagai Y, Iwamori M. 1995. Cellular biology of gangliosides. Biology of Sialic Acids. Rosenberg A, editor. New York: Plenum Press.Google Scholar
  233. Nagai Y, Tsuji S. 1988. Cell biological significance of gangliosides in neural differentiation and development: Critique and proposals. New Trends in Ganglioside Research: Neurochemical and Neurogenerative Aspects. Ledeen RW, Hogan EL, Tettamanti G, Yates AJ, Yu RK, editors. Padova: Liviana Press; Berlin: Springer; pp. 329–350.Google Scholar
  234. Nagayama K, Kumar A, Wuthrich K, Ernst RR. 1980. Experimental techniques of two-dimensional correlated spectroscopy. J Magn Reson 40: 321–334.Google Scholar
  235. Naiki M, Marcus DM, Ledeen RW. 1974. Properties of antisera to ganglioside GM1 and asialo GM1. J Immunol 113: 84–93.PubMedGoogle Scholar
  236. Nair SM, Zhao Z, Chou DKH, Tobet SA, Jungalwala FB. 1998. Expression of HNK-1 carbohydrate and its binding protein, SBP-1, in apposing cell surfaces in cerebral cortex and cerebellum. Neuroscience 85: 759–771.PubMedGoogle Scholar
  237. Needham LK, Schnaar RL. 1993. The HNK-1 reactive sulfoglucuronyl glycolipids are ligands for L-selectin and P-selectin but not E-selectin. Proc Natl Acad Sci USA 90: 1359–1363.PubMedGoogle Scholar
  238. Nicolau KC, Caulfield T, Kataoka H, Kumazawa T. 1988. A practical and enantioselective synthesis of glycosphingolipids and related compounds. Total synthesis of globotriaosylceramide (GB3). J Am Chem Soc 110: 7910–7912.Google Scholar
  239. Nicolau KC, Chucholowski A, Dolle RE, Randall JR. 1984a. Reaction of glycosyl fluorides. Synthesis of O-, S-, and N-glycosides. J Chem Soc Chem Commun 17: 1155–1156.Google Scholar
  240. Nicolau KC, Dolle RE, Chucholowski A, Randall JR. 1984b. Reactions of glycosyl fluorides, Synthesis of C-glycosides. J Chem Soc Chem Commun 17: 1153–1154.Google Scholar
  241. Nores GA, Dohi T, Taniguchi M, Hakomori SI. 1987. Density-dependent recognition of cell surface GM3 by a certain anti-melanoma antibody, and GM3 lactone as a possible immunogen: Requirements for tumor-associated antigen and immunogen. J Immunol 139: 3171–3176.PubMedGoogle Scholar
  242. Norton WT, Poduslo SE. 1973. Myelination in rat brain: Changes in myelin composition during brain maturation. J Neurochem 21: 759–773.PubMedGoogle Scholar
  243. Numata M, Sugimoto M, Ito Y, Ogawa T. 1990. An efficient synthesis of ganglioside GM3: Highly stereocontrolled glycosylations by use of auxiliaries. Carbohydr Res 203: 205–217.PubMedGoogle Scholar
  244. Numata M, Sugimoto M, Koike K, Ogawa T. 1987. Total synthesis of sialosylcerebroside, GM4. Carbohydr Res 163: 209–225.PubMedGoogle Scholar
  245. O’Brien JS, Sampson EL. 1965. Fatty acid and fatty aldehyde composition of the major brain lipids in normal human gray matter, white matter, and myelin. J Lipid Res 6: 545–551.PubMedGoogle Scholar
  246. Ogawa-Goto K, Funamoto N, Abe T, Nagashima K. 1990. Different ceramide compositions of gangliosides between human motor and sensory nerves. J Neurochem 55: 1486–1493.PubMedGoogle Scholar
  247. Ogawa-Goto K, Funamoto N, Ohta Y, Abe T, Nagashima K. 1992. Myelin gangliosides of human peripheral nervous system: An enrichment of GM1 in the motor nerve myelin isolated from cauda equine. J Neurochem 59: 1844–1849.PubMedGoogle Scholar
  248. Ogawa-Goto K, Ohta Y, Kubota K, Furamoto N, Abe T, et al. 1993. Glycosphingolipids of human peripheral nervous system myelins isolated from cauda equine. J Neurochem 61: 1398–1403.PubMedGoogle Scholar
  249. Ogretmen B, Pettus BJ, Rossi MJ, Wood R, Usta J, et al. 2002. Biochemical mechanisms of the generation of endogenous long chain ceramide in response to exogenous short chain ceramide in the A549 human lung adenocarcinoma cell line. Role for endogenous ceramide in mediating the action of exogenous ceramide. J Biol Chem 277: 12960–12969.PubMedGoogle Scholar
  250. Ozawa H, Kotani M, Kavashima I, Tai T. 1992. Generation of one set of monoclonal antibodies specific for b-pathway ganglio-series gangliosides. Biochim Biophys Acta 1123: 184–190.PubMedGoogle Scholar
  251. Pagano RE, Sleight RG. 1985. Defining lipid transport pathways in animal cells. Science 229: 1051–1957.PubMedGoogle Scholar
  252. Pagano RE, Watanabe R, Wheatley C, Dominguez M. 2000. Applications of BODIPY-sphingolipid analogs to study lipid traffic and metabolism in cells. Methods Enzymol 312: 523–534.PubMedGoogle Scholar
  253. Pal S, Bigbee JW, Saito M, Ariga T, Yu RK. 1996. Expression of a unique globo-series glycolipid in cultured rat dorsal root ganglion neurons: Relationship with neuronal development. Neurochem Res 21: 403–409.PubMedGoogle Scholar
  254. Palestini P, Masserini M, Sonnino S, Giuliani A, Tettamanti G. 1990. Changes in ceramide composition of rat forebrain gangliosides with age. J Neurochem 54: 230–235.PubMedGoogle Scholar
