Advertisement

Sphingolipid-Inherited Diseases of the Central Nervous System

  • S. L. Hoops
  • T. Kolter
  • K. Sandhoff
Reference work entry

Abstract:

The sphingolipidoses are a group of inherited lysosomal storage diseases, which are caused by a defect in one or more sphingolipid degradation steps. The subsequent accumulation of nondegradable material in one or more organs leads to the expression of the disease.

Sphingolipids are integral parts of the plasma membrane of eukaryotic cells, where they form characteristic patterns. They contribute to the glycocalix of the cell and are believed to play a role in cell adhesion phenomena, in the barrier function of the skin, in the immune system, in signal transduction processes, and during embryogenesis. After their biosynthesis at intracellular membranes, they reach the plasma membrane, where they contribute to membrane function. The constitutive degradation of glycosphingolipids takes place on the surface of intraendosomal and intralysosomal membrane structures by the action of specific acid exohydrolases, sphingolipid activator proteins (SAPs), and anionic phospholipids. The deficiency of one of the proteins involved in sphingolipid degradation can cause sphingolipidosis.

The storage of nondegradable compounds, the nature of the storage material, the cell-type specific expression of glycosphingolipids, and the residual activity of the degrading system are significant factors that contribute to the clinical manifestations of sphingolipidoses. However, the pathogenesis of these diseases is poorly understood until now.

In this chapter, we summarize the characteristics of GM1-Gangliosidosis, GM2-Gangliosidoses (including B-variant or Tay-Sachs disease; 0-variant, or Sandhoff's disease, and AB-variant), Fabry's disease, Niemann-Pick disease (NPD) (types A and B), Metachromatic Leukodystrophy (MLD), Gaucher's disease, Krabbe's disease, and Farber's disease, which are all sphinglipidoses affecting the central nervous system.

Most sphingolipidoses are as yet incurable diseases. Both, the ratio of substrate influx into the lysosomes and the degradation capacity can be addressed by therapeutic approaches. The current strategies for restoration of the defective degradation capacity within the lysosome are enzyme replacement therapy (ERT), cell-mediated therapy (CMT) including bone marrow transplantation (BMT) and cell-mediated “cross correction,” gene therapy, and enzyme-enhancement therapy with chemical chaperones. The reduction of substrate influx into the lysosomes can be achieved by substrate deprivation therapy. Patients suffering from adult forms of Gaucher's disease and Fabry's disease have been successfully treated by ERT.

Keywords

Enzyme Replacement Therapy Lysosomal Storage Disease Metachromatic Leukodystrophy Acid Ceramidase Globoid Cell Leukodystrophy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations:

ASA

Arylsulfatase A (ASA)

ASM

Acid sphingomyelinase

BMP

Bis-(monoacylglycero)-phosphate

BMT

Bone marrow transplantation

Cer

Ceramide (N-Acylsphingosine)

