Advertisement

Mouse Models with Gene Deletions of Enzymes and Cofactors Involved in Sphingolipid Synthesis and Degradation

  • R. Jennemann
  • H. -J. Gröne
  • H. Wiegandt
  • R. Sandhoff
Reference work entry

Abstract:

Sphingolipids are constituents of the cell membrane. They are believed to play critical roles in many cellular events such as signaling, in modulation of cell adhesion, and as receptor molecules in cell recognition. They may also be involved in cell differentiation, cancer development, and intracellular transport.

The core constituent of sphingolipids is a sphingosine base. Acylation of the aminogroup leads to ceramide. Furthermore, carbohydrates, a phosphate, or phosphorylcholine may be linked to ceramide resulting into glycosphingolipids, ceramide-1-phosphate, and sphingomyelin. Linkage of a phosphate group to sphingosine leads to sphingosine-1-phosphate.

Mouse models with gene deletions of enzymes necessary for sphingolipid synthesis and degradation have been generated. These models provide insights into the cellular functions of sphingolipids.

Keywords

Gauche Disease Sphingosine Kinase Myelin Associate Glycoprotein Neomycin Resistance Gene Gauche Disease Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations:

BMP

bis(monoacylglycero)phosphate

CNS

central nervous system

CST

Cerebroside sulfotransferase

FD

Farber Disease

GD

Gaucher disease

GLD

globoid cell leukodystrophy

GSL

Glycosphingolipids

MAG

myelin associated glycoprotein

MAL

myelin and lymphocyte protein

MBP

myelin basic protein

MBP+

myelin basic protein positive

NPD

Niemann-Pick disease

PLP

proteolipid protein

PNS

peripheral nervous system

SAP

sphingolipid activator proteins

SIMP

single insertion mutagenesis procedure

SM

sphingomyelin

SPT

Serine palmitoyl-CoA transferase

References

  1. Allende ML, Sasaki T, Kawai H, Olivera A, Mi Y, et al. 2004. Mice deficient in sphingosine kinase 1 are rendered lymphopenic by FTY720. J Biol Chem 279: 52487–52492.PubMedGoogle Scholar
  2. Beutler E, Grabowski GA. 2001. Gaucher disease. The Metabolic and Molecular Bases of Inherited Disease. Scriver CR, Beaudet AL, Sly WS, Valle D, editors. New York: McGraw-Hill; pp. 3635–3668.Google Scholar
  3. Bosio A, Binczek E, Haupt WF, Stoffel W. 1998. Composition and biophysical properties of myelin lipid define the neurological defects in galactocerebroside- and sulfatide-deficient mice. J Neurochem 70: 308–315.PubMedGoogle Scholar
  4. Bosio A, Binczek E, Stoffel W. 1996. Functional breakdown of the lipid bilayer of the myelin membrane in central and peripheral nervous system by disrupted galactocerebroside synthesis. Proc Natl Acad Sci USA 93: 13280–13285.PubMedGoogle Scholar
  5. Bradova V, Smid F, Ulrich-Bott B, Roggendorf W, Paton BC, et al. 1993. Prosaposin deficiency: Further characterization of the sphingolipid activator protein-deficient sibs. Multiple glycolipid elevations (including lactosylceramidosis), partial enzyme deficiencies and ultrastructure of the skin in this generalized sphingolipid storage disease. Hum Genet 92: 143–152.PubMedGoogle Scholar
  6. Brinkmann V. 2007. Sphingosine 1-phosphate receptors in health and disease: Mechanistic insights from gene deletion studies and reverse pharmacology. Pharmacol Ther 115: 84–105.PubMedGoogle Scholar
  7. Burkhardt JK, Huttler S, Klein A, Mobius W, Habermann A, et al. 1997. Accumulation of sphingolipids in SAP-precursor (prosaposin)-deficient fibroblasts occurs as intralysosomal membrane structures and can be completely reversed by treatment with human SAP-precursor. Eur J Cell Biol 73: 10–18.PubMedGoogle Scholar
  8. Butters TD, Dwek RA, Platt FM. 2003. New therapeutics for the treatment of glycosphingolipid lysosomal storage diseases. Adv Exp Med Biol 535: 219–226.PubMedGoogle Scholar
  9. Carrillo MB, Milner CM, Ball ST, Snoek M, Campbell RD. 1997. Cloning and characterization of a sialidase from the murine histocompatibility-2 complex: Low levels of mRNA and a single amino acid mutation are responsible for reduced sialidase activity in mice carrying the Neu1a allele. Glycobiology 7: 975–986.PubMedGoogle Scholar
  10. Chiavegatto S, Sun J, Nelson RJ, Schnaar RL. 2000. A functional role for complex gangliosides: Motor deficits in GM2/GD2 synthase knockout mice. Exp Neurol 166: 227–234.PubMedGoogle Scholar
  11. Christomanou H, Aignesberger A, Linke RP. 1986. Immunochemical characterization of two activator proteins stimulating enzymic sphingomyelin degradation in vitro. Absence of one of them in a human Gaucher disease variant. Biol Chem Hoppe Seyler 367: 879–890.PubMedGoogle Scholar
  12. Christomanou H, Chabas A, Pampols T, Guardiola A. 1989. Activator protein deficient Gaucher’s disease. A second patient with the newly identified lipid storage disorder. Klin Wochenschr 67: 999–1003.PubMedGoogle Scholar
