Advertisement

Bioactive Sphingolipids: An Overview on Ceramide, Ceramide 1-Phosphate Dihydroceramide, Sphingosine, Sphingosine 1-Phosphate

  • J. M. Kraveka
  • Y. A. Hannun
Reference work entry

Abstract:

Bioactive sphingolipids such as ceramide, ceramide 1-phosphate, dihydroceramide, sphingosine, and sphingosine 1-phosphate have key roles in cell proliferation, differentiation, senescence, apoptosis, migration, carcinogenesis, inflammation, and angiogenesis. There has been much progress made in understanding the complex pathways of sphingolipid metabolism and identifying the enzymes involved in sphingolipid production. This chapter reviews the structure, metabolism and functions of these bioactive sphingolipids.

Keywords

Sphingosine Kinase Sphingolipid Metabolism Fatty Acid Chain Length Acid SMase Complex Sphingolipids 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations:

alk-SMase

alkaline sphingomyelinase

aSMase

acid sphingomyelinase

C1P

ceramide 1-phoshpate

CDase

ceramidase

Cer

ceramide

CERK

ceramide kinase

CerS

(dihydro)ceramide synthases

DAG

diacylglycerol

DEGS-1

dihydroceramide desaturase

dhCer

dihydroceramide

ER

endoplasmic reticulum

GalCer

galactosylceramide

GCS

glucosylceramide synthase

GluCer glucosylceramide; GSLs; glycosphingolipids; haCER

human alkaline ceramidase

haPHC

human alkaline phytoceramidase

MAMs

mitochondria-associated membranes

nSMase

neutral sphingomyelinase

PKC

protein kinase C

Rb

retinoblastoma protein

S1P

sphingosine 1-phosphate

SK

sphingosine kinases

SM

sphingomyelin

SMases

sphingomyelinases

Sph

sphingosine

References

  1. Ahn EH, Schroeder JJ. 2002. Sphingoid bases and ceramide induce apoptosis in HT-29 and HCT-116 human colon cancer cells. Exp Biol Med (Maywood) 227: 345–353.Google Scholar
  2. Bernardo K, Hurwitz R, Zenk T, Desnick RJ, Ferlinz K, et al. 1995. Purification, characterization, and biosynthesis of human acid ceramidase. J Biol Chem 270: 11098–11102.PubMedCrossRefGoogle Scholar
  3. Bielawska A, Crane HM, Liotta D, Obeid LM, Hannun YA. 1993. Selectivity of ceramide-mediated biology. Lack of activity of erythro-dihydroceramide. J Biol Chem 268: 26226–26232.PubMedGoogle Scholar
  4. Biswal SS, Datta K, Acquaah-Mensah GK, Kehrer JP. 2000. Changes in ceramide and sphingomyelin following fludarabine treatment of human chronic B-cell leukemia cells. Toxicology 154: 45–53.PubMedCrossRefGoogle Scholar
  5. Bose R, Verheij M, Haimovitz-Friedman A, Scotto K, Fuks Z, et al. 1995. Ceramide synthase mediates daunorubicin-induced apoptosis: An alternative mechanism for generating death signals. Cell 82: 405–414.PubMedCrossRefGoogle Scholar
  6. Chalfant CE, Rathman K, Pinkerman RL, Wood RE, Obeid LM, et al. 2002. De novo ceramide regulates the alternative splicing of caspase 9 and Bcl-x in A549 lung adenocarcinoma cells. Dependence on protein phosphatase-1. J Biol Chem 277: 12587–12595.PubMedCrossRefGoogle Scholar
  7. Chalfant CE, Spiegel S. 2005. Sphingosine 1-phosphate and ceramide 1-phosphate: Expanding roles in cell signaling. J Cell Sci 118: 4605–4612.PubMedCrossRefGoogle Scholar
  8. Chang HC, Tsai LH, Chuang LY, Hung WC. 2001. Role of AKT kinase in sphingosine-induced apoptosis in human hepatoma cells. J Cell Physiol 188: 188–193.PubMedCrossRefGoogle Scholar
  9. Clarke CJ, Hannun YA. 2006. Neutral sphingomyelinases and nSMase2: Bridging the gaps. Biochim Biophys Acta 1758: 1893–1901.PubMedCrossRefGoogle Scholar