CMT

Cell-mediated therapy

CNS

Central nervous system

Da

Dalton

ER

Endoplasmic reticulum

ERT

Enzyme replacement therapy

Gal

D-Galactose

GalNAc

N-Acetylgalactosamine

GA1

Galβ1,3GalNAcβ1,4Galβ1,4Glcβ1Cer

GA2

GalNAcβ1,4Galβ1,4Glcβ1Cer

Glc

D-Glucose

GlcCer

β-Glucosylceramide

GM1

Galβ1,3GalNAcβ1,4(NeuAcα2,3)Galβ1,4Glcβ1Cer

GM2

GalNAcβ1,4(NeuAcα2,3)Galβ1,4Glcβ1Cer

GM2AP

GM2 activator-protein

GSL

Glycosphingolipids

HSV

Herpes simplex viral vector

LacCer

Lactosylceramide

m

Meter

MDR

Multiple drug resistance

MLD

Metachromatic Leukodystrophy

mN

milliNewton

NeuAc

N-Acetylneuraminic acid

NPC

Niemann-Pick disease, type C

NPD

Niemann-Pick disease

SAP

Sphingolipid activator protein

Sap

Saposin

SPC

Sphingosylphosphocholine

TIM

Triosephosphate isomerase

References

  1. Ahn VE, Faull KF, Whitelegge JP, Fluharty AL, Prive GG. 2003. Crystal structure of saposin B reveals a dimeric shell for lipid binding. Proc Natl Acad Sci USA 100: 38–43.PubMedGoogle Scholar
  2. Amidon B, Brown A, Waite M. 1996. Transacylase and phospholipases in the synthesis of bis(monoacylglycero)phosphate. Biochemistry 35: 13995–14002.PubMedGoogle Scholar
  3. Aula P, Gahl WA. 2001. Disorders of free sialic acid storage. The metabolic and molecular bases of inherited disease, chapter 200, Vol III, 8th edn. Scriver CR, Beaudet AL, Sly WS, Valle D, editors. New York: McGraw-Hill; pp. 5109–5120.Google Scholar
  4. Bär J, Linke T, Ferlinz K, Neumann U, Schuchman EH, et al. 2001. Molecular analysis of acid ceramidase deficiency in patients with Farber disease. Hum Mutat 17: 199–209.PubMedGoogle Scholar
  5. Barth ML, Fensom A, Harris A. 1993. Prevalence of common mutations in the arylsulphatase A gene in metachromatic leukodystrophy patients diagnosed in Britain. Hum Genet 91: 73–77.PubMedGoogle Scholar
  6. Barton NW, Furbish FS, Murray GJ, Garfield M, Brady RO. 1990. Therapeutic response to intravenous infusions of glucocerebrosidase in a patient with Gaucher disease. Proc Natl Acad Sci USA 87: 1913–1916.PubMedGoogle Scholar
  7. Bejaoui K, Uchida Y, Yasuda S, Ho M, Nishijima M, et al. 2002. Hereditary sensory neuropathy type 1 mutations confer dominant negative effects on serine palmitoyltransferase, critical for sphingolipid synthesis. J Clin Invest 110: 1301–1308.PubMedGoogle Scholar
  8. Berent SL, Radin NS. 1981. Mechanism of activation of glucocerebrosidase by co-β-glucosidase (glucosidase activator protein). Biochim Biophys Acta 664: 572–582.PubMedGoogle Scholar
  9. Bernardo K, Hurwitz R, Zenk T, Desnick RJ, Ferlinz K, et al. 1995. Purification, characterization, and biosynthesis of human acid ceramidase. J Biol Chem 270: 11098–11102.PubMedGoogle Scholar
  10. Beutler E, Grabowski GA. 2001. Gaucher disease. The metabolic and molecular bases of inherited disease, chapter 146, Vol III, 8th edn. Scriver C, Beaudet AL, Valle D, Sly WS, Childs B, editors. et al. New York: McGraw-Hill; pp. 3635–3668.Google Scholar
  11. Birkenmeier EH, Barker JE, Vogler CA, Kyle JW, Sly WS, et al. 1991. Increased life span and correction of metabolic defects in murine mucopolysaccharidosis type VII after syngeneic bone marrow transplantation. Blood 78: 3081–3092.PubMedGoogle Scholar
  12. Bourgoin C, Emiliani C, Kremer EJ, Gelot A, Tancini B, et al. 2003. Widespread distribution of β-hexosaminidase activity in the brain of a Sandhoff mouse model after coinjection of adenoviral vector and mannitol. Gene Ther 10: 1841–1849.PubMedGoogle Scholar
  13. Bradova V, Smid F, Ulrich-Bott B, Roggendorf W, Paton BC, et al. 1993. Prosaposin deficiency: Further characterization of the sphingolipid activator protein-deficient sibs. Multiple glycolipid elevations (including lactosylceramidosis), partial enzyme deficiencies and ultrastructure of the skin in this generalized sphingolipid storage disease. Hum Genet 92: 143–152.PubMedGoogle Scholar
  14. Brady RO, Kanfer JN, Shapiro D. 1965. Metabolism of Glucocerebrosides. II. Evidence of an enzymatic deficiency in Gaucher's disease. Biochem Biophys Res Commun 18: 221–225.PubMedGoogle Scholar
  15. Brindley DN, English D, Pilquil C, Buri K, Ling ZC. 2002. Lipid phosphate phosphatases regulate signal transduction through glycerolipids and sphingolipids. Biochim Biophys Acta 1582: 33–44.PubMedGoogle Scholar
  16. Brotherus J, Renkonen O. 1977. Subcellular distributions of lipids in cultured BHK cells: Evidence for the enrichment of lysobisphosphatidic acid and neutral lipids in lysosomes. J Lipid Res 18: 191–202.PubMedGoogle Scholar
  17. Brown DA, London E. 2000. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 275: 17221–17224.PubMedGoogle Scholar
  18. Burkhardt JK, Huttler S, Klein A, Mobius W, Habermann A, et al. 1997. Accumulation of sphingolipids in SAP-precursor (prosaposin)-deficient fibroblasts occurs as intralysosomal membrane structures and can be completely reversed by treatment with human SAP-precursor. Eur J Cell Biol 73: 10–18.PubMedGoogle Scholar
  19. Chojnacki T, Dallner G. 1988. The biological role of dolichol. Biochem J 251: 1–9.PubMedGoogle Scholar
  20. Christomanou H, Aignesberger A, Linke RP. 1986. Immunochemical characterization of two activator proteins stimulating enzymic sphingomyelin degradation in vitro. Absence of one of them in a human Gaucher disease variant. Biol Chem Hoppe-Seyler 367: 879–890.PubMedGoogle Scholar
  21. Ciaffoni F, Salvioli R, Tatti M, Arancia G, Crateri P, et al. 2001. Saposin D solubilizes anionic phospholipid-containing membranes. J Biol Chem 276: 31583–31589.PubMedGoogle Scholar
  22. Conzelmann E, Sandhoff K. 1978. AB variant of infantile GM2 gangliosidosis: Deficiency of a factor necessary for stimulation of hexosaminidase A-catalyzed degradation of ganglioside GM2 and glycolipid GA2. Proc Natl Acad Sci USA 75: 3979–3983.PubMedGoogle Scholar
  23. Conzelmann E, Sandhoff K. 1979. Purification and characterization of an activator protein for the degradation of glycolipids GM2 and GA2 by hexosaminidase A. Hoppe Seylers Z Physiol Chem 360: 1837–1849.PubMedGoogle Scholar
  24. Conzelmann E, Sandhoff K. 1983/1984. Partial enzyme deficiencies: Residual activities and the development of neurological disorders. Dev Neurosci 6: 58–71.Google Scholar
  25. Conzelmann E, Lee-Vaupel M, Sandhoff K. 1988. The physiological roles of activator proteins for lysosomal glycolipid degradation. Lipid storage disorders. Salvayre R, Douste-Blazy L, Gatt S, editors. Plenum publishing corporation; New York: pp. 323–332.Google Scholar
  26. Conzelmann E, Burg J, Stephan G, Sandhoff K. 1982. Complexing of glycolipids and their transfer between membranes by the activator protein for degradation of lysosomal ganglioside GM2. Eur J Biochem 123: 455–464.PubMedGoogle Scholar