  13. Clavelou P, Besson G. 2007. Neurological aspects of Fabry disease. Presse Med 36 (Spec No 1): 1S65–1S68.PubMedGoogle Scholar
  14. Coetzee T, Dupree JL, Popko B. 1998. Demyelination and altered expression of myelin-associated glycoprotein isoforms in the central nervous system of galactolipid-deficient mice. J Neurosci Res 54: 613–622.PubMedGoogle Scholar
  15. Coetzee T, Fujita N, Dupree J, Shi R, Blight A, et al. 1996. Myelination in the absence of galactocerebroside and sulfatide: Normal structure with abnormal function and regional instability. Cell 86: 209–219.PubMedGoogle Scholar
  16. Cohen-Tannoudji M, Marchand P, Akli S, Sheardown SA, Puech JP, et al. 1995. Disruption of murine Hexa gene leads to enzymatic deficiency and to neuronal lysosomal storage, similar to that observed in Tay-Sachs disease. Mamm Genome 6: 844–849.PubMedGoogle Scholar
  17. Comelli EM, Amado M, Lustig SR, Paulson JC. 2003. Identification and expression of Neu4, a novel murine sialidase. Gene 321: 155–161.PubMedGoogle Scholar
  18. de Geest N, Bonten E, Mann L, de Sousa-Hitzler J, Hahn C, et al. 2002. Systemic and neurologic abnormalities distinguish the lysosomal disorders sialidosis and galactosialidosis in mice. Hum Mol Genet 11: 1455–1464.PubMedGoogle Scholar
  19. Degroote S, Wolthoorn J, van Meer G. 2004. The cell biology of glycosphingolipids. Semin Cell Dev Biol 15: 375–387.PubMedGoogle Scholar
  20. Desnick RJ, Ioannou YA, Eng CM. 1995. α-Galactosidase A deficiency: Fabry disease. The Metabolic and Molecular Bases of Inherited Disease. Scriver CR, Beaudet AL, Sly WS, Valle D, editors. New York: McGraw-Hill; pp. 2741–2784.Google Scholar
  21. D’Hooge R, Coenen R, Gieselmann V, Lullmann-Rauch R, De Deyn PP. 1999. Decline in brainstem auditory-evoked potentials coincides with loss of spiral ganglion cells in arylsulfatase A-deficient mice. Brain Res 847: 352–356.PubMedGoogle Scholar
  22. D’Hooge R, Van Dam D, Franck F, Gieselmann V, De Deyn PP. 2001. Hyperactivity, neuromotor defects, and impaired learning and memory in a mouse model for metachromatic leukodystrophy. Brain Res 907: 35–43.PubMedGoogle Scholar
  23. Dupree JL, Coetzee T, Blight A, Suzuki K, Popko B. 1998. Myelin galactolipids are essential for proper node of Ranvier formation in the CNS. J Neurosci 18: 1642–1649.PubMedGoogle Scholar
  24. Eckhardt M, Hedayati KK, Pitsch J, Lullmann-Rauch R, Beck H, et al. 2007. Sulfatide storage in neurons causes hyperexcitability and axonal degeneration in a mouse model of metachromatic leukodystrophy. J Neurosci 27: 9009–9021.PubMedGoogle Scholar
  25. Enquist IB, Nilsson E, Ooka A, Mansson JE, Olsson K, et al. 2006. Effective cell and gene therapy in a murine model of Gaucher disease. Proc Natl Acad Sci USA 103: 13819–13824.PubMedGoogle Scholar
  26. Fujita N, Suzuki K, Vanier MT, Popko B, Maeda N, et al. 1996. Targeted disruption of the mouse sphingolipid activator protein gene: A complex phenotype, including severe leukodystrophy and wide-spread storage of multiple sphingolipids. Hum Mol Genet 5: 711–725.PubMedGoogle Scholar
  27. Furst W, Machleidt W, Sandhoff K. 1988. The precursor of sulfatide activator protein is processed to three different proteins. Biol Chem Hoppe Seyler 369: 317–328.PubMedGoogle Scholar
  28. Furuya S, Irie F, Hashikawa T, Nakazawa K, Kozakai A, et al. 1994. Ganglioside GD1 alpha in cerebellar Purkinje cells. Its specific absence in mouse mutants with Purkinje cell abnormality and altered immunoreactivity in response to conjunctive stimuli causing long-term desensitization. J Biol Chem 269: 32418–32425.PubMedGoogle Scholar
  29. Futerman AH, Pagano RE. 1991. Determination of the intracellular sites and topology of glucosylceramide synthesis in rat liver. Biochem J 280 (Pt 2): 295–302.PubMedGoogle Scholar
  30. Giri S, Khan M, Rattan R, Singh I, Singh AK. 2006. Krabbe disease: Psychosine-mediated activation of phospholipase A2 in oligodendrocyte cell death. J Lipid Res 47: 1478–1492.PubMedGoogle Scholar
  31. Gravel RA, Kaback MM, Proia RL, Sandhoff K, Suzuki K, et al. 2001. The GM2 Gangliosidosis. The Metabolic and Molecular Bases of Inherited Disease. Vol. 3. Scriver CR, Beaudet AL, Sly WS, Valle D, editors. New York: Scriver CR; pp. 3827–3876.Google Scholar
  32. Hahn CN, del Pilar Martin M, Schroder M, Vanier MT, Hara Y, et al. 1997. Generalized CNS disease and massive GM1-ganglioside accumulation in mice defective in lysosomal acid beta-galactosidase. Hum Mol Genet 6: 205–211.PubMedGoogle Scholar
  33. Hakomori S. 1990. Bifunctional role of glycosphingolipids. Modulators for transmembrane signaling and mediators for cellular interactions. J Biol Chem 265: 18713–18716.PubMedGoogle Scholar
  34. Handa Y, Ozaki N, Honda T, Furukawa K, Tomita Y, et al. 2005. GD3 synthase gene knockout mice exhibit thermal hyperalgesia and mechanical allodynia but decreased response to formalin-induced prolonged noxious stimulation. Pain 117: 271–279.PubMedGoogle Scholar