  10. Conway A, Pyne NJ, Pyne S. 2000. Ceramide-dependent regulation of p42/p44 mitogen-activated protein kinase and c-Jun N-terminal-directed protein kinase in cultured airway smooth muscle cells. Cell Signal 12: 737–743.PubMedCrossRefGoogle Scholar
  11. Cuvillier O, Edsall L, Spiegel S. 2000. Involvement of sphingosine in mitochondria-dependent Fas-induced apoptosis of type II Jurkat T cells. J Biol Chem 275: 15691–15700.PubMedCrossRefGoogle Scholar
  12. Cuvillier O, Nava VE, Murthy SK, Edsall LC, Levade T, et al. 2001. Sphingosine generation, cytochrome c release, and activation of caspase-7 in doxorubicin-induced apoptosis of MCF7 breast adenocarcinoma cells. Cell Death Differ 8: 162–171.PubMedCrossRefGoogle Scholar
  13. Dobrowsky RT, Kamibayashi C, Mumby MC, Hannun YA. 1993. Ceramide activates heterotrimeric protein phosphatase 2A. J Biol Chem 268: 15523–15530.PubMedGoogle Scholar
  14. Duan RD, Cheng Y, Hansen G, Hertervig E, Liu JJ, et al. 2003. Purification, localization, and expression of human intestinal alkaline sphingomyelinase. J Lipid Res 44: 1241–1250.PubMedCrossRefGoogle Scholar
  15. El Bawab S, Birbes H, Roddy P, Szulc ZM, Bielawska A, et al. 2001. Biochemical characterization of the reverse activity of rat brain ceramidase. A CoA-independent and fumonisin B1-insensitive ceramide synthase. J Biol Chem 276: 16758–16766.PubMedCrossRefGoogle Scholar
  16. El Bawab S, Roddy P, Qian T, Bielawska A, Lemasters JJ, et al. 2000. Molecular cloning and characterization of a human mitochondrial ceramidase. J Biol Chem 275: 21508–21513.PubMedCrossRefGoogle Scholar
  17. Futerman AH, Hannun YA. 2004. The complex life of simple sphingolipids. EMBO Rep 5: 777–782.PubMedCrossRefGoogle Scholar
  18. Futerman AH, Riezman H. 2005. The ins and outs of sphingolipid synthesis. Trends Cell Biol 15: 312–318.PubMedCrossRefGoogle Scholar
  19. Gatt S. 1963. Enzymic Hydrolysis and Synthesis of Ceramides. J Biol Chem 238: 3131–3133.PubMedGoogle Scholar
  20. Goldkorn T, Balaban N, Shannon M, Chea V, Matsukuma K, et al. 1998. H2O2 acts on cellular membranes to generate ceramide signaling and initiate apoptosis in tracheobronchial epithelial cells. J Cell Sci 111 (Pt 21): 3209–3220.PubMedGoogle Scholar
  21. Gomez del Pulgar T, Velasco G, Sanchez C, Haro A, Guzman M. 2002. De novo-synthesized ceramide is involved in cannabinoid-induced apoptosis. Biochem J 363: 183–188.PubMedCrossRefGoogle Scholar
  22. Gomez-Munoz A. 2004. Ceramide-1-phosphate: A novel regulator of cell activation. FEBS Lett 562: 5–10.PubMedCrossRefGoogle Scholar
  23. Gomez-Munoz A, Duffy PA, Martin A, O’Brien L, Byun HS, et al. 1995. Short-chain ceramide-1-phosphates are novel stimulators of DNA synthesis and cell division: Antagonism by cell-permeable ceramides. Mol Pharmacol 47: 833–839.PubMedGoogle Scholar
  24. Gomez-Munoz A, Kong JY, Salh B, Steinbrecher UP. 2004. Ceramide-1-phosphate blocks apoptosis through inhibition of acid sphingomyelinase in macrophages. J Lipid Res 45: 99–105.PubMedCrossRefGoogle Scholar
  25. Hailemariam TK, Huan C, Liu J, Li Z, Roman C, et al. 2008. Sphingomyelin Synthase 2 Deficiency Attenuates NF{kappa}B Activation. Arterioscler Thromb Vasc Biol. 28: 1519-1526.PubMedCrossRefGoogle Scholar
  26. Haimovitz-Friedman A, Kan CC, Ehleiter D, Persaud RS, McLoughlin M, et al. 1994. Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J Exp Med 180: 525–535.PubMedCrossRefGoogle Scholar