  27. Cox T, Lachmann R, Hollak C, Aerts J, van Weely S, et al. 2000. Novel oral treatment of Gaucher's disease with N-butyldeoxynojirimycin (OGT 918) to decrease substrate biosynthesis. Lancet 355: 1481–1485.PubMedGoogle Scholar
  28. Crocker AC. 1961. The cerebral defect in Tay-Sachs disease and Niemann-Pick disease. J Neurochem 7: 69–80.PubMedGoogle Scholar
  29. Crocker AC, Farber S. 1958. Niemann-Pick disease: A review of eighteen patients. Medicine (Baltimore) 37: 1–95.Google Scholar
  30. D'Azzo A, Andria G, Strisciuglio P, Galjaard H. 2001. Galactosialidosis. The metabolic and molecular bases of inherited disease, chapter 152, Vol III, 8th edn. Scriver CR, Beaudet AL, Sly WS, Valle D, editors. New York: McGraw-Hill; pp. 3811–3826.Google Scholar
  31. D'Azzo A, Hoogeveen A, Reuser AJ, Robinson D, Galjaard H. 1982. Molecular defect in combined β-galactosidase and neuraminidase deficiency in man. Proc Natl Acad Sci USA 79: 4535–4539.PubMedGoogle Scholar
  32. de Alba E, Weiler S, Tjandra N. 2003. Solution structure of human saposin C: pH-dependent interaction with phospholipid vesicles. Biochemistry 42: 14729–14740.PubMedGoogle Scholar
  33. De Maria R, Rippo MR, Schuchman EH, Testi R. 1998. Acidic sphingomyelinase (ASM) is necessary for fas-induced GD3 ganglioside accumulation efficient apoptosis of lymphoid cells. J Exp Med 187: 897-902.PubMedGoogle Scholar
  34. De Rosa MF, Sillence D, Ackerley C, Lingwood C. 2004. Role of multiple drug resistance protein 1 in neutral but not acidic glycosphingolipid biosynthesis. J Biol Chem 279: 7867–7876.PubMedGoogle Scholar
  35. Desnick RJ, Schindler D. 2001. Alpa-N-Acetylgalactosaminidase deficiency: Schindler disease. The metabolic and molecular bases of inherited disease, chapter 139, Vol III, 8th edn. Scriver CR, Beaudet AL, Sly WS, Valle D editors. New York: McGraw-Hill; pp. 3483–3505.Google Scholar
  36. Desnick RJ, Schuchman EH. 2002. Enzyme replacement and enhancement therapies: Lessons from lysosomal disorders. Nat Rev Genet 3: 954–966.PubMedGoogle Scholar
  37. Desnick RJ, Ioannou YA, Eng CM. 2001. α-Galactosidase A deficiency Fabry disease. The metabolic and molecular bases of inherited disease, chapter 150, Vol III, 8th edn. Scriver CR, Beaudet AL, Sly WS, Valle D, editors. New York: McGraw-Hill; pp. 3733–3774.Google Scholar
  38. Dierks T, Schmidt B, Borissenko LV, Peng J, Preusser A, et al. 2003. Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(α)-formylglycine generating enzyme. Cell 113: 435–444.PubMedGoogle Scholar
  39. Dobrenis K. 2004. Cell-mediated delivery system. Lysosomal disorders of the brain, chapter 14. Platt FM, Walkley SU, editors. New York: Oxford University Press Inc; pp. 339–380.Google Scholar
  40. Doering T, Holleran WM, Potratz A, Vielhaber G, Elias PM, et al. 1999. Sphingolipid activator proteins are required for epidermal permeability barrier formation. J Biol Chem 274: 11038–11045.PubMedGoogle Scholar
  41. Dvir H, Harel M, McCarthy AA, Toker L, Silman I, et al. 2003. X-ray structure of human acid-β-glucosidase, the defective enzyme in Gaucher disease. EMBO Rep 4: 704–709.PubMedGoogle Scholar
  42. Eng CM, Guffon N, Wilcox WR, Germain DP, Lee P, et al. 2001. Safety and efficacy of recombinant human α-galactosidase A–replacement therapy in Fabry's disease. N Engl J Med 345: 9–16.PubMedGoogle Scholar
  43. Eskelinen EL, Tanaka Y, Saftig P. 2003. At the acidic edge: Emerging functions for lysosomal membrane proteins. Trends Cell Biol 13: 137–145.PubMedGoogle Scholar
  44. Fabbro D, Grabowski GA. 1991. Human acid β-glucosidase. Use of inhibitory and activating monoclonal antibodies to investigate the enzyme's catalytic mechanism and saposin A and C binding sites. J Biol Chem 266: 15021–15027.PubMedGoogle Scholar
  45. Fan JQ. 2003. A contradictory treatment for lysosomal storage disorders: Inhibitors enhance mutant enzyme activity. Trends Pharmacol Sci 24: 355–360.PubMedGoogle Scholar
  46. Fan JQ, Ishii S, Asano N, Suzuki Y. 1999. Accelerated transport and maturation of lysosomal α-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor. Nat Med 5: 112–115.PubMedGoogle Scholar
  47. Finn LS, Zhang M, Chen SH, Scott CR. 2000. Severe type II Gaucher disease with ichthyosis, arthrogryposis and neuronal apoptosis: Molecular and pathological analyses. Am J Med Genet 91: 222–226.PubMedGoogle Scholar
  48. Frustaci A, Chimenti C, Ricci R, Natale L, Russo MA, et al. 2001. Improvement in cardiac function in the cardiac variant of Fabry's disease with galactose-infusion therapy. N Engl J Med 345: 25–32.PubMedGoogle Scholar
  49. Fujita N, Suzuki K, Vanier MT, Popko B, Maeda N, et al. 1996. Targeted disruption of the mouse sphingolipid activator protein gene: A complex phenotype, including severe leukodystrophy and wide-spread storage of multiple sphingolipids. Hum Mol Genet 5: 711–725.PubMedGoogle Scholar
  50. Furst W, Sandhoff K. 1992. Activator proteins and topology of lysosomal sphingolipid catabolism. Biochim Biophys Acta 1126: 1–16.PubMedGoogle Scholar
  51. Furst W, Machleidt W, Sandhoff K. 1988. The precursor of sulfatide activator protein is processed to three different proteins. Biol Chem Hoppe Seyler 369: 317–328.PubMedGoogle Scholar
  52. Gahl WA, Thoene JG, Schneider JA. 2001. Cystinosis: A disorder of lysosomal membrane transport. The metabolic and molecular bases of inherited disease, chapter 199, Vol III, 8th edn. Scriver CR, Beaudet AL, Sly WS, Valle D, editors. New York: McGraw-Hill; pp. 5085–5108.Google Scholar
  53. Gama Sosa MA, de Gasperi R, Undevia S, Yeretsian J, Rouse SC, et al. 1996. Correction of the galactocerebrosidase deficiency in globoid cell leukodystrophy-cultured cells by SL3–3 retroviral-mediated gene transfer. Biochem Biophys Res Commun 218: 766–771.PubMedGoogle Scholar
  54. Giehl A, Lemm T, Bartelsen O, Sandhoff K, Blume A. 1999. Interaction of the GM2-activator protein with phospholipid-ganglioside bilayer membranes and with monolayers at the air-water interface. Eur J Biochem 261: 650–658.PubMedGoogle Scholar
  55. Gieselmann V. 1995. Lysosomal storage diseases. Biochim Biophys Acta 1270: 103–136.PubMedGoogle Scholar
  56. Gieselmann V. 2003. Metachromatic leukodystrophy: Recent research developments. J Child Neurol 18: 591–594.PubMedGoogle Scholar
  57. Giraudo CG, Maccioni HJ. 2003. Ganglioside glycosyltransferases organize in distinct multienzyme complexes in CHO-K1 cells. J Biol Chem 278: 40262–40271.PubMedGoogle Scholar
  58. Graber D, Salvayre R, Levade T. 1994. Accurate differentiation of neuronopathic and nonneuronopathic forms of Niemann-Pick disease by evaluation of the effective residual lysosomal sphingomyelinase activity in intact cells. J Neurochem 63: 1060–1068.PubMedGoogle Scholar
  59. Gravel RA, Kaback MM, Proia RL, Sandhoff K, Suzuki K et al. 2001. The GM2 gangliosidoses. The metabolic and molecular bases of inherited disease, chapter 153, Vol III, 8th edn. Scriver CR, Beaudet AL, Sly WS, Valle D, editors. New York: McGraw-Hill; pp. 3827–3876.Google Scholar