  255. Palestini P, Sonnino S, Tettamanti G. 1991. Lack of ganglioside molecular species containing the C20-long chain bases in human, rat, mouse, rabbit, cat, dog, and chicken brains during prenatal life. J Neurochem 56: 2048–2050.PubMedGoogle Scholar
  256. Partridge SM. 1948. Filter-paper partition chromatography of sugars: 1. General description and application to the qualitative analysis of sugars in apple juice, egg white and foetal blood of sheep. with a note by R. G. Westall. Biochem J. 42: 238–250.Google Scholar
  257. Paulsen H. 1982. Advances in Selective Chemical Syntheses of Complex Oligosaccharides. Angew Chem 21: 155–173.Google Scholar
  258. Paulsen H, Bűnsch A. 1980. Synthesis of the pentasaccharide chain of the Forssman antigen. Angew Chem 19: 902–903.Google Scholar
  259. Peters K, Richards FM. 1977. Chemical cross-linking: Reagents and problems in studies of membrane structure. Annu Rev Biochem 46: 523–551.PubMedGoogle Scholar
  260. Plettenburg O, Bodmer-Narkevitch V, Wong CH. 2002. Synthesis of alpha-galactosyl ceramide, a potent immunostimulatory agent. J Org Chem 67: 4559–4564.PubMedGoogle Scholar
  261. Pohlenz G, Egge H. 1994. Neoglycolipids of 1-deoxy-1-phosphatidylethanol- aminolactitol type: Synthesis, structure analysis, and use as probes for characterization of glycosyltransferases. Methods Enzymol 242: 127–145.Google Scholar
  262. Pohlenz G, Schlemms S, Egge H. 1992. 1-Deoxy-1-phosphatidylethanolamino-lactitol-type neoglycolipids serve as acceptors for sialyltransferases from rat liver golgi vesicles. Eur J Biochem 203: 387–392.Google Scholar
  263. Prabhanjan H, Kameyama A, Ishida H, Kiso M, Hasegawa A. 1991. Regio- and stereo-selective synthesis of ganglioside GM1b and some positional analogs. Carbohydr Res 220: 127–143.PubMedGoogle Scholar
  264. Prasadarao N, Koul O, Tobet SA, Chou DKH, Jungalwala FB. 1990. Developmental expression of HNK-1-reactive antigens in the rat cerebellum and localization of sulfoglucuronyl glycolipids in molecular layer and deep cerebellar nuclear. J Neurochem 55: 2024–2030.Google Scholar
  265. Preiss J, Loomis CR, Bishop ER, Stein R, Niedel JE, et al. 1986. Quantitative measurement of sn-1,2-diacylglycerols present in platelets, hepatocytes, and ras- and sis-transformed normal rat kidney cells. J Biol. Chem 261: 8597–8600.PubMedGoogle Scholar
  266. Prestegard JH, Koerner TAW, Demon PC, Yu RK. 1982. Complete analysis of oligosaccharide primary structure using two-dimensional high-field proton NMR. J Am Chem Soc 104: 4993–4995.Google Scholar
  267. Prinetti A, Chigorno V, Prioni S, Luberto N, Marano N, et al. 2001. Changes in the lipid turnover, composition and organization as sphingolipid-enriched membrane domains, in rat cerebellar granule cells developing in Vitro. J Biol Chem 276: 21136–21145.PubMedGoogle Scholar
  268. Prinetti A, Chigorno V, Tettamanti G, Sonnino S. 2000. Sphingolipid-enriched membrane domains from rat cerebellar granule cells differentiated in culture. A compositional study. J Biol Chem 275: 11658–11665.PubMedGoogle Scholar
  269. Pűtz U, Schwarzmann G. 1995. Golgi staining by two fluorescent ceramide analogues in cultured fibroblasts requires metabolism. Eur J Cell Biol 68: 113–121.PubMedGoogle Scholar
  270. Pyne S, Pyne NJ. 2000. Sphingosine 1-phosphate signalling in mammalian cells. Biochem J 349: 385–402.PubMedGoogle Scholar
  271. Quarles RH. 1989. Human monoclonal antibodies associated with neuropathy. Methods Enzymol 179: 291–299.PubMedGoogle Scholar
  272. Radin NS. 1974. Preparation of psychosines (1-O-hexosyl sphingosine) from cerebrosides. Lipids 9: 358.PubMedGoogle Scholar
  273. Radin NS. 1988. Lipid extraction. Neuromethods-7: Lipids and related compounds. Boulton AA, Baker GP, Horrocks LA, editors. Clifton, NJ: Humana Press; pp. 1–61.Google Scholar
  274. Radin VS, Akahori Y. 1961. Fatty acids of human brain cerebrosides. J Lipid Res 2: 335–341.Google Scholar
  275. Rahmann H, Hilbig R. 1983. Phylogenetical aspects of brain gangliosides in vertebrates. J Comp Physiol 151: 215–224.Google Scholar
  276. Rapport MM, Graf L. 1964. Serological activity of cytolipin H (Lactocytoside). Nature 201: 879–880.PubMedGoogle Scholar
  277. Rapport MM, Graf L. 1969. Immunochemical reactions of lipids. Progr Allergy 13: 273–331.Google Scholar
  278. Rapport MM, Huang Y-Y. 1984. Present status of the immunology of gangliosides. Adv Exptl Med Biol 174: 15–25.Google Scholar
  279. Rapport MM, Skipski VP, Sweeley CC. 1961. The lipid residues in cytolipin H. J Lipid Res 2: 148–151.PubMedGoogle Scholar
  280. Riboni L, Malesci A, Gaini SM, Sonnino S, Tettamanti G. 1984. Ganglioside pattern of normal human brain, from samples obtained at surgery. A study especially referred to alkali labile species. J Biochem 96: 1943–1946.PubMedGoogle Scholar