  27. Hamaguchi A, Suzuki E, Murayama K, Fujimura T, Hikita T, et al. 2003. Sphingosine-dependent protein kinase-1, directed to 14-3-3, is identified as the kinase domain of protein kinase C delta. J Biol Chem 278: 41557–41565.PubMedCrossRefGoogle Scholar
  28. Hanada K, Kumagai K, Yasuda S, Miura Y, Kawano M, et al. 2003. Molecular machinery for non-vesicular trafficking of ceramide. Nature 426: 803–809.PubMedCrossRefGoogle Scholar
  29. Hannun YA, Loomis CR, Merrill AH, Jr., Bell RM. 1986. Sphingosine inhibition of protein kinase C activity and of phorbol dibutyrate binding in vitro and in human platelets. J Biol Chem 261: 12604–12609.PubMedGoogle Scholar
  30. Hannun YA, Obeid LM. 2008. Principles of bioactive lipid signalling: Lessons from sphingolipids. Nat Rev Mol Cell Biol 9: 139–150.PubMedCrossRefGoogle Scholar
  31. Heinrich M, Wickel M, Schneider-Brachert W, Sandberg C, Gahr J, et al. 1999. Cathepsin D targeted by acid sphingomyelinase-derived ceramide. Embo J 18: 5252–5263.PubMedCrossRefGoogle Scholar
  32. Hinkovska-Galcheva V, Boxer LA, Kindzelskii A, Hiraoka M, Abe A, et al. 2005. Ceramide 1-phosphate, a mediator of phagocytosis. J Biol Chem 280: 26612–26621.PubMedCrossRefGoogle Scholar
  33. Hofmann K, Tomiuk S, Wolff G, Stoffel W. 2000. Cloning and characterization of the mammalian brain-specific, Mg2+ -dependent neutral sphingomyelinase. Proc Natl Acad Sci USA 97: 5895–5900.PubMedCrossRefGoogle Scholar
  34. Hung WC, Chang HC, Chuang LY. 1999. Activation of caspase-3-like proteases in apoptosis induced by sphingosine and other long-chain bases in Hep3B hepatoma cells. Biochem J 338(Pt 1): 161–166.PubMedCrossRefGoogle Scholar
  35. Hwang YH, Tani M, Nakagawa T, Okino N, Ito M. 2005. Subcellular localization of human neutral ceramidase expressed in HEK293 cells. Biochem Biophys Res Commun 331: 37–42.PubMedCrossRefGoogle Scholar
  36. Igarashi N, Okada T, Hayashi S, Fujita T, Jahangeer S, et al. 2003. Sphingosine kinase 2 is a nuclear protein and inhibits DNA synthesis. J Biol Chem 278: 46832–46839.PubMedCrossRefGoogle Scholar
  37. Ikeda M, Kihara A, Igarashi Y. 2004. Sphingosine-1-phosphate lyase SPL is an endoplasmic reticulum-resident, integral membrane protein with the pyridoxal 5′-phosphate binding domain exposed to the cytosol. Biochem Biophys Res Commun 325: 338–343.PubMedCrossRefGoogle Scholar
  38. Jarvis WD, Fornari FA, Jr., Auer KL, Freemerman AJ, Szabo E, et al. 1997. Coordinate regulation of stress- and mitogen-activated protein kinases in the apoptotic actions of ceramide and sphingosine. Mol Pharmacol 52: 935–947.PubMedGoogle Scholar
  39. Jiang Q, Wong J, Fyrst H, Saba JD, Ames BN. 2004. gamma-Tocopherol or combinations of vitamin E forms induce cell death in human prostate cancer cells by interrupting sphingolipid synthesis. Proc Natl Acad Sci USA 101: 17825–17830.PubMedCrossRefGoogle Scholar
  40. Johnson KR, Becker KP, Facchinetti MM, Hannun YA, Obeid LM. 2002. PKC-dependent activation of sphingosine kinase 1 and translocation to the plasma membrane. Extracellular release of sphingosine-1-phosphate induced by phorbol 12-myristate 13-acetate (PMA). J Biol Chem 277: 35257–35262.PubMedCrossRefGoogle Scholar
  41. Kim MY, Linardic C, Obeid L, Hannun Y. 1991. Identification of sphingomyelin turnover as an effector mechanism for the action of tumor necrosis factor alpha and gamma-interferon. Specific role in cell differentiation. J Biol Chem 266: 484–489.PubMedGoogle Scholar
  42. Kitatani K, Idkowiak-Baldys J, Hannun YA. 2008. The sphingolipid salvage pathway in ceramide metabolism and signaling. Cell Signal 20: 1010–1018.PubMedCrossRefGoogle Scholar