  60. Hahn CN, del Pilar Martin M, Schroder M, Vanier MT, Hara Y, et al. 1997. Generalized CNS disease and massive GM1-ganglioside accumulation in mice defective in lysosomal acid β-galactosidase. Hum Mol Genet 6: 205–211.PubMedGoogle Scholar
  61. Hakomori S. 1981. Glycosphingolipids in cellular interaction, differentiation, and oncogenesis. Annu Rev Biochem 50: 733–764.PubMedGoogle Scholar
  62. Harzer K, Paton BC, Poulos A, Kustermann-Kuhn B, Roggendorf W, et al. 1989. Sphingolipid activator protein deficiency in a 16-week-old atypical Gaucher disease patient and his fetal sibling: Biochemical signs of combined sphingolipidoses. Eur J Pediatr 149: 31–39.PubMedGoogle Scholar
  63. Hecht O, Van Nuland NA, Schleinkofer K, Dingley AJ, Bruhn H, et al. 2004. Solution structure of the pore forming protein of entamoeba histolytica. J Biol Chem.Google Scholar
  64. Hepbildikler ST, Sandhoff R, Kolzer M, Proia RL, Sandhoff K. 2002. Physiological substrates for human lysosomal β-hexosaminidase S. J Biol Chem 277: 2562–2572.PubMedGoogle Scholar
  65. Hess B, Saftig P, Hartmann D, Coenen R, Lullmann-Rauch R, et al. 1996. Phenotype of arylsulfatase A-deficient mice: Relationship to human metachromatic leukodystrophy. Proc Natl Acad Sci USA 93: 14821–14826.PubMedGoogle Scholar
  66. Hiesberger T, Huttler S, Rohlmann A, Schneider W, Sandhoff K, et al. 1998. Cellular uptake of saposin (SAP) precursor and lysosomal delivery by the low density lipoprotein receptor-related protein (LRP). EMBO J 17: 4617–4625.PubMedGoogle Scholar
  67. Ho MW, O'Brien JS. 1971. Gaucher's disease: Deficiency of “acid” β-glucosidase and reconstitution of enzyme activity in vitro. Proc Natl Acad Sci USA 68: 2810–2813.PubMedGoogle Scholar
  68. Hollak CE, van Weely S, van Oers MH, Aerts JM. 1994. Marked elevation of plasma chitotriosidase activity. A novel hallmark of Gaucher disease. J Clin Invest 93: 1288–1292.PubMedGoogle Scholar
  69. Hoogerbrugge PM, Poorthuis BJ, Romme AE, van de Kamp JJ, Wagemaker G, et al. 1988. Effect of bone marrow transplantation on enzyme levels and clinical course in the neurologically affected twitcher mouse. J Clin Invest 81: 1790–1794.PubMedGoogle Scholar
  70. Hopwood JJ, Ballabio A. 2001. Multiple sulfatase deficiency and the nature of the sulfatase family. The metabolic and molecular bases of inherited disease, chapter 149, Vol III, 8th edn. Scriver CR, Beaudet AL, Sly WS, Valle D, editors. New York: McGraw-Hill; pp. 3725–3732.Google Scholar
  71. Horinouchi K, Erlich S, Perl DP, Ferlinz K, Bisgaier CL, et al. 1995. Acid sphingomyelinase deficient mice: A model of types A and B Niemann-Pick disease. Nat Genet 10: 288–293.PubMedGoogle Scholar
  72. Hubbes M, D'Agrosa RM, Callahan JW. 1992. Human placental β-galactosidase. Characterization of the dimer and complex forms of the enzyme. Biochem J 285 (Pt 3): 827–831.PubMedGoogle Scholar
  73. Hulkova H, Cervenkova M, Ledvinova J, Tochackova M, Hrebicek M, et al. 2001. A novel mutation in the coding region of the prosaposin gene leads to a complete deficiency of prosaposin and saposins, and is associated with a complex sphingolipidosis dominated by lactosylceramide accumulation. Hum Mol Genet 10: 927–940.PubMedGoogle Scholar
  74. Hurwitz R, Ferlinz K, Sandhoff K. 1994. The tricyclic antidepressant desipramine causes proteolytic degradation of lysosomal sphingomyelinase in human fibroblasts. Biol Chem Hoppe-Seyler 375: 447–450.PubMedGoogle Scholar
  75. Huwiler A, Kolter T, Pfeilschifter J, Sandhoff K. 2000. Physiology and pathophysiology of sphingolipid metabolism and signaling. Biochim Biophys Acta 1485: 63–99.PubMedGoogle Scholar
  76. Im DS, Heise CE, Nguyen T, O'Dowd BF, Lynch KR. 2001. Identification of a molecular target of psychosine and its role in globoid cell formation. J Cell Biol 153: 429–434.PubMedGoogle Scholar
  77. Jatzkewitz H, Sandhoff K. 1963. On a biochemically special form of infantile amaturotic idiocy. Biochim Biophys Acta 70: 354–356.Google Scholar
  78. Jeyakumar M, Smith D, Eliott-Smith E, Cortina-Borja M, Reinkensmeier G, et al. 2002. An inducible mouse model of late onset Tay-Sachs disease. Neurobiol Dis 10: 201–210.PubMedGoogle Scholar
  79. Jeyakumar M, Thomas R, Elliot-Smith E, Smith DA, Spoel van der AC, et al. 2003. Central nervous system inflammation is a hallmark of pathogenesis in mouse models of GM1 and GM2 gangliosidosis. Brain 126: 974–987.PubMedGoogle Scholar
  80. Kang SJ, Cresswell P. 2004. Saposins facilitate CD1d-restricted presentation of an exogenous lipid antigen to T cells. Nat Immunol 5: 175–181.PubMedGoogle Scholar
  81. Karlsson KA. 1989. Animal glycosphingolipids as membrane attachment sites for bacteria. Annu Rev Biochem 58: 309–350.PubMedGoogle Scholar
  82. Kishimoto Y, Hiraiwa M, O'Brien JS. 1992. Saposins: Structure, function, distribution, and molecular genetics. J Lipid Res 33: 1255–1267.PubMedGoogle Scholar
  83. Klein A, Henseler M, Klein C, Suzuki K, Harzer K, et al.1994. Sphingolipid activator protein D (sap-D) stimulates the lysosomal degradation of ceramide in vivo. Biochem Biophys Res Commun. 1440–1448.Google Scholar
  84. Kobayashi T, Goto I, Okada S, Orii T, Ohno K, et al. 1992. Accumulation of lysosphingolipids in tissues from patients with GM1 and GM2 gangliosidoses. J Neurochem 59: 1452–1458.PubMedGoogle Scholar
  85. Kobayashi T, Stang E, Fang KS, de Moerloose P, Parton RG, et al. 1998. A lipid associated with the antiphospholipid syndrome regulates endosome structure and function. Nature 392: 193–197.PubMedGoogle Scholar
  86. Koch J, Gartner S, Li CM, Quintern LE, Bernardo K, et al. 1996. Molecular cloning and characterization of a full-length complementary DNA encoding human acid ceramidase. Identification Of the first molecular lesion causing Farber disease. J Biol Chem 271: 33110–33115.PubMedGoogle Scholar
  87. Kolter T, Sandhoff K. 1998. Recent advances in the biochemistry of sphingolipidoses. Brain Pathol 8: 79–100.PubMedGoogle Scholar
  88. Kolter T, Sandhoff K. 1999. Sphingolipids—their metabolic pathways and the pathobiochemistry of neurodegenerative diseases. Angewandte Chem Int Ed 38: 1532–1568.Google Scholar
  89. Kolter T, Sandhoff K. 2000. Sphingolipidoses. Handbuch der molekularen Medizin, Band 6, Monogenbedingte Erbkrankhiten 1. Gantten D, Ruckpaul K. (Hrsg). Berlin Heidelberg: Springer-Verlag; pp. 195–234.Google Scholar
  90. Kolter T, Wendeler M. 2003. Chemical chaperones—a new concept in drug research. Chembiochem 4: 260–264.PubMedGoogle Scholar
  91. Kolter T, Magin TM, Sandhoff K. 2000. Biomolecule function: No reliable prediction from cell culture. Traffic 1: 803–804.PubMedGoogle Scholar
  92. Kolter T, Proia RL, Sandhoff K. 2002. Combinatorial ganglioside biosynthesis. J Biol Chem 277: 25859–25862.PubMedGoogle Scholar