  281. Riboni L, Sonnino S, Acquotti D, Malesci A, Ghidoni R, et al. 1986. Natural occurrence of ganglioside lactones. Isolation and characterization of GD1b inner ester from adult human brain. J Biol Chem 261: 8514–8519.PubMedGoogle Scholar
  282. Riboni L, Viani P, Tettamanti G. 2000. Estimating sphingolipid metabolism and trafficking in cultured cells using radiolabeled compounds. Methods Enzymol 311: 656–666.PubMedGoogle Scholar
  283. Rosenberg A, Stern N. 1966. Changes in sphingosine and fatty acid components of the gangliosides in developing rat and human brain. J Lipid Res 7: 122–131.PubMedGoogle Scholar
  284. Rösner H. 1980. Gangliosides changes in the chicken optic lobes and cerebrum during embryonic development. Wilhelm Roux’Archives 188: 205–213.Google Scholar
  285. Rösner H. 1982. Ganglioside changes in the chicken optic lobes as biochemical indicators of brain development and maturation. Brain Res 236: 49–61.PubMedGoogle Scholar
  286. Rösner H, Al-aqtum M, Rahmann H. 1992. Gangliosides and neuronal differentiation. Neurochem Int 20: 339–351.PubMedGoogle Scholar
  287. Rösner H, Greis Chr, Henke-Fahle S. 1988. Development expression in embryonic rat and chicken brain of a polysialoganglioside-antigen reacting with the monoclonal antibody Q211. Dev Brain Res 42: 161–171.Google Scholar
  288. Rösner H, Rahmann H. 1987. Ontogeny of vertebrate brain gangliosides. Gangliosides and Modulation of Neuronal Function. NATO ASI Series. Series H: Cell Biology, Vol. 7. Rahmann H, editor. Berlin: Springer-Verlag; pp. 373–390.Google Scholar
  289. Rösner H, Rahmann H, Reuter H, Schauer R, Peter-Katalinic J, et al. 1985. Mass spectrometric identification of the pentasialoganglioside GP1c of embryonic chicken brain. Biol Chem Hoppe-Seyler 366: 1177–1181.PubMedGoogle Scholar
  290. Roukema PA, Van den Eijnden DH, Heijlman J, Van der Berg GF. 1970. Sialoglycoproteins, gangliosides and related enzymes in developing rat brain. FEBS Lett 9: 267–270.PubMedGoogle Scholar
  291. Rouser G, Kritchevsky G, Yamamoto A, Baxter CF. 1972. Lipids in the Nervous system of different species as a function of age: Brain, spinal cord, peripheral nerve, purified whole cell preparations and subcellular particulates; regulatory mechanism and membrane structure. Adv Lipid Res 10: 261–360.Google Scholar
  292. Saito M, Sugiyama K. 2002. Characterization of nuclear gangliosides in rat brain concentration, composition and developmental changes. Arch Biochem Biol. 398: 253–259.Google Scholar
  293. Saito S, Tamai Y. 1983. Characteristic constituents of glycolipids from frog brain and sciatic nerve. J Neurochem 41: 737–744.PubMedGoogle Scholar
  294. Samuelsson B, Samuelsson K. 1968. Gas–liquid chromatographic separation of ceramides as di-O-trimethylsilyl ether derivatives. Biochim Biophys Acta 164: 421–423.PubMedGoogle Scholar
  295. Sandhoff K, Christomanou H. 1979. Biochemistry and genetics of gangliosidoses. Hum Genet 50: 107–143.PubMedGoogle Scholar
  296. Sato S, Ito Y, Nukada T, Nakahara Y, Ogawa T. 1987. Total synthesis of X hapten, III3 Fuc alpha-nLc4 Cer. Carbohydr Res 167: 197–210.PubMedGoogle Scholar
  297. Sato S, Ito Y, Ogawa T. 1988. A total synthesis of dimeric Lex antigen, III3v3Fuc2nLc6Cer: Pivaloyl auxiliary for stereocontrolled glycosylation. Tetrahedron Lett. 29: 5267–5270.Google Scholar
  298. Sbaschnig-Agler M, Pfenninger KH, Ledeen RW. 1988. Gangliosides and other lipids of the growth cone membrane. J Neurochem 51: 212–220.PubMedGoogle Scholar
  299. Schaal H, Wille C, Wille W. 1985. Changes of ganglioside pattern during cerebellar development of normal and staggerer mice. J Neurochem 45: 544–551.PubMedGoogle Scholar
  300. Schmidt RR. 1986. New methods for the synthesis of glycosides and oligosaccharides – are there alternatives to the Koenigs–Knorr method? [New Synthetic Methods]. Angew Chem Int Ed Engl 25: 212–235.Google Scholar
  301. Schmidt RR. 1989. Recent developments in the synthesis of glycoconjugates. Pure Appl Chem 61: 1257–1270.Google Scholar
  302. Schmidt RR, Zimmermann P. 1986. Synthesis of d-erythro-sphingosines. Tetrahedron Lett 27: 481–484.Google Scholar
  303. Schnaar RL, Collins BE, Wright LP, Kiso M, Tropak MB, et al. 1998. Myelin-associated glycoprotein binding to gangliosides. Structural specificity and functional implications. Ann NY Acad Sci 845: 92–105.PubMedGoogle Scholar
  304. Schőn A, Freire E. 1989. Thermodynamics of intersubunit interactions in cholera toxin upon binding to the oligosaccharide portion of its cell surface receptor, ganglioside GM1. Biochemistry 28: 5019–5024.PubMedGoogle Scholar
  305. Schram EH, Byers EH, Wilson RH. 1963. Synthetic Cytolipin H and other Lactosides. Nature 197: 1074–1076.PubMedGoogle Scholar
