Advertisement

Neurochemistry of the Gustatory System

  • D. V. Smith
  • J. D. BoughterJr
Reference work entry

Abstract:

The sense of taste is mediated by receptor mechanisms that are distributed on modified epithelial cells within structures called taste buds, which are located on the tongue and other parts of the oral cavity. These cells are innervated by branches of one of three cranial nerves, including the chorda tympani and greater superficial petrosal branches of VII, the lingual-tonsillar branch of IX, and the superior laryngeal branch of X. These nerves project into the rostral portion of the nucleus of the solitary tract (NST) of the medulla. Gustatory information is carried from there to oral motor circuits within the brainstem and to the parabrachial nuclei (PbN) of the pons, from which pathways arise to thalamus and insular cortex and also into areas of the limbic forebrain, including the lateral hypothalamus (LH), central nucleus of the amygdala (CeA), and the bed nucleus of the stria terminalis (BST). Taste buds contain cells that can be classified into types on ultrastructural grounds and these in turn have been shown to exhibit expression of a wide array of molecules, many of which are characteristic of a particular cell type. The transduction of chemical stimuli by taste receptor cells is mediated by several different mechanisms. Salts and acids interact directly with ion channels to depolarize receptor cells, whereas sweet- and bitter-tasting stimuli and amino acids interact with G-protein-coupled receptors of the T1R and T2R families, linked to second-messenger pathways. Although some of these receptors appear to be segregated into different cells, the electrophysiological and calcium imaging data show that taste bud cells are often responsive to stimuli of more than one quality. This multiple sensitivity is evident to an even greater degree in first-order nerve fibers and in central gustatory neurons, due to convergence of afferent input onto higher-order neurons. Afferent input into the NST appears to be mediated by glutamate and most second-order neurons are maintained under tonic GABAergic inhibition. Some of the neurons in the NST are excited by substance P and some are inhibited by met-enkephalin. Areas of the forebrain that receive gustatory input, including the insular cortex, LH, CeA, and BST, provide descending modulatory control over taste neurons in both the NST and PbN.