  93. Kornfeld S, Sly WS. 2001. I-Cell disease and pseudo-Hurler polydystrophy: Disorders of lysosomal enzyme phosphorylation and localization. The metabolic and molecular bases of inherited disease, chapter 138, Vol III, 8th edn. Scriver CR, Beaudet AL, Sly WS, Valle D, editors. New York: McGraw-Hill; pp. 3469–3482.Google Scholar
  94. Kretz KA, Carson GS, Morimoto S, Kishimoto Y, Fluharty AL, et al. 1990. Characterization of a mutation in a family with saposin B deficiency: A glycosylation site defect. Proc Natl Acad Sci USA 87: 2541–2544.PubMedGoogle Scholar
  95. Kytzia HJ, Sandhoff K. 1985. Evidence for two different active sites on human β-hexosaminidase A. Interaction of GM2 activator protein with β-hexosaminidase A. J Biol Chem 260: 7568–7572.PubMedGoogle Scholar
  96. Kytzia HJ, Hinrichs U, Maire I, Suzuki K, Sandhoff K. 1983. Variant of GM2-gangliosidosis with hexosaminidase A having a severely changed substrate specificity. EMBO J 2: 1201–1205.PubMedGoogle Scholar
  97. Ledeen R, Salsman K. 1965. Structure of the Tay-Sachs’ ganglioside. Biochemistry 4: 2225–2233.Google Scholar
  98. Lefrancois S, Zeng J, Hassan AJ, Canuel M, Morales CR. 2003. The lysosomal trafficking of sphingolipid activator proteins (SAPs) is mediated by sortilin. EMBO J 22: 6430–6437.PubMedGoogle Scholar
  99. Leinekugel P, Michel S, Conzelmann E, Sandhoff K. 1992. Quantitative correlation between the residual activity of β-hexosaminidase A and arylsulfatase A and the severity of the resulting lysosomal storage disease. Hum Genet 88: 513–523.PubMedGoogle Scholar
  100. Levade T, Moser HW, Fensom AH, Harzer K, Moser AB, et al. 1995. Neurodegenerative course in ceramidase deficiency (Farber disease) correlates with the residual lysosomal ceramide turnover in cultured living patient cells. J Neurol Sci 134: 108–114.PubMedGoogle Scholar
  101. Li SC, Sonnino S, Tettamanti G, Li YT. 1988. Characterization of a nonspecific activator protein for the enzymatic hydrolysis of glycolipids. J Biol Chem 263: 6588–6591.PubMedGoogle Scholar
  102. Li SC, Kihara H, Serizawa S, Li YT, Fluharty AL, et al. 1985. Activator protein required for the enzymatic hydrolysis of cerebroside sulfate. Deficiency in urine of patients affected with cerebroside sulfatase activator deficiency and identity with activators for the enzymatic hydrolysis of GM1 ganglioside and globotriaosylceramide. J Biol Chem 260: 1867–1871.PubMedGoogle Scholar
  103. Liepinsh E, Andersson M, Ruysschaert JM, Otting G. 1997. Saposin fold revealed by the NMR structure of NK-lysin. Nat Struct Biol 4: 793–795.PubMedGoogle Scholar
  104. Linke T, Wilkening G, Lansmann S, Moczall H, Bartelsen O, et al. 2001a. Stimulation of acid sphingomyelinase activity by lysosomal lipids and sphingolipid activator proteins. Biol Chem 382: 283–290.PubMedGoogle Scholar
  105. Linke T, Wilkening G, Sadeghlar F, Mozcall H, Bernardo K, et al. 2001b. Interfacial regulation of acid ceramidase activity. Stimulation of ceramide degradation by lysosomal lipids and sphingolipid activator proteins. J Biol Chem 276: 5760–5768.PubMedGoogle Scholar
  106. Liu G, Kleine L, Hebert RL. 1999. Advances in the signal transduction of ceramide and related sphingolipids. Crit Rev Clin Lab Sci 36: 511–573.PubMedGoogle Scholar
  107. Lui K, Commens C, Choong R, Jaworski R. 1988. Collodion babies with Gaucher's disease. Arch Dis Child 63: 854–856.PubMedGoogle Scholar
  108. Luzi P, Rafi MA, Zaka M, Curtis M, Vanier MT, et al. 2001. Generation of a mouse with low galactocerebrosidase activity by gene targeting: A new model of globoid cell leukodystrophy (Krabbe disease). Mol Genet Metab 73: 211–223.PubMedGoogle Scholar
  109. Maccioni HJ, Giraudo CG, Daniotti JL. 2002. Understanding the stepwise synthesis of glycolipids. Neurochem Res 27: 629–636.PubMedGoogle Scholar
  110. Maggio B, Fanani ML, Oliveira RG. 2002. Biochemical and structural information transduction at the mesoscopic level in biointerfaces containing sphingolipids. Neurochem Res 27: 547–557.PubMedGoogle Scholar
  111. Maier T, Strater N, Schuette CG, Klingenstein R, Sandhoff K, et al. 2003. The X-ray crystal structure of human β-hexosaminidase B provides new insights into Sandhoff disease. J Mol Biol 328: 669–681.PubMedGoogle Scholar
  112. Marekov LN, Steinert PM. 1998. Ceramides are bound to structural proteins of the human foreskin epidermal cornified cell envelope. J Biol Chem 273: 17763–17770.PubMedGoogle Scholar
  113. Mark BL, Mahuran DJ, Cherney MM, Zhao D, Knapp S, et al. 2003. Crystal structure of human β-hexosaminidase B: Understanding the molecular basis of Sandhoff and Tay-Sachs disease. J Mol Biol 327: 1093–1109.PubMedGoogle Scholar
  114. Markwell MA, Svennerholm L, Paulson JC. 1981. Specific gangliosides function as host cell receptors for Sendai virus. Proc Natl Acad Sci USA 78: 5406–5410.PubMedGoogle Scholar
  115. Marsh D. 1996. Lateral pressure in membranes. Biochim Biophys Acta 1286: 183–223.PubMedGoogle Scholar
  116. Martino S, Marconi P, Tancini B, Dolcetta D, De Angelis MG, et al. 2005. A direct gene transfer strategy via brain internal capsule revesr the biochemical defect in Tay-Sachs disease. Hum Mol Genet 14: 2113-2123.PubMedGoogle Scholar
  117. Matsuda J, Vanier MT, Saito Y, Tohyama J, Suzuki K. 2001. A mutation in the saposin A domain of the sphingolipid activator protein (prosaposin) gene results in a late-onset, chronic form of globoid cell leukodystrophy in the mouse. Hum Mol Genet 10: 1191–1199.PubMedGoogle Scholar
  118. Matsuda J, Suzuki O, Oshima A, Yamamoto Y, Noguchi A, et al. 2003. Chemical chaperone therapy for brain pathology in G(M1)-gangliosidosis. Proc Natl Acad Sci USA 100: 15912–15917.PubMedGoogle Scholar
  119. Matsuzawa Y, Hostetler KY. 1979. Degradation of bis(monoacylglycero)phosphate by an acid phosphodiesterase in rat liver lysosomes. J Biol Chem 254: 5997–6001.PubMedGoogle Scholar
  120. Meikle PJ, Hopwood JJ, Clague AE, Carey WF. 1999. Prevalence of lysosomal storage disorders. JAMA 281: 249–254.PubMedGoogle Scholar
  121. Mehl E, Jatzkewitz H. 1964. [A cerebrosidesulfatase from swine kidney]. Hoppe Seylers Z Physiol Chem 339: 260–276.PubMedGoogle Scholar
  122. Meivar-Levy I, Horowitz M, Futerman AH. 1994. Analysis of glucocerebrosidase activity using N-(1-[14C]hexanoyl)-D-erythroglucosylsphingosine demonstrates a correlation between levels of residual enzyme activity and the type of Gaucher disease. Biochem J 303 (Pt 2): 377–382.PubMedGoogle Scholar
  123. Merrill AH Jr. 2002. De novo sphingolipid biosynthesis: A necessary, but dangerous, pathway. J Biol Chem 277: 25843–25846.PubMedGoogle Scholar
  124. Miyataki T, Suzuki K. 1972. Globoid cell leukodystrophy: Additional deficiency of psychosine galactosidase. Biochem Biophys Res Commun 48: 539–543.Google Scholar