  306. Schwarting GA, Deutsch G, Gattey DM, Crandall JE. 1992. Glycoconjugates are stage- and position-specific cell surface molecules in the developing olfactory system, 2: Unique carbohydrate antigens are topographic markers for selective projection patterns of olfactory axons. J Neurobiol 23: 130–142.PubMedGoogle Scholar
  307. Schwarting GA, Gajewski A, Barbero GL, Tischler AS, Costopoulos D. 1986. Complex glycosphingolipids of the pheochromocytoma cell line PC12: Enhanced fucosylglycolipid synthesis following nerve growth factor treatment. Neuroscience 19: 647–656.PubMedGoogle Scholar
  308. Schwarz A, Futerman AH. 1996. The localization of gangliosides in neurons of the central nervous system: The use of anti-ganglioside antibodies. Biochim Biophys Acta 1286: 247–267.PubMedGoogle Scholar
  309. Schwarz A, Futerman AH. 1997. Determination of the localization of gangliosides using anti-ganglioside antibodies: Comparison of fixation methods. J Histochem Cytochem 45: 611–618.PubMedGoogle Scholar
  310. Schwarz A, Futerman AH. 2000. Immunolocalization of gangliosides by light microscopy using anti-ganglioside antibodies. Methods Enzymol 312: 179–187.PubMedGoogle Scholar
  311. Schwartz M, Spirman N. 1982. Sprouting from chicken embryo dorsal root ganglion induced by nerve growth factor is specifically inhibited by affinity purified antiganglioside antibody. Proc Natl Acad Sci USA 79: 6080–6083.PubMedGoogle Scholar
  312. Schwarzmann G. 1978. A simple and novel method for tritium labeling of gangliosides and other sphingolipids. Biochim Biophys Acta 529: 106–114.PubMedGoogle Scholar
  313. Schwarzmann G. 2000. Synthesis and characterization of metabolically stable sphingolipids. Methods Enzymol 311: 601–626.PubMedGoogle Scholar
  314. Schwarzmann G, Hofmann P, Putz U. 1997. Synthesis of ganglioside GM1 containing a thioglycosidic bond to its labeled ceramide(s). A facile synthesis starting from natural gangliosides. Carbohydr Res 304: 43–52.PubMedGoogle Scholar
  315. Schwarzmann G, von Coburg A, Mőbius W. 2000. Using biotinylated gangliosides to study their distribution and traffic in cells by immunoelectron microscopy. Methods Enzymol 312: 534–562.PubMedGoogle Scholar
  316. Seikh KA, Ho TW, Nachmakin I, Li CY, Cornblath DR, et al. 1998. Molecular mimicry in the Guillain–Barrè syndrome. Ann NY Acad Sci 845: 307–321.Google Scholar
  317. Seyfried TN, Yu RK, Miyazawa N. 1982. Differential cellular enrichment of gangliosides in the mouse cerebellum: Analysis using neurological mutants. J Neurochem 38: 551–559.PubMedGoogle Scholar
  318. Shapiro D. 1970. Partial syntheses of the carbohydrate chain of brain gangliosides. Chem Phys Lipids 5: 80–90.PubMedGoogle Scholar
  319. Shapiro D, Acher AJ, Rabinshon Y. 1973. Studies in the ganglioside series. VII. Total synthesis of Tay–Sachs’ globoside. Chem Phys Lipids 10: 28–36.PubMedGoogle Scholar
  320. Shapiro D, Flowers HM. 1959. Synthetic studies on sphingolipids. V. The synthesis of dihydrocerebrosides. J Am Chem Soc 81: 2023–2024.Google Scholar
  321. Shapiro D, Flowers HM. 1961. Synthetic studies on sphingolipids. VI. The total syntheses of cerasine and phrenosine. J Am Chem Soc 83: 3327–3332.Google Scholar
  322. Shapiro RL, Specht CD, Collins BE, Woods AS, Cotter RJ, et al. 1997. Identification of a Ganglioside Recognition Domain of Tetanus Toxin Using a Novel Ganglioside Photoaffinity Ligand. J Biol Chem 272: 30380–30386.PubMedGoogle Scholar
  323. Siebert HC, Jimenez-Barbero J, Andrè S, Kaltner H, Gabius HJ. 2003. Describing topology of bound ligand by transferred nuclear Overhauser effect spectroscopy and molecular modelling. Methods Enzymol 362: 417–434.PubMedGoogle Scholar
  324. Smith ME, Curtis BM. 1979. Frog sciatic nerve myelin: A chemical characterization. J. Neurochem. 33: 447–452.PubMedGoogle Scholar
  325. Södenberg M, Edlund C, Kristensson K, Dallner G. 1990. Lipid composition of different regions of the human brain during aging. J Neurochem 54: 415–423.Google Scholar
  326. Sonnino S, Acquotti D, Kirschner G, Uguaglianza A, Zecca L, et al. 1992. Preparation of lyso-GM1 (II3Neu5AcGgOse4-long chain bases) by a one-pot reaction. J Lipid Res 33: 1221–1226.PubMedGoogle Scholar
  327. Sonnino S, Bassi R, Chigorno V, Tettamanti G. 1990. Further studies on the changes of chicken brain gangliosides during prenatal and postnatal life. J Neurochem 54: 1653–1660.PubMedGoogle Scholar
  328. Sonnino S, Chigorno V. 2000a. Ganglioside molecular species containing C18- and C20-sphingosine in mammalian nervous tissues and neuronal cell cultures. Biochim Biophys Acta 1469: 63–77.PubMedGoogle Scholar