  35. Haq E, Contreras MA, Giri S, Singh I, Singh AK. 2006. Dysfunction of peroxisomes in twitcher mice brain: A possible mechanism of psychosine-induced disease. Biochem Biophys Res Commun 343: 229–238.PubMedGoogle Scholar
  36. Hasegawa T, Yamaguchi K, Wada T, Takeda A, Itoyama Y, et al. 2000. Molecular cloning of mouse ganglioside sialidase and its increased expression in Neuro2a cell differentiation. J Biol Chem 275: 8007–8015.PubMedGoogle Scholar
  37. Hepbildikler ST, Sandhoff R, Kolzer M, Proia RL, Sandhoff K. 2002. Physiological substrates for human lysosomal beta-hexosaminidase S. J Biol Chem 277: 2562–2572.PubMedGoogle Scholar
  38. Hepbildikler ST, Wendeler M, Sandhoff R, Sandhoff K. 2003. Interaction of the GM2 activator protein with sulfated and sialylated glycosphingolipids. Methods Enzymol 363: 207–222.PubMedGoogle Scholar
  39. Hess B, Saftig P, Hartmann D, Coenen R, Lullmann-Rauch R, et al. 1996. Phenotype of arylsulfatase A-deficient mice: Relationship to human metachromatic leukodystrophy. Proc Natl Acad Sci USA 93: 14821–14826.PubMedGoogle Scholar
  40. Hidari K, Ichikawa S, Fujita T, Sakiyama H, Hirabayashi Y. 1996. Complete removal of sphingolipids from the plasma membrane disrupts cell to substratum adhesion of mouse melanoma cells. J Biol Chem 271: 14636–14641.Google Scholar
  41. Hirahara Y, Bansal R, Honke K, Ikenaka K, Wada Y. 2004. Sulfatide is a negative regulator of oligodendrocyte differentiation: Development in sulfatide-null mice. Glia 45: 269–277.PubMedGoogle Scholar
  42. Hojjati MR, Li Z, Jiang XC. 2005. Serine palmitoyl-CoA transferase (SPT) deficiency and sphingolipid levels in mice. Biochim Biophys Acta 1737: 44–51.PubMedGoogle Scholar
  43. Holleran WM, Ginns EI, Menon GK, Grundmann JU, Fartasch M, et al. 1994. Consequences of beta-glucocerebrosidase deficiency in epidermis. Ultrastructure and permeability barrier alterations in Gaucher disease. J Clin Invest 93: 1756–1764.PubMedGoogle Scholar
  44. Holtschmidt H, Sandhoff K, Furst W, Kwon HY, Schnabel D, et al. 1991. The organization of the gene for the human cerebroside sulfate activator protein. FEBS Lett 280: 267–270.PubMedGoogle Scholar
  45. Honke K, Hirahara Y, Dupree J, Suzuki K, Popko B, et al. 2002. Paranodal junction formation and spermatogenesis require sulfoglycolipids. Proc Natl Acad Sci USA 99: 4227–4232.PubMedGoogle Scholar
  46. Horinouchi K, Erlich S, Perl DP, Ferlinz K, Bisgaier CL, et al. 1995. Acid sphingomyelinase deficient mice: A model of types A and B Niemann-Pick disease. Nat Genet 10: 288–293.PubMedGoogle Scholar
  47. Hulkova H, Cervenkova M, Ledvinova J, Tochackova M, Hrebicek M, et al. 2001. A novel mutation in the coding region of the prosaposin gene leads to a complete deficiency of prosaposin and saposins, and is associated with a complex sphingolipidosis dominated by lactosylceramide accumulation. Hum Mol Genet 10: 927–940.PubMedGoogle Scholar
  48. Ichikawa S, Hirabayashi Y. 1998. Glucosylceramide synthase and glycosphingolipid synthesis. Trends Cell Biol 8: 198–202.PubMedGoogle Scholar
  49. Igdoura SA, Gafuik C, Mertineit C, Saberi F, Pshezhetsky AV, et al. 1998. Cloning of the cDNA and gene encoding mouse lysosomal sialidase and correction of sialidase deficiency in human sialidosis and mouse SM/J fibroblasts. Hum Mol Genet 7: 115–121.PubMedGoogle Scholar
  50. Inoue M, Fujii Y, Furukawa K, Okada M, Okumura K, et al. 2002. Refractory skin injury in complex knock-out mice expressing only the GM3 ganglioside. J Biol Chem 277: 29881–29888.PubMedGoogle Scholar
  51. Ishibashi T, Dupree JL, Ikenaka K, Hirahara Y, Honke K, et al. 2002. A myelin galactolipid, sulfatide, is essential for maintenance of ion channels on myelinated axon but not essential for initial cluster formation. J Neurosci 22: 6507–6514.PubMedGoogle Scholar
  52. Ishizuka I. 1997. Chemistry and functional distribution of sulfoglycolipids. Prog Lipid Res 36: 245–319.PubMedGoogle Scholar
  53. Itoh M, Fukumoto S, Iwamoto T, Mizuno A, Rokutanda A, et al. 2001a. Specificity of carbohydrate structures of gangliosides in the activity to regenerate the rat axotomized hypoglossal nerve. Glycobiology 11: 125–130.PubMedGoogle Scholar
  54. Itoh M, Hayashi M, Fujioka Y, Nagashima K, Morimatsu Y, et al. 2002. Immunohistological study of globoid cell leukodystrophy. Brain Dev 24: 284–290.PubMedGoogle Scholar
  55. Itoh M, Matsuda J, Suzuki O, Ogura A, Oshima A, et al. 2001b. Development of lysosomal storage in mice with targeted disruption of the beta-galactosidase gene: A model of human G(M1)-gangliosidosis. Brain Dev 23: 379–384.PubMedGoogle Scholar
  56. Jeckel D, Karrenbauer A, Burger KN, van Meer G, Wieland F. 1992. Glucosylceramide is synthesized at the cytosolic surface of various Golgi subfractions. J Cell Biol 117: 259–267.PubMedGoogle Scholar