  125. Mizukami H, Mi Y, Wada R, Kono M, Yamashita T, et al. 2002. Systemic inflammation in glucocerebrosidase-deficient mice with minimal glucosylceramide storage. J Clin Invest 109: 1215–1221.PubMedGoogle Scholar
  126. Mobius W, Herzog V, Sandhoff K, Schwarzmann G. 1999. Intracellular distribution of a biotin-labeled ganglioside, GM1, by immunoelectron microscopy after endocytosis in fibroblasts. J Histochem Cytochem 47: 1005–1014.PubMedGoogle Scholar
  127. Mobius W, Ohno-Iwashita Y, van Donselaar EG, Oorschot VM, Shimada Y, et al. 2002. Immunoelectron microscopic localization of cholesterol using biotinylated and non-cytolytic perfringolysin O. J Histochem Cytochem 50: 43–55.PubMedGoogle Scholar
  128. Mobius W, van Donselaar E, Ohno-Iwashita Y, Shimada Y, Heijnen HF, et al. 2003. Recycling compartments and the internal vesicles of multivesicular bodies harbor most of the cholesterol found in the endocytic pathway. Traffic 4: 222–231.PubMedGoogle Scholar
  129. Morimoto S, Martin BM, Kishimoto Y, O'Brien JS. 1988. Saposin D: A sphingomyelinase activator. Biochem Biophys Res Commun 156: 403–410.PubMedGoogle Scholar
  130. Moser HW, Linke T, Fensom AH, Levade T, Sandhoff K. 2001. Acid ceramidase deficiency: Farber Lipogranulomatosis. The metabolic and molecular bases of inherited disease, chapter 143, Vol III, 8th edn. Scriver CR, Beaudet AL, Sly WS, Valle D, editors. New York: McGraw-Hill; pp. 3573–3588.Google Scholar
  131. Munford RS, Sheppard PO, O'Hara PJ. 1995. Saposin-like proteins (SAPLIP) carry out diverse functions on a common backbone structure. J Lipid Res 36: 1653–1663.PubMedGoogle Scholar
  132. Munro S. 2003. Lipid rafts: Elusive or illusive? Cell 115: 377–388.PubMedGoogle Scholar
  133. Nakano T, Sandhoff K, Stumper J, Christomanou H, Suzuki K. 1989. Structure of full-length cDNA coding for sulfatide activator, a Co-β-glucosidase and two other homologous proteins: Two alternate forms of the sulfatide activator. J Biochem (Tokyo) 105: 152–154.Google Scholar
  134. Neuenhofer S, Conzelmann E, Schwarzmann G, Egge H, Sandhoff K. 1986. Occurrence of lysoganglioside lyso-GM2 (II3-Neu5Ac-gangliotriaosylsphingosine) in GM2 gangliosidosis brain. Biol Chem Hoppe Seyler 367: 241–244.PubMedGoogle Scholar
  135. Neufeld EF. 2004. Enzyme replacement therapy. Lysosomal disorders of the brain, chapter 13. Platt FM, Walkley SU, editors. New York: Oxford University Press Inc; pp. 327–338Google Scholar
  136. Nilsson O, Svennerholm L. 1982. Accumulation of glucosylceramide and glucosylsphingosine (psychosine) in cerebrum and cerebellum in infantile and juvenile Gaucher disease. J Neurochem 39: 709–718.PubMedGoogle Scholar
  137. Norflus F, Tifft CJ, McDonald MP, Goldstein G, Crawley JN, et al. 1998. Bone marrow transplantation prolongs life span and ameliorates neurologic manifestations in Sandhoff disease mice. J Clin Invest 101: 1881–1888.PubMedGoogle Scholar
  138. O'Brien JS, Kretz KA, Dewji N, Wenger DA, Esch F, et al. 1988. Coding of two sphingolipid activator proteins (SAP-1 and SAP-2) by same genetic locus. Science 241: 1098–1101.PubMedGoogle Scholar
  139. Ohashi T, Watabe K, Uehara K, Sly WS, Vogler C, et al. 1997. Adenovirus-mediated gene transfer and expression of human β-glucuronidase gene in the liver, spleen, and central nervous system in mucopolysaccharidosis type VII mice. Proc Natl Acad Sci USA 94: 1287–1292.PubMedGoogle Scholar
  140. Ohshima T, Murray GJ, Swaim WD, Longenecker G, Quirk JM, et al. 1997. α-Galactosidase A deficient mice: A model of Fabry disease. Proc Natl Acad Sci USA 94: 2540–2544.PubMedGoogle Scholar
  141. Orvisky E, Sidransky E, McKinney CE, Lamarca ME, Samimi R, et al. 2000. Glucosylsphingosine accumulation in mice and patients with type 2 Gaucher disease begins early in gestation. Pediatr Res 48: 233–237.PubMedGoogle Scholar
  142. Otterbach B, Stoffel W. 1995. Acid sphingomyelinase-deficient mice mimic the neurovisceral form of human lysosomal storage disease (Niemann-Pick disease). Cell 81: 1053–1061.PubMedGoogle Scholar
  143. Patrick AD. 1965. Short communications: A deficiency of glucocerebrosidase in Gaucher's disease. Biochem J 97: 17C–18C.Google Scholar
  144. Patterson MC. 2003. A riddle wrapped in a mystery: Understanding Niemann-Pick disease, type C. Neurology 9: 301–310.Google Scholar
  145. Patterson MC, Vanier MT, Suzuki K, Morris JA, Carstea E, et al. 2001. Niemann-Pick disease type C: A lipid trafficking disorder. The metabolic and molecular bases of inherited disease, chapter 145, Vol III, 8th edn. Scriver CR, Beaudet AL, Sly WS, Valle D, editors. New York: McGraw-Hill; pp. 3611–3633.Google Scholar
  146. Penzien JM, Kappler J, Herschkowitz N, Schuknecht B, Leinekugel P, et al. 1993. Compound heterozygosity for metachromatic leukodystrophy and arylsulfatase A pseudodeficiency alleles is not associated with progressive neurological disease. Am J Hum Genet 52: 557–564.PubMedGoogle Scholar
  147. Platt FM, Walkley SU. 2004. Lysosomal defects and storage. Lysosomal disorders of the brain, chapter 2. Platt FM, Walkley SU, editors. New York: Oxford University Press Inc; pp. 32–49.Google Scholar
  148. Platt FM, Neises GR, Reinkensmeier G, Townsend MJ, Perry VH, et al. 1997. Prevention of lysosomal storage in Tay-Sachs mice treated with N-butyldeoxynojirimycin. Science 276: 428–431.PubMedGoogle Scholar
  149. Polten A, Fluharty AL, Fluharty CB, Kappler J, von Figura K, et al. 1991. Molecular basis of different forms of metachromatic leukodystrophy. N Engl J Med 324: 18–22.PubMedGoogle Scholar
  150. Ponting CP. 1994. Acid sphingomyelinase possesses a domain homologous to its activator proteins: Saposins B and D. Protein Sci 3: 359–361.PubMedGoogle Scholar
  151. Rafi MA, de Gala G, Zhang XL, Wenger DA. 1993. Mutational analysis in a patient with a variant form of Gaucher disease caused by SAP-2 deficiency. Somat Cell Mol Genet 19: 1–7.PubMedGoogle Scholar
  152. Rafi MA, Luzi P, Chen YQ, Wenger DA. 1995. A large deletion together with a point mutation in the GALC gene is a common mutant allele in patients with infantile Krabbe disease. Hum Mol Genet 4: 1285–1289.PubMedGoogle Scholar
  153. Robson KJ, Stewart ME, Michelsen S, Lazo ND, Downing DT. 1994. 6-Hydroxy-4-sphingenine in human epidermal ceramides. J Lipid Res 35: 2060–2068.PubMedGoogle Scholar
  154. Ruvolo PP. 2003. Intracellular signal transduction pathways activated by ceramide and its metabolites. Pharmacol Res 47: 383–392.PubMedGoogle Scholar
  155. Sakai N, Inui K, Tatsumi N, Fukushima H, Nishigaki T, et al. 1996. Molecular cloning and expression of cDNA for murine galactocerebrosidase and mutation analysis of the twitcher mouse, a model of Krabbe's disease. J Neurochem 66: 1118–1124.PubMedGoogle Scholar