  329. Sonnino S, Chigorno V, Acquotti D, Pitto M, Kirschner G, et al. 1989. A photoreactive derivative of radiolabeled GM1 ganglioside: Preparation and use to establish the involvement of specific proteins in GM1 uptake by human fibroblasts in culture. Biochemistry 28: 77–84.PubMedGoogle Scholar
  330. Sonnino S, Chigorno V, Tettamanti G. 2000. Preparation of radioactive gangliosides, 3H or 14C isotopically labeled at oligo-saccharide or ceramide moieties. Methods Enzymol 311: 639–656.PubMedGoogle Scholar
  331. Sonnino S, Ghidoni R, Chigorno V, Masserini M, Tettamanti G. 1983. Recognition by two-dimensional thin-layer chromatography and densitometric quantification of alkali-labile gangliosides from the brain of different animals. Anal Biochem 128: 104–144.PubMedGoogle Scholar
  332. Sonnino S, Ghidoni R, Galli G, Tettamanti G. 1978. On the structure of a new, fucose containing ganglioside from pig cerebellum. J Neurochem 31: 947–956.PubMedGoogle Scholar
  333. Sonnino S, Ghidoni R, Gazzotti G, Kirschner G, Galli G, et al. 1984a. High performance liquid chromatography preparation of the molecular species of GM1 and GD1a gangliosides with homogeneous long chain base composition. J Lipid Res 25: 620–629.PubMedGoogle Scholar
  334. Sonnino S, Ghidoni R, Malesci A, Tettamanti G, Marx J, et al. 1984b. Nervous system ganglioside composition of normothermic and hibernating dormice (Glis glis). Neurochem Int 6: 677–683.PubMedGoogle Scholar
  335. Sonnino S, Ghidoni R, Marchesini S, Tettamanti G. 1979. Cytosolic gangliosides: Occurence in calf brain as ganglioside protein complexes. J Neurochem 33: 117–121.PubMedGoogle Scholar
  336. Sonnino S, Ghidoni R, Masserini M, Aporti F, Tettamanti G. 1981. Changes in rabbit brain cytosolic and membrane-bound gangliosides during prenatal life. J Neurochem 36: 227–232.PubMedGoogle Scholar
  337. Sonnino S, Prinetti A, Mauri L, Chigorno V, Tettamanti G. 2006. Dynamic and structural properties of sphingolipids as driving forces for the formation of membrane domains. Chem Rev 106: 2111–2125.PubMedGoogle Scholar
  338. Sonnino S, Riboni L, Acquotti D, Fronza G, Kirschner G, et al. 1988. Biochemistry of ganglioside lactones. New Trends in Ganglioside Research: Neurochemical and Neuroregenerative Aspects Fidia Research Series. Ledeen RW, Hogan EL, Tettamanti G, Yates AL, editors. Padova: Liviana Press; Berlin: Springer; pp. 47–61.Google Scholar
  339. Spiegel S, Milstien S. 1995. Sphingolipid metabolites: Members of a new class of lipid second messengers. J Membr Biol 146: 225–237.PubMedGoogle Scholar
  340. Spritz N, Singh H, Geyer B. 1973. Myelin from human peripheral nerves. Quantitative and qualitative studies in two age groups. J Clin Invest 52: 520–523.PubMedGoogle Scholar
  341. Ställberg-Stenhagen S, Svennerholm L. 1965. Fatty acid composition of human brain sphingomyelins: Normal variation with age and changes during myelin disorders. J Lipid Res 6: 146–1155.Google Scholar
  342. Stoffel W, Le Kim D, Tsung TS. 1971. A simple chemical method for labelling phosphatidylcholine and sphingomyelin in the choline moiety. Hoppe Seyler’s Z. Physiol Chem 352: 1058–1064.Google Scholar
  343. Strőmberg N, Nyholm PG, Pascher I, Normark S. 1991. Saccharide orientation at the cell surface affects glycolipid receptor function. Proc Natl Acad Sci USA 88: 9340–9344.PubMedGoogle Scholar
  344. Suetake K, Yu RK. 2003. Thin-layer chromatography; immunostaining of glycolipid antigens; and interpretation of false-positive findings with acidic lipids. Methods Enzymol 363: 312–319.PubMedGoogle Scholar
  345. Sugimoto M, Fujikura K, Nunomura S, Ito Y, Ogawa T. 1990. Total synthesis of an extended ganglio-ganglioside, IV4GaINAc(GM1b. Tetrahedron Lett 31: 1435–1438.Google Scholar
  346. Sugimoto M, Horisaki T, Ogawa T. 1985. Stereoselective synthesis of asialo-GM1- and asialo-GM2-ganglioside. Glycoconj J 2: 11–15.Google Scholar
  347. Sugimoto M, Numata M, Koike K, Nakahara Y, Ogawa T. 1986. Total synthesis of gangliosides GM1 and GM2. Carbohydr Res 156: C1–C5.PubMedGoogle Scholar
  348. Sullards MC. 2000. Analysis of sphingomyelin, glucosylceramide, ceramide, sphingosine, and sphingosine 1-phosphate by tandem mass spectrometry. Methods Enzymol 312: 32–45.PubMedGoogle Scholar
  349. Suzuki K. 1965a. The pattern of mammalian brain gangliosides. II. Evaluation of the extraction procedures, postmortem changes and the effect of formalin preservation. J Neurochem 12: 629–638.PubMedGoogle Scholar
  350. Suzuki K. 1965b. The pattern of mammalian brain gangliosides. III Regional and developmental differences. J Neurochem 12: 969–979.Google Scholar
  351. Suzuki Y, Hirabayashi Y, Matsumoto M. 1984. Hydrazinolysis of glycosphingolipids. A new method for preparation of N-deacylated (lyso) glycosphingolipids. J Biochem 95: 1219–1222.PubMedGoogle Scholar