  57. Jennemann R, Sandhoff R, Langbein L, Kaden S, Rothermel U, et al. 2007. Integrity and barrier function of the epidermis critically depend on glucosylceramide synthesis. J Biol Chem 282: 3083–3094.PubMedGoogle Scholar
  58. Jennemann R, Sandhoff R, Wang S, Kiss E, Gretz N, et al. 2005. Cell-specific deletion of glucosylceramide synthase in brain leads to severe neural defects after birth. Proc Natl Acad Sci USA 102: 12459–12464.PubMedGoogle Scholar
  59. Jeyakumar M, Dwek RA, Butters TD, Platt FM. 2005. Storage solutions: Treating lysosomal disorders of the brain. Nat Rev Neurosci 6: 713–725.PubMedGoogle Scholar
  60. Jeyakumar M, Thomas R, Elliot-Smith E, Smith DA, Van Der Spoel AC, et al. 2003. Central nervous system inflammation is a hallmark of pathogenesis in mouse models of GM1 and GM2 gangliosidosis. Brain 126: 974–987.PubMedGoogle Scholar
  61. Kawai H, Allende ML, Wada R, Kono M, Sango K, et al. 2001. Mice expressing only monosialoganglioside GM3 exhibit lethal audiogenic seizures. J Biol Chem 276: 6885–6888.PubMedGoogle Scholar
  62. Kawai H, Sango K, Mullin KA, Proia RL. 1998. Embryonic stem cells with a disrupted GD3 synthase gene undergo neuronal differentiation in the absence of b-series gangliosides. J Biol Chem 273: 19634–19638.PubMedGoogle Scholar
  63. Kitamura M, Takamiya K, Aizawa S, Furukawa K. 1999. Gangliosides are the binding substances in neural cells for tetanus and botulinum toxins in mice. Biochim Biophys Acta 1441: 1–3.PubMedGoogle Scholar
  64. Klima H, Tanaka A, Schnabel D, Nakano T, Schroder M, et al. 1991. Characterization of full-length cDNAs and the gene coding for the human GM2 activator protein. FEBS Lett 289: 260–264.PubMedGoogle Scholar
  65. Kolodny EH. 2000. Niemann-Pick disease. Curr Opin Hematol 7: 48–52.PubMedGoogle Scholar
  66. Kolter T, Sandhoff K. 1999. Sphingolipids—their metabolic pathways and the pathobiochemistry of neurodegenerative diseases. Angew Chem Int Ed Engl 38: 1532–1568.Google Scholar
  67. Kolter T, Sandhoff K. 2005. Principles of lysosomal membrane digestion: Stimulation of sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids. Annu Rev Cell Dev Biol 21: 81–103.PubMedGoogle Scholar
  68. Kondo Y, Wenger DA, Gallo V, Duncan ID. 2005. Galactocerebrosidase-deficient oligodendrocytes maintain stable central myelin by exogenous replacement of the missing enzyme in mice. Proc Natl Acad Sci USA 102: 18670–18675.PubMedGoogle Scholar
  69. Kono M, Dreier JL, Ellis JM, Allende ML, Kalkofen DN, et al. 2006. Neutral ceramidase encoded by the Asah2 gene is essential for the intestinal degradation of sphingolipids. J Biol Chem 281: 7324–7331.PubMedGoogle Scholar
  70. Kotani K, Kuroiwa A, Saito T, Matsuda Y, Koda T, et al. 2001. Cloning, chromosomal mapping, and characteristic 5′-UTR sequence of murine cytosolic sialidase. Biochem Biophys Res Commun 286: 250–258.PubMedGoogle Scholar
  71. Kretz KA, Carson GS, Morimoto S, Kishimoto Y, Fluharty AL, et al. 1990. Characterization of a mutation in a family with saposin B deficiency: A glycosylation site defect. Proc Natl Acad Sci USA 87: 2541–2544.PubMedGoogle Scholar
  72. Lahiri S, Futerman AH. 2007. The metabolism and function of sphingolipids and glycosphingolipids. Cell Mol Life Sci 64: 2270–2284.PubMedGoogle Scholar
  73. Lee WC, Tsoi YK, Troendle FJ, Delucia MW, Ahmed Z, et al. 2007. Single-dose intracerebroventricular administration of galactocerebrosidase improves survival in a mouse model of globoid cell leukodystrophy. FASEB J.Google Scholar
  74. Li CM, Park JH, Simonaro CM, He X, Gordon RE, et al. 2002. Insertional mutagenesis of the mouse acid ceramidase gene leads to early embryonic lethality in homozygotes and progressive lipid storage disease in heterozygotes. Genomics 79: 218–224.PubMedGoogle Scholar
  75. Li SC, Kihara H, Serizawa S, Li YT, Fluharty AL, et al. 1985. Activator protein required for the enzymatic hydrolysis of cerebroside sulfate. Deficiency in urine of patients affected with cerebroside sulfatase activator deficiency and identity with activators for the enzymatic hydrolysis of GM1 ganglioside and globotriaosylceramide. J Biol Chem 260: 1867–1871.PubMedGoogle Scholar
  76. Liu Y, Hoffmann A, Grinberg A, Westphal H, McDonald MP, et al. 1997. Mouse model of GM2 activator deficiency manifests cerebellar pathology and motor impairment. Proc Natl Acad Sci USA 94: 8138–8143.PubMedGoogle Scholar
  77. Liu Y, Suzuki K, Reed JD, Grinberg A, Westphal H, et al. 1998. Mice with type 2 and 3 Gaucher disease point mutations generated by a single insertion mutagenesis procedure. Proc Natl Acad Sci USA 95: 2503–2508.PubMedGoogle Scholar
  78. Locatelli-Hoops S, Remmel N, Klingenstein R, Breiden B, Rossocha M, et al. 2006. Saposin A mobilizes lipids from low cholesterol and high bis(monoacylglycerol)phosphate-containing membranes: Patient variant Saposin A lacks lipid extraction capacity. J Biol Chem 281: 32451–32460.PubMedGoogle Scholar