  156. Salvioli R, Tatti M, Ciaffoni F, Vaccaro AM. 2000. Further studies on the reconstitution of glucosylceramidase activity by Sap C and anionic phospholipids. FEBS Lett 472: 17–21.PubMedGoogle Scholar
  157. Sandhoff K, Kolter T. 1996. Topologie of glycosphingolipid degradation. Trends Cell Biol 6: 98–103.PubMedGoogle Scholar
  158. Sandhoff K, Andreae U, Jatzkewitz H. 1968. Deficient hexosaminidase activity in an exceptional case of Tay-Sachs disease with additional storage of kidney globoside in visceral organs. Pathol Eur 3: 278–285.PubMedGoogle Scholar
  159. Sandhoff K, Kolter T, Harzer K. 2001. Sphingolipid activator proteins. The metabolic and molecular bases of inherited disease, chapter 134, Vol III, 8th edn. Scriver CR, Beaudet AL, Sly WS, Valle D, editors. New York: McGraw-Hill; pp. 3371–3388.Google Scholar
  160. Sandhoff K, Harzer K, Wassle W, Jatzkewitz H. 1971. Enzyme alterations and lipid storage in three variants of Tay-Sachs disease. J Neurochem 18: 2469–2489.PubMedGoogle Scholar
  161. Sandhoff K, Conzelmann E, Neufeld E, Kaback MM, Suzuki K. 1989. The GM2 ganglisidoses. Scriver C, Beaudet AL, Sly WS, Valle D, editors. The metabolic basis of inherited disease, 6th edn, Mc Graw-Hill; New York: pp. 1807–1839.chapter 72.Google Scholar
  162. Sands MS. 2004. Gene therapy. Platt FM, Walkley SU, editors. Lysosomal disorders of the brain, chapt.16. Oxford University Press Inc; New York: pp. 409–430.Google Scholar
  163. Sandvig K, van Deurs B. 2002. Transport of protein toxins into cells: Pathways used by ricin, cholera toxin and Shiga toxin. FEBS Lett 529: 49–53.PubMedGoogle Scholar
  164. Sango K, Yamanaka S, Hoffmann A, Okuda Y, Grinberg A, et al. 1995. Mouse models of Tay-Sachs and Sandhoff diseases differ in neurologic phenotype and ganglioside metabolism. Nat Genet 11: 170–176.PubMedGoogle Scholar
  165. Santana P, Pena LA, Haimovitz-Friedman A, Martin S, Green D, et al. 1996. Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell 86: 189–199.PubMedGoogle Scholar
  166. Sarmientos F, Schwarzmann G, Sandhoff K. 1986. Specificity of human glucosylceramide β-glucosidase towards synthetic glucosylsphingolipids inserted into liposomes. Kinetic studies in a detergent-free assay system. Eur J Biochem 160: 527–535.PubMedGoogle Scholar
  167. Sawkar AR, Cheng WC, Beutler E, Wong CH, Balch WE, et al. 2002. Chemical chaperones increase the cellular activity of N370S β-glucosidase: A therapeutic strategy for Gaucher disease. Proc Natl Acad Sci USA 99: 15428–15433.PubMedGoogle Scholar
  168. Schiffmann R, Kopp JB, Austin HA, Sabnis S, 3rd Moore DF, et al. 2001. Enzyme replacement therapy in Fabry disease: A randomized controlled trial. JAMA 285: 2743–2749.PubMedGoogle Scholar
  169. Schlote W, Harzer K, Christomanou H, Paton BC, Kustermann-Kuhn B, et al. 1991. Sphingolipid activator protein 1 deficiency in metachromatic leucodystrophy with normal arylsulphatase A activity. A clinical, morphological, biochemical, and immunological study. Eur J Pediatr 150: 584–591.PubMedGoogle Scholar
  170. Schmidt B, Selmer T, Ingendoh A, von Figura K. 1995. A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency. Cell 82: 271–278.PubMedGoogle Scholar
  171. Schnabel D, Schroder M, Sandhoff K. 1991. Mutation in the sphingolipid activator protein 2 in a patient with a variant of Gaucher disease. FEBS Lett 284: 57–59.PubMedGoogle Scholar
  172. Schnabel D, Schröder M, Fürst W, Klein A, Hurwitz R, et al. 1992. Simultaneous deficiency of sphingolipid activator proteins 1 and 2 is caused by a mutation in the initiation codon of their common gene. J Biol Chem 267: 3312–3315.PubMedGoogle Scholar
  173. Schuchman EH, Desnick RJ. 2001. Niemann-Pick disease types A and B: Acid sphingomyelinase deficiencies. The metabolic and molecular bases of inherited disease, chapter 144, Vol III, 8th edn. Scriver CR, Beaudet AL, Sly WS, Valle D, editors. New York: McGraw-Hill; pp. 3589–610.Google Scholar
  174. Selleri S, Torchiana E, Pareyson D, Lulli L, Bertagnolio B, et al. 2000. Deletion of exons 11–17 and novel mutations of the galactocerebrosidase gene in adult- and early-onset patients with Krabbe disease. J Neurol 247: 875–877.PubMedGoogle Scholar
  175. Sillence DJ, Platt FM. 2003. Storage diseases: New insights into sphingolipid functions. Trends Cell Biol 13: 195–203.PubMedGoogle Scholar
  176. Stein CS, Ghodsi A, Derksen T, Davidson BL. 1999. Systemic and central nervous system correction of lysosomal storage in mucopolysaccharidosis type VII mice. J Virol 73: 3424–3429.PubMedGoogle Scholar
  177. Strasberg PM, Callahan JW. 1988. Lysosphingolipids and mitochondrial function. II. Deleterious effects of sphingosylphosphorylcholine. Biochem Cell Biol 66: 1322–1332.PubMedGoogle Scholar
  178. Sun Y, Qi X, Grabowski GA. 2003. Saposin C is required for normal resistance of acid β-glucosidase to proteolytic degradation. J Biol Chem 278: 31918–31923.PubMedGoogle Scholar
  179. Suzuki K. 1987. Enzymatic diagnosis of sphingolipidoses. Methods Enzymol 138: 727–762.PubMedGoogle Scholar
  180. Suzuki K, Chen GC. 1968. GM1-gangliosidosis (gneralized gangliosidosis). Morphology and chemical pathology. Pathol Eur 3: 389–408.PubMedGoogle Scholar
  181. Suzuki K, Suzuki Y. 1970. Globoid cell leucodystrophy (Krabbe's disease): Deficiency of galactocerebroside β-galactosidase. Proc Natl Acad Sci USA 66: 302–309.PubMedGoogle Scholar
  182. Suzuki K, Vanier MT. 1991. Biochemical and molecular aspects of late-onset GM2-gangliosidosis: B1 variant as a prototype. Dev Neurosci 13: 288–294.PubMedGoogle Scholar
  183. Suzuki K, Vanier MT. 1998. Induced mouse models of abnormal sphingolipid metabolism. J Biochem (Tokyo) 124: 8–19.Google Scholar
  184. Suzuki K, Vanier MT. 1999. Lysosomal and Peroxisomal Diseases. Basic Neurochemistry – Molecular, cellular and medical aspects, 6th edn. Siegel GJ, Agranoff BW, Albers RW, Fisher SK, Uhler MD, editors. Philadelphia: Lippincott-Raven; pp. 821–839.Google Scholar
  185. Suzuki K, Proia RL, Suzuki K. 1998. Mouse models of human lysosomal diseases. Brain Pathol 8: 195–215.PubMedGoogle Scholar
  186. Suzuki Y, Oshima A, Nanba E. 2001. -Galactosidase Deficiency (-Galactosidosis): GM1 Gangliosidosis and Morquio B Disease. The metabolic and molecular bases of inherited disease, chapter 151, Vol III, 8th edn. Scriver CR, Beaudet AL, Sly WS, Valle D, editors. New York: McGraw-Hill; pp. 3775–3809.Google Scholar
  187. Taniike M, Mohri I, Eguchi N, Irikura D, Urade Y, et al. 1999. An apoptotic depletion of oligodendrocytes in the twitcher, a murine model of globoid cell leukodystrophy. J Neuropathol Exp Neurol 58: 644–653.PubMedGoogle Scholar
  188. Tapasi S, Padma P, Setty OH. 1998. Effect of psychosine on mitochondrial function. Indian J Biochem Biophys 35: 161–165.PubMedGoogle Scholar
  189. Toda K, Kobayashi T, Goto I, Ohno K, Eto Y, et al. 1990. Lysosulfatide (sulfogalactosylsphingosine) accumulation in tissues from patients with metachromatic leukodystrophy. J Neurochem 55: 1585–1591.PubMedGoogle Scholar