  43. Kohama T, Olivera A, Edsall L, Nagiec MM, Dickson R, et al. 1998. Molecular cloning and functional characterization of murine sphingosine kinase. J Biol Chem 273: 23722–23728.PubMedCrossRefGoogle Scholar
  44. Kraveka JM, Li L, Szulc ZM, Bielawski J, Ogretmen B, et al. 2007. Involvement of dihydroceramide desaturase in cell cycle progression in human neuroblastoma cells. J Biol Chem 282: 16718–16728.PubMedCrossRefGoogle Scholar
  45. Krut O, Wiegmann K, Kashkar H, Yazdanpanah B, Kronke M. 2006. Novel tumor necrosis factor-responsive mammalian neutral sphingomyelinase-3 is a C-tail-anchored protein. J Biol Chem 281: 13784–13793.PubMedCrossRefGoogle Scholar
  46. Lacour S, Hammann A, Grazide S, Lagadic-Gossmann D, Athias A, et al. 2004. Cisplatin-induced CD95 redistribution into membrane lipid rafts of HT29 human colon cancer cells. Cancer Res 64: 3593–3598.PubMedCrossRefGoogle Scholar
  47. Lin T, Genestier L, Pinkoski MJ, Castro A, Nicholas S, et al. 2000. Role of acidic sphingomyelinase in Fas/CD95-mediated cell death. J Biol Chem 275: 8657–8663.PubMedCrossRefGoogle Scholar
  48. Liu B, Andrieu-Abadie N, Levade T, Zhang P, Obeid LM, et al. 1998. Glutathione regulation of neutral sphingomyelinase in tumor necrosis factor-alpha-induced cell death. J Biol Chem 273: 11313–11320.PubMedCrossRefGoogle Scholar
  49. Liu H, Sugiura M, Nava VE, Edsall LC, Kono K, et al. 2000. Molecular cloning and functional characterization of a novel mammalian sphingosine kinase type 2 isoform. J Biol Chem 275: 19513–19520.PubMedCrossRefGoogle Scholar
  50. Lozano J, Berra E, Municio MM, Diaz-Meco MT, Dominguez I, et al. 1994. Protein kinase C zeta isoform is critical for kappa B-dependent promoter activation by sphingomyelinase. J Biol Chem 269: 19200–19202.PubMedGoogle Scholar
  51. Luberto C, Hassler DF, Signorelli P, Okamoto Y, Sawai H, et al. 2002. Inhibition of tumor necrosis factor-induced cell death in MCF7 by a novel inhibitor of neutral sphingomyelinase. J Biol Chem 277: 41128–41139.PubMedCrossRefGoogle Scholar
  52. Luberto C, Yoo DS, Suidan HS, Bartoli GM, Hannun YA. 2000. Differential effects of sphingomyelin hydrolysis and resynthesis on the activation of NF-kappa B in normal and SV40-transformed human fibroblasts. J Biol Chem 275: 14760–14766.PubMedCrossRefGoogle Scholar
  53. Mao C, Xu R, Szulc ZM, Bielawska A, Galadari SH, et al. 2001. Cloning and characterization of a novel human alkaline ceramidase. A mammalian enzyme that hydrolyzes phytoceramide. J Biol Chem 276: 26577–26588.PubMedCrossRefGoogle Scholar
  54. Marchesini N, Hannun YA. 2004. Acid and neutral sphingomyelinases: Roles and mechanisms of regulation. Biochem Cell Biol 82: 27–44.PubMedCrossRefGoogle Scholar
  55. Melendez AJ, Carlos-Dias E, Gosink M, Allen JM, Takacs L. 2000. Human sphingosine kinase: Molecular cloning, functional characterization and tissue distribution. Gene 251: 19–26.PubMedCrossRefGoogle Scholar
  56. Merrill AH, Jr. 2002. De novo sphingolipid biosynthesis: A necessary, but dangerous, pathway. J Biol Chem 277: 25843–25846.PubMedCrossRefGoogle Scholar
  57. Michel C, van Echten-Deckert G, Rother J, Sandhoff K, Wang E, et al. 1997. Characterization of ceramide synthesis. A dihydroceramide desaturase introduces the 4,5-trans-double bond of sphingosine at the level of dihydroceramide. J Biol Chem 272: 22432–22437.PubMedCrossRefGoogle Scholar