  79. Luzi P, Rafi MA, Zaka M, Curtis M, Vanier MT, et al. 2001. Generation of a mouse with low galactocerebrosidase activity by gene targeting: A new model of globoid cell leukodystrophy (Krabbe disease). Mol Genet Metab 73: 211–223.PubMedGoogle Scholar
  80. Marcus J, Honigbaum S, Shroff S, Honke K, Rosenbluth J, et al. 2006. Sulfatide is essential for the maintenance of CNS myelin and axon structure. Glia 53: 372–381.PubMedGoogle Scholar
  81. Matsuda J, Kido M, Tadano-Aritomi K, Ishizuka I, Tominaga K, et al. 2004. Mutation in saposin D domain of sphingolipid activator protein gene causes urinary system defects and cerebellar Purkinje cell degeneration with accumulation of hydroxy fatty acid-containing ceramide in mouse. Hum Mol Genet 13: 2709–2723.PubMedGoogle Scholar
  82. Matsuda J, Suzuki O, Oshima A, Ogura A, Naiki M, et al. 1997a. Neurological manifestations of knockout mice with beta-galactosidase deficiency. Brain Dev 19: 19–20.PubMedGoogle Scholar
  83. Matsuda J, Suzuki O, Oshima A, Ogura A, Noguchi Y, et al. 1997b. Beta-galactosidase-deficient mouse as an animal model for GM1-gangliosidosis. Glycoconj J 14: 729–736.PubMedGoogle Scholar
  84. Matsuda J, Vanier MT, Saito Y, Tohyama J, Suzuki K. 2001. A mutation in the saposin A domain of the sphingolipid activator protein (prosaposin) gene results in a late-onset, chronic form of globoid cell leukodystrophy in the mouse. Hum Mol Genet 10: 1191–1199.PubMedGoogle Scholar
  85. Mercimek-Mahmutoglu S, Gruber S, Rolfs A, Stadlbauer A, Woeber C, et al. 2007. Neurological and brain MRS findings in patients with Gaucher disease type 1. Mol Genet Metab.Google Scholar
  86. Miyagi T, Wada T, Iwamatsu A, Hata K, Yoshikawa Y, et al. 1999. Molecular cloning and characterization of a plasma membrane-associated sialidase specific for gangliosides. J Biol Chem 274: 5004–5011.PubMedGoogle Scholar
  87. Mizugishi K, Yamashita T, Olivera A, Miller GF, Spiegel S, et al. 2005. Essential role for sphingosine kinases in neural and vascular development. Mol Cell Biol 25: 11113–11121.PubMedGoogle Scholar
  88. Mizukami H, Mi Y, Wada R, Kono M, Yamashita T, et al. 2002. Systemic inflammation in glucocerebrosidase-deficient mice with minimal glucosylceramide storage. J Clin Invest 109: 1215–1221.PubMedGoogle Scholar
  89. Molander-Melin M, Pernber Z, Franken S, Gieselmann V, Mansson JE, et al. 2004. Accumulation of sulfatide in neuronal and glial cells of arylsulfatase A deficient mice. J Neurocytol 33: 417–427.PubMedGoogle Scholar
  90. Monti E, Bassi MT, Papini N, Riboni M, Manzoni M, et al. 2000. Identification and expression of NEU3, a novel human sialidase associated to the plasma membrane. Biochem J 349: 343–351.PubMedGoogle Scholar
  91. Nagai Y, Tsuji S. 1994. Significance of ganglioside-mediated glycosignal transduction in neuronal differentiation and development. Prog Brain Res 101: 119–126.PubMedGoogle Scholar
  92. Nakano T, Sandhoff K, Stumper J, Christomanou H, Suzuki K. 1989. Structure of full-length cDNA coding for sulfatide activator, a Co-beta- glucosidase and two other homologous proteins: Two alternate forms of the sulfatide activator. J Biochem 105: 152–154.PubMedGoogle Scholar
  93. O’Brien JS, Kretz KA, Dewji N, Wenger DA, Esch F, et al. 1988. Coding of two sphingolipid activator proteins (SAP-1 and SAP-2) by same genetic locus. Science 241: 1098–1101.PubMedGoogle Scholar
  94. Ogawa D, Shikata K, Honke K, Sato S, Matsuda M, et al. 2004. Cerebroside sulfotransferase deficiency ameliorates L-selectin-dependent monocyte infiltration in the kidney after ureteral obstruction. J Biol Chem 279: 2085–2090.PubMedGoogle Scholar
  95. Ohshima T, Murray GJ, Swaim WD, Longenecker G, Quirk JM, et al. 1997. alpha-Galactosidase A deficient mice: A model of Fabry disease. Proc Natl Acad Sci USA 94: 2540–2544.PubMedGoogle Scholar
  96. Okada M, Itoh Mi M, Haraguchi M, Okajima T, Inoue M, et al. 2002. b-series Ganglioside deficiency exhibits no definite changes in the neurogenesis and the sensitivity to Fas-mediated apoptosis but impairs regeneration of the lesioned hypoglossal nerve. J Biol Chem 277: 1633–1936.PubMedGoogle Scholar
  97. Okumiya T, Sakuraba H, Kase R, Sugiura T. 2003. Imbalanced substrate specificity of mutant beta-galactosidase in patients with Morquio B disease. Mol Genet Metab 78: 51–58.PubMedGoogle Scholar
  98. Otterbach B, Stoffel W. 1995. Acid sphingomyelinase-deficient mice mimic the neurovisceral form of human lysosomal storage disease (Niemann-Pick disease). Cell 81: 1053–1061.PubMedGoogle Scholar
  99. Oya Y, Nakayasu H, Fujita N, Suzuki K. 1998. Pathological study of mice with total deficiency of sphingolipid activator proteins (SAP knockout mice). Acta Neuropathol 96: 29–40.PubMedGoogle Scholar