  190. Tropak MB, Reid SP, Marianne G, Withers SG, Mahuran DJ. 2004. Pharmacological enhancement of β-hexosaminidase activity in fibroblasts from adult Tay-Sachs and Sandhoff patients. J Biol Chem. 279: 13478–13487PubMedGoogle Scholar
  191. Tybulewicz VL, Tremblay ML, LaMarca ME, Willemsen R, Stubblefield BK, et al. 1992. Animal model of Gaucher's disease from targeted disruption of the mouse glucocerebrosidase gene. Nature 357: 407–410.PubMedGoogle Scholar
  192. Utermöhlen O, Karow U, Lohler J, Kronke M. 2003. Severe impairment in early host defense against Listeria monocytogenes in mice deficient in acid sphingomyelinase. J Immunol 170: 2621–2628.PubMedGoogle Scholar
  193. Vaccaro AM, Ciaffoni F, Tatti M, Salvioli R, Barca A, et al. 1995a. pH-dependent conformational properties of saposins and their interactions with phospholipid membranes. J Biol Chem 270: 30576–30580.PubMedGoogle Scholar
  194. Vaccaro AM, Salvioli R, Barca A, Tatti M, Ciaffoni F, et al. 1995b. Structural analysis of saposin C and B. Complete localization of disulfide bridges. J Biol Chem 270: 9953–9960.PubMedGoogle Scholar
  195. Vaccaro AM, Tatti M, Ciaffoni F, Salvioli R, Barca A, et al. 1997. Effect of saposins A and C on the enzymatic hydrolysis of liposomal glucosylceramide. J Biol Chem 272: 16862–16867.PubMedGoogle Scholar
  196. van Blitterswijk WJ, Luit van der AH, Veldman RJ, Verheij M, Borst J. 2003. Ceramide: Second messenger or modulator of membrane structure and dynamics? Biochem J 369: 199–211.PubMedGoogle Scholar
  197. van Meer G, Lisman Q. 2002. Sphingolipid transport: Rafts and translocators. J Biol Chem 277: 25855–25858.PubMedGoogle Scholar
  198. Varki A. 1993. Biological roles of oligosaccharides: All of the theories are correct. Glycobiology 3: 97–130.PubMedGoogle Scholar
  199. Vellodi A, Hobbs JR, O'Donnell NM, Coulter BS, Hugh-Jones K. 1987. Treatment of Niemann-Pick disease type B by allogeneic bone marrow transplantation. Br Med J (Clin Res Ed) 295: 1375–1376.Google Scholar
  200. Vogel A, Schwarzmann G, Sandhoff K. 1991. Glycosphingolipid specificity of the human sulfatide activator protein. Eur J Biochem 200: 591–597.PubMedGoogle Scholar
  201. von Figura K, Gieselmann V, Jaeken J. 2001. Metachromatic Leukodystrophy. The metabolic and molecular bases of inherited disease, chapter 148, Vol III, 8th edn. Scriver CR, Beaudet AL, Sly WS, Valle D, editors. New York: McGraw-Hill; pp. 3695–3724.Google Scholar
  202. Wada R, Tifft CJ, Proia RL. 2000. Microglial activation precedes acute neurodegeneration in Sandhoff disease and is suppressed by bone marrow transplantation. Proc Natl Acad Sci USA 97: 10954–10959.PubMedGoogle Scholar
  203. Walkley SU. 1998. Cellular pathology of lysosomal storage disorders. Brain Pathol 8: 175–193.PubMedGoogle Scholar
  204. Wendeler M. 2004. Dissertation. University of Bonn.Google Scholar
  205. Wendeler M, Hoernschemeyer J, Hoffmann D, Kolter T, Schwarzmann G, et al. 2004. Photoaffinity labelling of the human GM2-activator protein. Mechanistic insight into ganglioside GM2 degradation. Eur J Biochem 271: 614–627.PubMedGoogle Scholar
  206. Wenger DA, Suzuki Y, Suzuki K. 2001. Galactosylceramide lipidosis: Globoid cell leukodystrophy (Krabbe disease). The metabolic and molecular bases of inherited disease, chapter 147, Vol III, 8th edn. Scriver CR, Beaudet AL, Sly WS, Valle D, editors. New York: McGraw-Hill; pp. 3669–3694.Google Scholar
  207. Werth N, Schuette CG, Wilkening G, Lemm T, Sandhoff K. 2001. Degradation of membrane-bound ganglioside GM2 by β-hexosaminidase A. Stimulation by GM2 activator protein and lysosomal lipids. J Biol Chem 276: 12685–12690.PubMedGoogle Scholar
  208. Wertz PW, Bergh B. van den 1998. The physical, chemical and functional properties of lipids in the skin and other biological barriers. Chem Phys Lipids 91: 85–96.PubMedGoogle Scholar
  209. Wilkening G, Linke T, Sandhoff K. 1998. Lysosomal degradation on vesicular membrane surfaces. Enhanced glucosylceramide degradation by lysosomal anionic lipids and activators. J Biol Chem 273: 30271–30278.PubMedGoogle Scholar
  210. Wilkening G, Linke T, Uhlhorn-Dierks G, Sandhoff K. 2000. Degradation of membrane-bound ganglioside GM1. Stimulation by bis(monoacylglycero)phosphate and the activator proteins SAP-B and GM2-AP. J Biol Chem 275: 35814–35819.PubMedGoogle Scholar
  211. Winau F, Schwierzeck V, Hurwitz R, Remmel N, Sieling PA, et al. 2004. Saposin C is required for lipid presentation by human CD1b. Nat Immunol 5: 169–174.PubMedGoogle Scholar
  212. Winchester BG. 2004. Lysosomal disorders of the brain, Primary defects in lysosomal enzymes. chapter 4. Platt FM, Walkley SU, editors. New York: Oxford University Press Inc; 81–130.Google Scholar
  213. Wright CS, Li SC, Rastinejad F. 2000. Crystal structure of human GM2-activator protein with a novel β-cup topology. J Mol Biol 304: 411–422.PubMedGoogle Scholar
  214. Wright CS, Zhao Q, Rastinejad F. 2003. Structural analysis of lipid complexes of GM2-activator protein. J Mol Biol 331: 951–964.PubMedGoogle Scholar
  215. Xu YH, Quinn B, Witte D, Grabowski GA. 2003. Viable mouse models of acid β-glucosidase deficiency: The defect in Gaucher disease. Am J Pathol 163: 2093–2101.PubMedGoogle Scholar
  216. Yamashita T, Wada R, Sasaki T, Deng C, Bierfreund U, et al. 1999. A vital role for glycosphingolipid synthesis during development and differentiation. Proc Natl Acad Sci USA 96: 9142–9147.PubMedGoogle Scholar
  217. Yang LJ, Zeller CB, Shaper NL, Kiso M, Hasegawa A, et al. 1996. Gangliosides are neuronal ligands for myelin-associated glycoprotein. Proc Natl Acad Sci USA 93: 814–818.PubMedGoogle Scholar
  218. Yoshida K, Oshima A, Shimmoto M, Fukuhara Y, Sakuraba H, et al. 1991. Human β-galactosidase gene mutations in GM1-gangliosidosis: A common mutation among Japanese adult/chronic cases. Am J Hum Genet 49: 435–442.PubMedGoogle Scholar
  219. Zhao H, Grabowski GA. 2002. Gaucher disease: Perspectives on a prototype lysosomal disease. Cell Mol Life Sci 59: 694–707.PubMedGoogle Scholar
  220. Zhou D, Cantu C, Sagiv Y, III Schrantz N, Kulkarni AB, et al. 2004. Editing of CD1d-bound lipid antigens by endosomal lipid transfer proteins. Science 303: 523–527.PubMedGoogle Scholar
  221. Zschoche A, Furst W, Schwarzmann G, Sanhoff K. 1994. Hydrolysis of lactosylceramide by human galactosylceramidase and GM1-β-galactosidase in a detergent-free system and its stimulation by sphingolipid activator proteins, sap-B and sap-C. Activator proteins stimulate lactosylceramide hydrolysis. Eur J Biochem 222: 83–90.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • S. L. Hoops
  • T. Kolter
  • K. Sandhoff

There are no affiliations available

Personalised recommendations