  352. Suzuki K, Korey SR. 1964. Study on ganglioside metabolism. I. Incorporation of d-(U-14C)Glucose into individual gangliosides. J Neurochem 11: 647–653.PubMedGoogle Scholar
  353. Suzuki A, Yamakawa T. 1991. Gangliosides. Encyclopedia of Human Biology. Dulbecco R, editor. San Diego: Academic Press; pp. 725–735.Google Scholar
  354. Svennerholm L. 1957. Quantitative estimation of sialic acids. II. A colorimetric resorcinol-hydrochloric acid method. Biochim Biophys Acta 24: 604–611.PubMedGoogle Scholar
  355. Svennerholm L. 1980. Ganglioside designation. Adv Exp Med Biol 125: 11.PubMedGoogle Scholar
  356. Svennerholm L. 1984. Biological significance of gangliosides. Colloque INSERM/CNRS Cellular and Pathological Aspects of Glycoconjugate Metabolism, Les Edition INSERM. Dreyfus H, Massarelli R, Freysz L, Rabel G, editors; pp. 21–44.Google Scholar
  357. Svennerholm L. 1987. Monoclonal antibodies against gangliosides. Gangliosides and Modulation of Neuronal Functions, NATO ASI/Series H: Cell Biology. Rahmann H, editor. Berlin: Springer; pp. 423–433.Google Scholar
  358. Svennerholm L. 1988. Immunological and tumoral aspects of gangliosides. New Trends in Ganglioside Research. Neurochemical and Neuroregenerative Aspects, Fidia Research Series. Ledeen RW, Hogan EL, Tettamanti G, Yates AJ, Yu RK, editors. Padova: Liviana Press; Berlin: Springer; pp. 135–150.Google Scholar
  359. Svennerholm L, Bostrom K, Fredman P, Mansson J-E, Rosengren B, et al. 1989. Human brain gangliosides: Developmental changes from early fetal stage to advanced age. Biochim Biophys Acta 1005: 109–117.PubMedGoogle Scholar
  360. Svennerholm L, Mansson JE, Li YT. 1973. Isolation and structural determination of a novel ganglioside, a disialosylpenta-hexosylceramide from human brain. J Biol Chem 248: 740–742.PubMedGoogle Scholar
  361. Svennerholm L, Rynmark B-M, Vilbergsson G, Fredman P, Gottfries J, et al. 1991. Gangliosides in human fetal brain. J Neurochem 56: 1763–1768.PubMedGoogle Scholar
  362. Svennerholm L, Vanier MT. 1972. The distribution of lipids in the human nervous system. II. Lipid composition of human fetal and infant brain. Brain Res 47: 457–468.PubMedGoogle Scholar
  363. Sweeley CC, Dawson G. 1969. Determination of glycosphingolipid structures by mass spectrometry. Biochem Biophys Res Commun 37: 6–14.PubMedGoogle Scholar
  364. Sweeley CC, Moscatelli EA. 1959. Qualitative microanalysis and estimation of sphingolipid bases. J Lipid Res 1: 40–47.Google Scholar
  365. Sweeley CC, Nunez HA. 1985. Structural analysis of glycoconjugates by mass spectrometry and nuclear magnetic resonance spectroscopy. Annu Rev Biochem 54: 765–801.PubMedGoogle Scholar
  366. Sweeley CC, Siddiqui B. 1977. Chemistry of mammalian glycolipids. The Glycoconjugates. Horowitz MT, Pigman W, editors. New York: Academic Press, pp. 459–540.Google Scholar
  367. Taketomi T, Sugiyama E. 2000. Extraction and analysis of multiple sphingolipids from a single sample. Methods Enzymol 312: 80–101.PubMedGoogle Scholar
  368. Taketomi T, Yamakawa T. 1964. Further confirmation on the structure of brain cerebroside sulfuric ester. J Biochem 55: 87–89.PubMedGoogle Scholar
  369. Taki T, Handa S. 1990. Gangliosides as modulators of cell growth and differentiation. Trends Glycosci 2: 182–189.Google Scholar
  370. Tang PW, Gool HC, Hardy M, Lee YC, Feizi T. 1985. Novel approach to the study of the antigenicities and receptor functions of carbohydrate chains of glycoproteins. Biochem Biophys Res Commun 132: 474–480.PubMedGoogle Scholar
  371. Tettamanti G. 1968. I glicolipidi del tessuto nervoso e le loro proprietà biologiche. Rivista Istochimica Normale e Patologica 14: 5–46.Google Scholar
  372. Tettamanti G, Bertona L, Berra B, Zambotti V. 1965. Glycolyl-neuraminic acid in ox brain gangliosides. Nature 206: 192.PubMedGoogle Scholar
  373. Tettamanti G, Bonali F, Marchesini S, Zambotti V. 1973. A new procedure for the extraction, purification and fractionation of brain gangliosides. Biochim Biophys Acta 296: 160–170.PubMedGoogle Scholar
  374. Tettamanti G, Bonali F, Sonnino S, Zambotti V. 1974. In vivo incorporation of d-glucose-U-C14 into tetrasialoganglioside in rat brain. Experientia 30: 330–331.PubMedGoogle Scholar
  375. Thudicum JLW. 1884. A treatise on the chemical constitution of the brain. London: Bailliere, Tindall and Cox.Google Scholar
  376. Torello LA, Yates AJ, Thompson DK. 1980. Critical study of the alditol acetate method for quantitating small quantities of hexoses and hexosamines in gangliosides. J Chromatogr 202: 195–209.PubMedGoogle Scholar
  377. Toyokuni T, Nisar M, Dean B, Hakomori S-I. 1991. A facile and regiospecific tritiation of sphingosine: Synthesis of (2S,3R,4E)-2-amino-4-octadecene-1,3-diol-1–3H. J Label Compd Radio-Pharm 29: 567–574.Google Scholar