  100. Pan B, Fromholt SE, Hess EJ, Crawford TO, Griffin JW, et al. 2005. Myelin-associated glycoprotein and complementary axonal ligands, gangliosides, mediate axon stability in the CNS and PNS: Neuropathology and behavioral deficits in single- and double-null mice. Exp Neurol 195: 208–217.PubMedGoogle Scholar
  101. Park JH, Schuchman EH. 2006. Acid ceramidase and human disease. Biochim Biophys Acta 1758: 2133–2138.PubMedGoogle Scholar
  102. Pernber Z, Molander-Melin M, Berthold CH, Hansson E, Fredman P. 2002. Expression of the myelin and oligodendrocyte progenitor marker sulfatide in neurons and astrocytes of adult rat brain. J Neurosci Res 69: 86–93.PubMedGoogle Scholar
  103. Phaneuf D, Wakamatsu N, Huang JQ, Borowski A, Peterson AC, et al. 1996. Dramatically different phenotypes in mouse models of human Tay-Sachs and Sandhoff diseases. Hum Mol Genet 5: 1–14.PubMedGoogle Scholar
  104. Priestman DA, Platt FM, Dwek RA, Butters TD. 2000. Imino sugar therapy for type 1 Gaucher disease. Glycobiology 10: iv–vi.PubMedGoogle Scholar
  105. Riboni L, Caminiti A, Bassi R, Tettamanti G. 1995. The degradative pathway of gangliosides GM1 and GM2 in Neuro2a cells by sialidase. J Neurochem 64: 451–454.PubMedGoogle Scholar
  106. Sakai N, Inui K, Tatsumi N, Fukushima H, Nishigaki T, et al. 1996. Molecular cloning and expression of cDNA for murine galactocerebrosidase and mutation analysis of the twitcher mouse, a model of Krabbe’s disease. J Neurochem 66: 1118–1124.PubMedGoogle Scholar
  107. Sandhoff K. 1977. The biochemistry of sphingolipid storage diseases. Angew Chem Int Ed Engl 16: 273–285.PubMedGoogle Scholar
  108. Sandhoff K, Kolter T, Harzer K. 2001. Sphingolipid activator proteins. The Metabolic and Molecular Bases of Inherited Disease. Scriver CR, editor. Vol. 3. New York: Scriver CR; pp. 3371–3388.Google Scholar
  109. Sandhoff R, Geyer R, Jennemann R, Paret C, Kiss E, et al. 2005a. Novel class of glycosphingolipids involved in male fertility. J Biol Chem 280: 27310–27318.PubMedGoogle Scholar
  110. Sandhoff R, Grieshaber H, Djafarzadeh R, Sijmonsma TP, Proudfoot AE, et al. 2005b. Chemokines bind to sulfatides as revealed by surface plasmon resonance. Biochim Biophys Acta 1687: 52–63.PubMedGoogle Scholar
  111. Sandhoff R, Hepbildikler ST, Jennemann R, Geyer R, Gieselmann V, et al. 2002. Kidney sulfatides in mouse models of inherited glycosphingolipid disorders: Determination by nano-electrospray ionization tandem mass spectrometry. J Biol Chem 277: 20386–20398.PubMedGoogle Scholar
  112. Sango K, McDonald MP, Crawley JN, Mack ML, Tifft CJ, et al. 1996. Mice lacking both subunits of lysosomal beta-hexosaminidase display gangliosidosis and mucopolysaccharidosis. Nat Genet 14: 348–352.PubMedGoogle Scholar
  113. Sango K, Yamanaka S, Hoffmann A, Okuda Y, Grinberg A, et al. 1995. Mouse models of Tay-Sachs and Sandhoff diseases differ in neurologic phenotype and ganglioside metabolism. Nat Genet 11: 170–176.PubMedGoogle Scholar
  114. Schnaar RL. 1991. Glycosphingolipids in cell surface recognition. Glycobiology 1: 477–485.PubMedGoogle Scholar
  115. Schuchman EH, Desnick RJ. 1995. Niemann-Pick disease type A and B: Acid sphingomyelinase deficiencies. The Metabolic and Molecular Basis of Inherited Diseases. Scriver CR, Beaudet AL, Sly WS, Valle D, editors. New York: McGraw-Hill; pp. 2601–2624.Google Scholar
  116. Settembre C, Annunziata I, Spampanato C, Zarcone D, Cobellis G, et al. 2007. Systemic inflammation and neurodegeneration in a mouse model of multiple sulfatase deficiency. Proc Natl Acad Sci USA 104: 4506–4511.PubMedGoogle Scholar
  117. Seyrantepe V, Landry K, Trudel S, Hassan JA, Morales CR, et al. 2004. Neu4, a novel human lysosomal lumen sialidase, confers normal phenotype to sialidosis and galactosialidosis cells. J Biol Chem 279: 37021–37029.PubMedGoogle Scholar
  118. Sheikh KA, Sun J, Liu Y, Kawai H, Crawford TO, et al. 1999. Mice lacking complex gangliosides develop Wallerian degeneration and myelination defects. Proc Natl Acad Sci USA 96: 7532–7537.PubMedGoogle Scholar
  119. Sidransky E, Fartasch M, Lee RE, Metlay LA, Abella S, et al. 1996. Epidermal abnormalities may distinguish type 2 from type 1 and type 3 of Gaucher disease. Pediatr Res 39: 134–141.PubMedGoogle Scholar
  120. Simpson MA, Cross H, Proukakis C, Priestman DA, et al. 2004. Infantile-onset symptomatic epilepsy syndrome caused by a homozygous loss-of-function mutation of GM3 synthase. Nat Genet 36: 1225–1229.PubMedGoogle Scholar
  121. Sinclair GB, Jevon G, Colobong KE, Randall DR, Choy FY, et al. 2007. Generation of a conditional knockout of murine glucocerebrosidase: Utility for the study of Gaucher disease. Mol Genet Metab 90: 148–156.PubMedGoogle Scholar
  122. Sly WS. 2004. Enzyme replacement therapy for lysosomal storage disorders: Successful transition from concept to clinical practice. Mo Med 101: 100–104.PubMedGoogle Scholar
  123. Spiegel S, Milstien S. 2003. Sphingosine-1-phosphate: An enigmatic signalling lipid. Nat Rev Mol Cell Biol 4: 397–407.PubMedGoogle Scholar