  58. Mitsutake S, Kim TJ, Inagaki Y, Kato M, Yamashita T, et al. 2004. Ceramide kinase is a mediator of calcium-dependent degranulation in mast cells. J Biol Chem 279: 17570–17577.PubMedCrossRefGoogle Scholar
  59. Ogretmen B. 2006. Sphingolipids in cancer: Regulation of pathogenesis and therapy. FEBS Lett 580: 5467–5476.PubMedCrossRefGoogle Scholar
  60. Ogretmen B, Hannun YA. 2004. Biologically active sphingolipids in cancer pathogenesis and treatment. Nat Rev Cancer 4: 604–616.PubMedCrossRefGoogle Scholar
  61. Okino N, He X, Gatt S, Sandhoff K, Ito M, et al. 2003. The reverse activity of human acid ceramidase. J Biol Chem 278: 29948–29953.PubMedCrossRefGoogle Scholar
  62. Perry DK, Carton J, Shah AK, Meredith F, Uhlinger DJ, et al. 2000. Serine palmitoyltransferase regulates de novo ceramide generation during etoposide-induced apoptosis. J Biol Chem 275: 9078–9084.PubMedCrossRefGoogle Scholar
  63. Pettus BJ, Bielawska A, Subramanian P, Wijesinghe DS, Maceyka M, et al. 2004. Ceramide 1-phosphate is a direct activator of cytosolic phospholipase A2. J Biol Chem 279: 11320–11326.PubMedCrossRefGoogle Scholar
  64. Pettus BJ, Bielawski J, Porcelli AM, Reames DL, Johnson KR, et al. 2003. The sphingosine kinase 1/sphingosine-1-phosphate pathway mediates COX-2 induction and PGE2 production in response to TNF-alpha. Faseb J 17: 1411–1421.PubMedCrossRefGoogle Scholar
  65. Pewzner-Jung Y, Ben-Dor S, Futerman AH. 2006. When do Lasses (longevity assurance genes) become CerS (ceramide synthases)?: Insights into the regulation of ceramide synthesis. J Biol Chem 281: 25001–25005.PubMedCrossRefGoogle Scholar
  66. Pitson SM, D’Andrea RJ, Vandeleur L, Moretti PA, Xia P, et al. 2000. Human sphingosine kinase: Purification, molecular cloning and characterization of the native and recombinant enzymes. Biochem J 350(Pt 2): 429–441.PubMedCrossRefGoogle Scholar
  67. Rosenfeldt HM, Hobson JP, Maceyka M, Olivera A, Nava VE, et al. 2001. EDG-1 links the PDGF receptor to Src and focal adhesion kinase activation leading to lamellipodia formation and cell migration. Faseb J 15: 2649–2659.PubMedCrossRefGoogle Scholar
  68. Sawai H, Domae N, Nagan N, Hannun YA. 1999. Function of the cloned putative neutral sphingomyelinase as lyso-platelet activating factor-phospholipase C. J Biol Chem 274: 38131–38139.PubMedCrossRefGoogle Scholar
  69. Schneider PB, Kennedy EP. 1967. Sphingomyelinase in normal human spleens and in spleens from subjects with Niemann-Pick disease. J Lipid Res 8: 202–209.PubMedGoogle Scholar
  70. Schulz A, Mousallem T, Venkataramani M, Persaud-Sawin DA, Zucker A, et al. 2006. The CLN9 protein, a regulator of dihydroceramide synthase. J Biol Chem 281: 2784–2794.PubMedCrossRefGoogle Scholar
  71. Schwandner R, Wiegmann K, Bernardo K, Kreder D, Kronke M. 1998. TNF receptor death domain-associated proteins TRADD and FADD signal activation of acid sphingomyelinase. J Biol Chem 273: 5916–5922.PubMedCrossRefGoogle Scholar
  72. Spiegel S, Milstien S. 2003. Sphingosine-1-phosphate: An enigmatic signalling lipid. Nat Rev Mol Cell Biol 4: 397–407.PubMedCrossRefGoogle Scholar
  73. Stiban J, Fistere D, Colombini M. 2006. Dihydroceramide hinders ceramide channel formation: Implications on apoptosis. Apoptosis 11: 773–780.PubMedCrossRefGoogle Scholar
  74. Strum JC, Small GW, Pauig SB, Daniel LW. 1994. 1-beta-D-Arabinofuranosylcytosine stimulates ceramide and diglyceride formation in HL-60 cells. J Biol Chem 269: 15493–15497.PubMedGoogle Scholar
  75. Sugiki H, Hozumi Y, Maeshima H, Katagata Y, Mitsuhashi Y, et al. 2000. C2-ceramide induces apoptosis in a human squamous cell carcinoma cell line. Br J Dermatol 143: 1154–1163.PubMedCrossRefGoogle Scholar