  378. Trams EG, Giuffrida LE, Karmen A. 1962. Gas chromatographic analysis of long chain fatty acids in gangliosides. Nature 193: 680–681.PubMedGoogle Scholar
  379. Ueno K, Ando S, Yu RK. 1978. Gangliosides of human, cat, and rabbit spinal cords and cord myelin. J Lipid Res 19: 863–871.PubMedGoogle Scholar
  380. Ullman MD, Mc Cluer RH. 1985. Quantitative analysis of brain gagliosides by high performance liquid chromatography of their perbenzoylated derivatives. J Lipid Res 26: 501–506.PubMedGoogle Scholar
  381. Van Echten-Deckert G. 2000. Sphingolipid extraction and analysis by thin-layer chromatography. Methods Enzymol 312: 64–69.PubMedGoogle Scholar
  382. Van Veldhoven PP, Bishop WR, Yurivich DA, Bell RM. 1995. Ceramide quantitation: Evaluation of a mixed micellar assay using E. coli diacylglycerol kinase. Biochem Mol Biol Int 36: 21–30.PubMedGoogle Scholar
  383. Van Veldhoven PP, Mannaerts GP. 1991. Subcellular localization and membrane topology of sphingosine-1- phosphate lyase in rat liver. J Biol Chem 266: 12502–15507.PubMedGoogle Scholar
  384. Vance DE, Sweeley CC. 1967. Quantitative determination of the neutral glycosyl ceramides in human blood. J Lipid Res 8: 621–630.PubMedGoogle Scholar
  385. Vanier MT, Holm M, Ohman R, Svennerholm L. 1971. Developmental profiles of gangliosides in human and rat brain. J Neurochem 18: 581–592.PubMedGoogle Scholar
  386. Vanier MT, Holm M, Mänsson JE, Svennerholm L. 1973. The distribution of lipids in the human nervous system – V. Gangliosides and allied neutral glycolipids of infant brain. J Neurochem 21: 1375–1384.PubMedGoogle Scholar
  387. Vanier MT, Mänsson TE, Svennerholm L. 1980. The occurrence of III3-alpha-fucosyllactoneotetraosylceramide in human brain. FEBS Lett. 112: 70–72.PubMedGoogle Scholar
  388. Vos JP, Lopez-Cardoso N, Gadella BM. 1994. Metabolic and functional aspects of sulfogalactolipids. Biochim Biophys Acta 1211: 125–149.PubMedGoogle Scholar
  389. Vukelic Z, Zamfir AD, Bindila L, Froesch M, Peter-Katalinic J, et al. 2005. Screening and sequencing of complex sialylated and sulfated glycosphingolipid mixtures by negative ion electrospray Fourier transform ion cyclotron resonance mass spectrometry. J Am Soc Mass Spectrom 16: 571–580.PubMedGoogle Scholar
  390. Waki H, Kon K, Tanaka Y, Ando S. 1994. Facile methods for isolation and determination of gangliosides in a small scale: Age-related changes of gangliosides in mouse brain synaptic plasma membranes. Anal Biochem 222: 156–162.PubMedGoogle Scholar
  391. Waki H, Masuzawa A, Kon K, Ando S. 1993a. A new O-acetylated trisialoganglioside, 9-O-acetyl GT2, in cod brain. J Biochem 114: 459–452.PubMedGoogle Scholar
  392. Waki H, Murata A, Kon K, Maruyama K, Kimura S, et al. 1993b. Isolation and characterization of a trisialyllactosylceramide, GT3, containing an O-acetylated sialic acid in cod fish brain. J Biochem 113: 502–507.PubMedGoogle Scholar
  393. Weber T, Brunner J. 1995. 2-(Tributylstannyl)-4-[3-(trifluoromethyl)-3H-diazirin-3-yl]benzyl Alcohol: A Building Block for Photolabeling and Crosslinking Reagents of Very High Specific Radioactivity. J Am Chem Soc 117: 3084–3095.Google Scholar
  394. Weis AL, Brady RO, Shapiro D. 1985. Reverse Königs–Knorr reaction. Synthesis of beta-d-gluco-thio-cerebroside. Chem Phys Lipids 38: 391–396.PubMedGoogle Scholar
  395. Wells ME, Dittmer JC. 1967. A comprehensive study of the postnatal changes in the concentration of the lipids of developing rat brain. Biochemistry 6: 3169–3175.PubMedGoogle Scholar
  396. Weng NP, Yu-Lee LY, Sanz I, Patten SM, Marcus DM. 1992. Structure and specificities of anti-ganglioside autoantibodies associated with motor neuropathies. J Immunol 149: 2518–2529.PubMedGoogle Scholar
  397. Whistler RL, Melville W. (eds.) 1976. Methods in Carbohydrate Chemistry. New York: Academic Press.Google Scholar
  398. Wiegandt H. 1967. The subcellular localization of gangliosides in the brai. J Neurochem 14: 671–674.PubMedGoogle Scholar
  399. Wiegandt H. 1985. The chemical constitution of gangliosides of the vertebrate nervous system. Behav Brain Res 66: 85–97.Google Scholar
  400. Wu G, Ledeen RW. 1991. Stimulation of neurite outgrowth in neuroblastoma cells by neuraminidase: Putative role of GM1 ganglioside in differentiation. J Neurochem 56: 95–104.PubMedGoogle Scholar
  401. Wu G, Lu Z-H, Ledeen RW. 1995. Induced and spontaneous neuritogenesis are associated with entrance expression of ganglioside GM1 in the nuclear membrane. J Neurosci 15: 3739–3746.PubMedGoogle Scholar
  402. Wu G, Nakamura K, Ledeen RW. 1994. Inhibition of neurite outgrowth of neuroblastoma Neuro-2a cells by Cholera toxin B-subunit and anti-GM1 antibody. Mol Chem Neuropathol 21: 259–271.PubMedGoogle Scholar