  124. Sprong H, Degroote S, Claessens T, van Drunen J, Oorschot V, et al. 2001. Glycosphingolipids are required for sorting melanosomal proteins in the Golgi complex. J Cell Biol 155: 369–380.PubMedGoogle Scholar
  125. Stevens RL, Fluharty AL, Kihara H, Kaback MM, Shapiro LJ, et al. 1981. Cerebroside sulfatase activator deficiency induced metachromatic leukodystrophy. Am J Hum Genet 33: 900–906.PubMedGoogle Scholar
  126. Stoffel W, Jenke B, Block B, Zumbansen M, Koebke J. 2005. Neutral sphingomyelinase 2 (smpd3) in the control of postnatal growth and development. Proc Natl Acad Sci USA 102: 4554–4559.PubMedGoogle Scholar
  127. Stoffel W, Jenke B, Holz B, Binczek E, Gunter RH, et al. 2007. Neutral sphingomyelinase (SMPD3) deficiency causes a novel form of chondrodysplasia and dwarfism that is rescued by Col2A1-driven smpd3 transgene expression. Am J Pathol 171: 153–161.PubMedGoogle Scholar
  128. Sugita M, Dulaney JT, Moser HW. 1974. Structure and composition of sulfatides isolated from livers of patients with metachromatic leukodystrophy: Galactosyl sulfatide and lactosyl sulfatide. J Lipid Res 15: 227–233.PubMedGoogle Scholar
  129. Sugiura Y, Furukawa K, Tajima O, Mii S, Honda T. 2005. Sensory nerve-dominant nerve degeneration and remodeling in the mutant mice lacking complex gangliosides. Neuroscience 135: 1167–1178.PubMedGoogle Scholar
  130. Sun J, Shaper NL, Itonori S, Heffer-Lauc M, Sheikh KA, et al. 2004. Myelin-associated glycoprotein (Siglec-4) expression is progressively and selectively decreased in the brains of mice lacking complex gangliosides. Glycobiology 14: 851–857.PubMedGoogle Scholar
  131. Sun Y, Quinn B, Witte DP, Grabowski GA. 2005. Gaucher disease mouse models: Point mutations at the acid beta-glucosidase locus combined with low-level prosaposin expression lead to disease variants. J Lipid Res 46: 2102–2113.PubMedGoogle Scholar
  132. Sun Y, Quinn B, Xu YH, Leonova T, Witte DP, Grabowski GA. 2006. Conditional expression of human acid beta-glucosidase improves the visceral phenotype in a Gaucher disease mouse model. J Lipid Res 47: 2161–2170.PubMedGoogle Scholar
  133. Sun Y, Witte DP, Zamzow M, Ran H, Quinn B, et al. 2007. Combined saposin C and D deficiencies in mice lead to a neuronopathic phenotype, glucosylceramide and alpha-hydroxy ceramide accumulation, and altered prosaposin trafficking. Hum Mol Genet 16: 957–971.PubMedGoogle Scholar
  134. Susuki K, Baba H, Tohyama K, Kanai K, Kuwabara S, et al. 2007. Gangliosides contribute to stability of paranodal junctions and ion channel clusters in myelinated nerve fibers. Glia 55: 746–757.PubMedGoogle Scholar
  135. Suzuki K. 1995. The twitcher mouse: A model for Krabbe disease and for experimental therapies. Brain Pathol 5: 249–258.PubMedGoogle Scholar
  136. Suzuki K, Proia RL. 1998. Mouse models of human lysosomal diseases. Brain Pathol 8: 195–215.PubMedGoogle Scholar
  137. Suzuki K, Taniike M. 1995. Murine model of genetic demyelinating disease: The twitcher mouse. Microsc Res Tech 32: 204–214.PubMedGoogle Scholar
  138. Suzuki Y, Oshima A, Nanba E. 2001. Beta-galactosidase deficiency (beta-galactosidosis): GM1 gangliosidosis and morquio B disease. The Metabolic and Molecular Bases of Inherited Disease, Vol. 3. Scriver CR, editor. New York: Scriver CR; pp. 3775–3810.Google Scholar
  139. Takamiya K, Yamamoto A, Furukawa K, Yamashiro S, Shin M, et al. 1996. Mice with disrupted GM2/GD2 synthase gene lack complex gangliosides but exhibit only subtle defects in their nervous system. Proc Natl Acad Sci USA 93: 10662–10667.PubMedGoogle Scholar
  140. Takamiya K, Yamamoto A, Furukawa K, Zhao J, Fukumoto S, et al. 1998. Complex gangliosides are essential in spermatogenesis of mice: Possible roles in the transport of testosterone. Proc Natl Acad Sci USA 95: 12147–12152.PubMedGoogle Scholar
  141. Tamboli IY, Prager K, Barth E, Heneka M, Sandhoff K, et al. 2005. Inhibition of glycosphingolipid biosynthesis reduces secretion of the beta-amyloid precursor protein and amyloid beta-peptide. J Biol Chem 280: 28110–28117.PubMedGoogle Scholar
  142. Taniike M, Yamanaka S, Proia RL, Langaman C, Bone-Turrentine T, et al. 1995. Neuropathology of mice with targeted disruption of Hexa gene, a model of Tay-Sachs disease. Acta Neuropathol 89: 296–304.PubMedGoogle Scholar
  143. Tominaga K, Matsuda J, Kido M, Naito E, Yokota I, et al. 2004. Genetic background markedly influences vulnerability of the hippocampal neuronal organization in the “twitcher” mouse model of globoid cell leukodystrophy. J Neurosci Res 77: 507–516.PubMedGoogle Scholar
  144. Tybulewicz VL, Tremblay ML, LaMarca ME, Willemsen R, Stubblefield BK, et al. 1992. Animal model of Gaucher’s disease from targeted disruption of the mouse glucocerebrosidase gene. Nature 357: 407–410.PubMedGoogle Scholar