  76. Sugiura M, Kono K, Liu H, Shimizugawa T, Minekura H, et al. 2002. Ceramide kinase, a novel lipid kinase. Molecular cloning and functional characterization. J Biol Chem 277: 23294–23300.PubMedCrossRefGoogle Scholar
  77. Sun W, Xu R, Hu W, Jin J, Crellin HA, et al. 2008. Upregulation of the human alkaline ceramidase 1 and acid ceramidase mediates calcium-induced differentiation of epidermal keratinocytes. J Invest Dermatol 128: 389–397.PubMedCrossRefGoogle Scholar
  78. Suzuki A, Iwasaki M, Kato M, Wagai N. 1997. Sequential operation of ceramide synthesis and ICE cascade in CPT-11-initiated apoptotic death signaling. Exp Cell Res 233: 41–47.PubMedCrossRefGoogle Scholar
  79. Taha TA, Mullen TD, Obeid LM. 2006. A house divided: Ceramide, sphingosine, and sphingosine-1-phosphate in programmed cell death. Biochim Biophys Acta 1758: 2027–2036.PubMedCrossRefGoogle Scholar
  80. Tettamanti G. 2004. Ganglioside/glycosphingolipid turnover: New concepts. Glycoconj J 20: 301–317.PubMedCrossRefGoogle Scholar
  81. Tomiuk S, Zumbansen M, Stoffel W. 2000. Characterization and subcellular localization of murine and human magnesium-dependent neutral sphingomyelinase. J Biol Chem 275: 5710–5717.PubMedCrossRefGoogle Scholar
  82. Triola G, Fabrias G, Dragusin M, Niederhausen L, Broere R, et al. 2004. Specificity of the dihydroceramide desaturase inhibitor N-[(1R,2S)-2-hydroxy-1-hydroxymethyl-2-(2-tridecyl-1-cyclopropenyl)ethyl]o ctanamide (GT11) in primary cultured cerebellar neurons. Mol Pharmacol 66: 1671–1678.PubMedCrossRefGoogle Scholar
  83. Villani M, Subathra M, Im YB, Choi Y, Signorelli P, et al. 2008. Sphingomyelin synthases regulate production of diacylglycerol at the golgi. Biochem J 414: 31-41.PubMedCrossRefGoogle Scholar
  84. Wolff RA, Dobrowsky RT, Bielawska A, Obeid LM, Hannun YA. 1994. Role of ceramide-activated protein phosphatase in ceramide-mediated signal transduction. J Biol Chem 269: 19605–19609.PubMedGoogle Scholar
  85. Wymann MP, Schneiter R. 2008. Lipid signalling in disease. Nat Rev Mol Cell Biol 9: 162–176.PubMedCrossRefGoogle Scholar
  86. Xu R, Jin J, Hu W, Sun W, Bielawski J, et al. 2006. Golgi alkaline ceramidase regulates cell proliferation and survival by controlling levels of sphingosine and S1P. Faseb J 20: 1813–1825.PubMedCrossRefGoogle Scholar
  87. Yamaguchi S, Suzuki K. 1977. Purification and characterization of sphingomyelinase from human brain. J Biol Chem 252: 3805–3813.PubMedGoogle Scholar
  88. Zeidan YH, Hannun YA. 2007. Translational aspects of sphingolipid metabolism. Trends Mol Med 13: 327–336.PubMedCrossRefGoogle Scholar
  89. Zhang Y, Mattjus P, Schmid PC, Dong Z, Zhong S, et al. 2001. Involvement of the acid sphingomyelinase pathway in uva-induced apoptosis. J Biol Chem 276: 11775–11782.PubMedCrossRefGoogle Scholar
  90. Zheng W, Kollmeyer J, Symolon H, Momin A, Munter E, et al. 2006. Ceramides and other bioactive sphingolipid backbones in health and disease: Lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy. Biochim Biophys Acta 1758: 1864–1884.PubMedCrossRefGoogle Scholar
  91. Zhou J, Saba JD. 1998. Identification of the first mammalian sphingosine phosphate lyase gene and its functional expression in yeast. Biochem Biophys Res Commun 242: 502–507.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • J. M. Kraveka
  • Y. A. Hannun

There are no affiliations available

Personalised recommendations