  403. Yamakawa T, Nagai Y. 1978. Glicolipids at the cell surface and their biological functions. Trends Biochem Sci 3: 128–131.Google Scholar
  404. Yamawaki M, Ariga T, Bigbee JW, Ozawa H, Kawashima I, et al. 1996. Generation and characterization of anti-sulfoglucuronosyl paragloboside monoclonal antibody NGR50 and its immunoreactivity with peripheral nerve. J Neurosci Res 44: 586–593.PubMedGoogle Scholar
  405. Yanagisawa M, Ariga T, Yu RK. 2006. Cholera toxin B subunit binding does not correlate with GM1 expression: A study using mouse embryonic neural precursor cells. Glycobiology 16: 19G–22G.PubMedGoogle Scholar
  406. Yang LJ, Zeller CB, Shaper NL, Kiso M, Hasegawa A, et al. 1996. Gangliosides are neuronal ligands for myelin-associated glycoprotein. Proc Natl Acad Sci USA 93: 814–818.PubMedGoogle Scholar
  407. Yates AL. 1988. Methods to study the biochemistry of gangliosides. Neuromethods- 7: Lipids and Related Compounds. Boulton AA, Baker GP, Horrocks LA, editors. Clifton, NJ: Humana Press; pp. 265–327Google Scholar
  408. Yim SH, Yavin E, Hammer JA, Quarles RH. 1991. Exogenous GM3 ganglioside stimulates process formation and glycoprotein release by cultured bovine oligodendrocytes. J Neurochem 57: 2144–2147.PubMedGoogle Scholar
  409. Yoshino H, Maeda Y, King M, Cartwright MJ, Richards DW, et al. 1993. Sulfated glucuronyl glycolipids and gangliosides in the optic nerve of humans. Neurology 43: 408–411.PubMedGoogle Scholar
  410. Young WW, Mac Donald EMS, Nowinski RC, Hakomori S-I. 1979. Production of monoclonal antibodies specific for two distinct steric portions of the glycolipid ganglio-N-triosylceramide (asialo GM2). J Expl Med 150: 1008–1019.Google Scholar
  411. Yu RK. 1987. Fundamentals of structural analysis of glycosphingolipids by proton nuclear magnetic resonance spectroscopy. Gangliosides and Modulation of Neuronal Functions, Nato ASI/Series H: Cell Biology. Rahmann H, editor. Berlin: Springer; pp. 49–70.Google Scholar
  412. Yu RK. 1994. Developmental regulation of ganglioside metabolim. Progr Brain Res 102: 33–44.Google Scholar
  413. Yu RK, Ando S. 1980. Structures of some new complex gangliosides of fish brain. Adv Expl Med Biol 125: 33–45.Google Scholar
  414. Yu RK, Ariga T. 2000. Ganglioside analysis by high-performance thin-layer chromatography. Methods Enzymol 312: 115–134.PubMedGoogle Scholar
  415. Yu RK, Iqbal K. 1979. Sialosylgalactosyl ceramide as a specific marker for human myelin and oligodendroglial perikarya: Gangliosides of human myelin, oligodendroglia and neurons. J Neurochem 32: 293–300.PubMedGoogle Scholar
  416. Yu RK, Ledeen RW. 1970. Gas–liquid chromatographic assay of lipid-bound sialic acids: Measurement of gangliosides in brain of several species. J Lipid Res 11: 506–516.PubMedGoogle Scholar
  417. Yu RK, Ledeen RW. 1972. Gangliosides of human, bovine, and rabbit plasma. J Lipid Res 13: 680–686.PubMedGoogle Scholar
  418. Yu RK, Macala JL, Taki T, Weinfeld HM, Yu FS. 1988. Developmental changes in ganglioside composition and synthesis in embryonic rat brain. J Neurochem 50: 1825–1829.PubMedGoogle Scholar
  419. Yu RK, Saito M. 1989. Structure and localization of gangliosides. Neurobiology of Glycoconjugates. Margolis RU, Margolis RK, editors. New York: Plenum Press Pub. Co.; pp. 1–42.Google Scholar
  420. Yuki N. 1998. Guillain–Barrè syndrome and Fisher’s syndrome following Campylobacter jejuni infection. Ann N Y Acad Sci 845: 330–340.PubMedGoogle Scholar
  421. Zamfir A, Kőnig S, Althoff J, Peter-Katalinic J. 2000. Capillary electrophoresis and off-line capillary electrophoresis-electrospray ionization quadrupole time-of-flight tandem mass spectrometry of carbohydrates. J Chromatogr 895: 291–299.Google Scholar
  422. Zamfir A, Vukelic Z, Peter-Katalinic J. 2002. A capillary electrophoresis and off-line capillary electrophoresis/electrospray ionization-quadrupole time of flight-tandem mass spectrometry approach for ganglioside analysis. Electrophoresis 23: 2894–2904.PubMedGoogle Scholar
  423. Zegers MMP, Kok JW, Hoekstra D. 1997. Use of photoactivatable sphingolipid analogues to monitor lipid transport in mammalian cells. Biochem J 328: 489–498.PubMedGoogle Scholar
  424. Zhang Y, Iwabuchi K, Nunomura S, Hakomori SI. 2000. Effect of synthetic sialyl 2–1 sphingosine and other glycosyl-sphingosines on the structure and function of the “glycosphingolipid signaling domain (GSD)” in mouse melanoma B16 cells. Biochemistry 39: 2459–2468.PubMedGoogle Scholar
  425. Zhao JY, Dovichi NJ, Hinsgaul O, Gosselin S, Palcic MM. 1994. Detection of 100 molecules of product formed in a fucosyltransferase reaction. Glycobiology 4: 239–242.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • G. Tettamanti
  • L. Anastasia

There are no affiliations available

Personalised recommendations