  145. Vaccaro AM, Salvioli R, Barca A, Tatti M, Ciaffoni F, et al. 1995. Structural analysis of saposin C and B. Complete localization of disulfide bridges. J Biol Chem 270: 9953–9960.PubMedGoogle Scholar
  146. van Meer G. 1998. Lipids of the Golgi membrane. Trends Cell Biol 8: 29–33.PubMedGoogle Scholar
  147. Vanier MT, Suzuki K. 1996. Niemann-Pick disease. Neurodystrophies and Neurolipidoses. Handbook of Clinical Neurology. Vol. 66. Moser HW, editor. Amsterdam: Elsevier Science; pp. 133–162.Google Scholar
  148. Varki A. 1993. Biological roles of oligosaccharides: All of the theories are correct. Glycobiology 3: 97–130.PubMedGoogle Scholar
  149. Venn G, Mason RM. 1985. Absence of keratan sulphate from skeletal tissues of mouse and rat. Biochem J 228: 443–450.PubMedGoogle Scholar
  150. von Figura K, Gieselmann V, Jaeken J. 2001. Metachromatic leukodystrophy. The Metabolic and Molecular Basis of Inherited Disease. Scriver CR, Beaudet AL, Valle D, Sly WS, editors. New York: McGraw-Hill; pp. 3695–3724.Google Scholar
  151. Vos JP, Lopes-Cardozo M, Gadella BM. 1994. Metabolic and functional aspects of sulfogalactolipids. Biochim Biophys Acta 1211: 125–149.PubMedGoogle Scholar
  152. Vyas AA, Patel HV, Fromholt SE, Heffer-Lauc M, Vyas KA, et al. 2002. Gangliosides are functional nerve cell ligands for myelin-associated glycoprotein (MAG), an inhibitor of nerve regeneration. Proc Natl Acad Sci USA 99: 8412–8417.PubMedGoogle Scholar
  153. Wenger DA, Suzuki K, Suzuki Y, Suzuki K. 2001. Galactosylceramide lipidosis. Globoid cell leucodystrophy. The Methabolic and Molecular Bases of Inherited Disease, 8th ed. Scriver CR, Beaudet AL, Valle D, Sly WS, editors. New York: McGraw-Hill; pp. 3669–3694.Google Scholar
  154. Whitfield PD, Sharp PC, Taylor R, Meikle P. 2001. Quantification of galactosylsphingosine in the twitcher mouse using electrospray ionization-tandem mass spectrometry. J Lipid Res 42: 2092–2095.PubMedGoogle Scholar
  155. Willemsen R, Tybulewicz V, Sidransky E, Eliason WK, Martin BM, et al. 1995. A biochemical and ultrastructural evaluation of the type 2 Gaucher mouse. Mol Chem Neuropathol 24: 179–192.PubMedGoogle Scholar
  156. Xu YH, Quinn B, Witte D, Grabowski GA. 2003. Viable mouse models of acid beta-glucosidase deficiency: The defect in Gaucher disease. Am J Pathol 163: 2093–2101.PubMedGoogle Scholar
  157. Yaghootfam A, Gieselmann V, Eckhardt M. 2005. Delay of myelin formation in arylsulphatase A-deficient mice. Eur J Neurosci 21: 711–720.PubMedGoogle Scholar
  158. Yamanaka S, Johnson MD, Grinberg A, Westphal H, Crawley JN, et al. 1994a. Targeted disruption of the Hexa gene results in mice with biochemical and pathologic features of Tay-Sachs disease. Proc Natl Acad Sci USA 91: 9975–9979.PubMedGoogle Scholar
  159. Yamanaka S, Johnson ON, Norflus F, Boles DJ, Proia RL. 1994b. Structure and expression of the mouse beta-hexosaminidase genes, Hexa and Hexb. Genomics 21: 588–596.PubMedGoogle Scholar
  160. Yamashita T, Allende ML, Kalkofen DN, Werth N, Sandhoff K, et al. 2005a. Conditional LoxP-flanked glucosylceramide synthase allele controlling glycosphingolipid synthesis. Genesis 43: 175–180.PubMedGoogle Scholar
  161. Yamashita T, Hashiramoto A, Haluzik M, Mizukami H, Beck S, et al. 2003. Enhanced insulin sensitivity in mice lacking ganglioside GM3. Proc Natl Acad Sci USA 100: 3445–3449.PubMedGoogle Scholar
  162. Yamashita T, Wada R, Sasaki T, Deng C, Bierfreund U, et al. 1999. A vital role for glycosphingolipid synthesis during development and differentiation. Proc Natl Acad Sci USA 96: 9142–9147.PubMedGoogle Scholar
  163. Yamashita T, Wu YP, Sandhoff R, Werth N, Mizukami H, et al. 2005b. Interruption of ganglioside synthesis produces central nervous system degeneration and altered axon-glial interactions. Proc Natl Acad Sci USA 102: 2725–2730.PubMedGoogle Scholar
  164. Yildiz Y, Matern H, Thompson B, Allegood JC, Warren RL, et al. 2006. Mutation of beta-glucosidase 2 causes glycolipid storage disease and impaired male fertility. J Clin Invest 116: 2985–2994.PubMedGoogle Scholar
  165. Yoon SJ, Nakayama K, Hikita T, Handa K, Hakomori SI. 2006. Epidermal growth factor receptor tyrosine kinase is modulated by GM3 interaction with N-linked GlcNAc termini of the receptor. Proc Natl Acad Sci USA 103: 18987–18991.PubMedGoogle Scholar
  166. Yoshida K, Furuya S, Osuka S, Mitoma J, Shinoda Y, et al. 2004. Targeted disruption of the mouse 3-phosphoglycerate dehydrogenase gene causes severe neurodevelopmental defects and results in embryonic lethality. J Biol Chem 279: 3573–3577.PubMedGoogle Scholar
  167. Zumbansen M, Stoffel W. 2002. Neutral sphingomyelinase 1 deficiency in the mouse causes no lipid storage disease. Mol Cell Biol 22: 3633–3638.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • R. Jennemann
  • H. -J. Gröne
  • H. Wiegandt
  • R. Sandhoff

There are no affiliations available

Personalised recommendations