References

  1. Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJP, et al. 2000. A novel family of mammalian taste receptors. Cell 100: 693–702.PubMedCrossRefGoogle Scholar
  2. Allen GV, Saper CB, Hurley JM, Cechetto DF. 1991. Organization of visceral and limbic connections in the insular cortex of the rat. J Comp Neurol 311: 1–23.PubMedCrossRefGoogle Scholar
  3. Avenet P, Lindemann B. 1987. Patch-clamp study of isolated taste receptor cells of the frog. J Membr Biol 97: 223–240.PubMedCrossRefGoogle Scholar
  4. Bachmanov AA, Li X, Li S, Neira M, Beauchamp GK, et al. 2001. High-resolution genetic mapping of the sucrose octaacetate taste aversion (SoA) locus on mouse Chromosome 6. Mamm Genome 12: 695–699.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bachmanov AA, Li X, Reed DR, Ohmen JD, Li S, et al. 2001. Positional cloning of the mouse saccharin preference (Sac) locus. Chem Senses 26: 925–933.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Barry MA, Haglund S, Savoy LD. 2001. Association of extracellular acetylcholinesterase with gustatory nerve terminal fibers in the nucleus of the solitary tract. Brain Res 921: 12–20.PubMedCrossRefGoogle Scholar
  7. Barry MA, Halsell CB, Whitehead MC. 1993. Organization of the nucleus of the solitary tract in the hamster: Acetylcholinesterase, NADH dehydrogenase and cytochrome oxidase histochemistry. Microsc Res Tech 26: 231–244.PubMedCrossRefGoogle Scholar
  8. Behrens M, Brockhoff A, Kuhn C, Bufe B, Winnig M, et al. 2004. The human taste receptor hTAS2R14 responds to a variety of different bitter compounds. Biochem Biophys Res Commun 319: 479–485.PubMedCrossRefGoogle Scholar
  9. Beidler LM, Smallman R. 1965. Renewal of cells within taste buds. J Cell Biol 27: 263–272.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Belecky TL, Smith DV. 1990. Postnatal development of palatal and laryngeal taste buds in the hamster. J Comp Neurol 293: 646–654.PubMedCrossRefGoogle Scholar
  11. Benos DJ, Stranton BA. 1999. Functional domains within the degenerin/epithelial sodium channel (Deg/ENaC) superfamily of ion channels. J Physiol 520: 631–644.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Boughter JD Jr, Gilbertson TA. 1999. From channels to behavior: An integrative model of NaCl taste. Neuron 22: 213–215.PubMedCrossRefGoogle Scholar
  13. Bufe B, Hofmann T, Krautwurst D, Raguse JD, Meyerhof W. 2002. The human TAS2R16 receptor mediates bitter taste in response to beta-glucopyranosides. Nat Genet 32: 397–401.PubMedCrossRefGoogle Scholar
  14. Caicedo A, Kim K-N, Roper SD. 2002. Individual mouse taste cells respond to multiple chemical stimuli. J Physiol 544: 501–509.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Caicedo A, Pereira E, Margolskee RF, Roper SD. 2003. Role of the G-protein subunit α-gustducin in taste cell responses to bitter stimuli. J Neurosci 23: 9947–9952.PubMedGoogle Scholar
  16. Chandrashekar J, Mueller KL, Hoon MA, Adler E, Feng L, et al. 2000. T2Rs function as bitter taste receptors. Cell 100: 703–711.PubMedCrossRefGoogle Scholar
  17. Chang F-CT, Scott TR. 1984. Conditioned taste aversions modify neural responses in the rat nucleus tractus solitarius. J Neurosci 4: 1850–1862.PubMedGoogle Scholar
  18. Chen Y, Sun X-D, Herness MS. 1996. Characteristics of action potentials and their underlying outward currents in rat taste receptor cells. J Neurophysiol 75: 820–831.PubMedGoogle Scholar
  19. Cho YK, Li C-S, Smith DV. 2002a. Gustatory projections from the nucleus of the solitary tract to the parabrachial nuclei in the hamster. Chem Senses 27: 81–90.PubMedCrossRefGoogle Scholar
  20. Cho YK, Li C-S, Smith DV. 2002b. Taste responses of neurons of the hamster solitary nucleus are enhanced by lateral hypothalamic stimulation. J Neurophysiol 87: 1981–1992.PubMedGoogle Scholar
  21. Cho YK, Li C-S, Smith DV. 2003. Descending influences from the lateral hypothalamus and amygdala converge onto medullary taste neurons. Chem Senses 28: 155–171.PubMedCrossRefGoogle Scholar
  22. Clapp TR, Stone LM, Margolskee RF, Kinnamon SC. 2001. Immunocytochemical evidence for co-expression of Type III IP3 receptor with signaling components of bitter taste transduction. BMC Neurosci 2: 6.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Clapp TR, Yang R, Stoick CL, Kinnamon SC, Kinnamon JC. 2004. Morphological characterization of rat taste receptor cells that express components of the phospholipase C signaling pathway. J Comp Neurol 468: 311–321.PubMedCrossRefGoogle Scholar
  24. Contreras RJ, Beckstead RM, Norgren R. 1982. The central projections of the trigeminal, facial, glossopharyngeal and vagus nerves: An autoradiographic study in the rat. J Auton Nerv Syst 6: 303–322.PubMedCrossRefGoogle Scholar
  25. Cottler-Fox M, Arvidson K, Hammarlune E, Friberg U. 1987. Fixation and occurrence of dark and light cells in taste buds of fungiform papillae. Scand J Dental Res 95: 417–427.Google Scholar
  26. Cummings TA, Daniels C, Kinnamon SC. 1996. Sweet taste transduction in hamster: Sweeteners and cyclic nucleotides depolarize taste cells by reducing a K+ current. J Neurophysiol 75: 1256–1263.PubMedGoogle Scholar
  27. Davis BJ, Kream RM. 1993. Distribution of tachykinin- and opioid-expressing neurons in the hamster solitary nucleus: An immuno- and in situ hybridization histochemical study. Brain Res 616: 6–16.PubMedCrossRefGoogle Scholar
  28. Davis BJ, Smith DV. 1997. Substance P modulates taste responses in the nucleus of the solitary tract of the hamster. Neuroreport 8: 1723–1727.PubMedCrossRefGoogle Scholar
  29. Di Lorenzo PM, Monroe S. 1995. Corticofugal influence on taste responses in the nucleus of the solitary tract in the rat. J Neurophysiol 74: 258–272.PubMedGoogle Scholar
  30. Duncan HJ, Brining SK, Smith DV. 1990. Distribution of substance P-immunoreactive nerve terminals in gustatory regions of the hamster solitary nucleus. Chem Senses 15: 568.CrossRefGoogle Scholar
  31. Emmers R, Benjamin RM, Blomquist AJ. 1962. Thalamic localization of afferents from the tongue in albino rats. J Comp Neurol 118: 43–48.PubMedCrossRefGoogle Scholar
  32. Farbman AI. 1980. Renewal of taste bud cells in rat circumvallate papillae. Cell Tiss Kinetics 13: 349–357.Google Scholar
  33. Finger TE. 2005. Cell types and lineages in taste buds. Chem Senses 30 (Suppl. 1): i54–i55.PubMedCrossRefGoogle Scholar
  34. Fischer A, Gilad Y, man O, Paabo S. 2005. Evolution of bitter taste receptors in humans and apes. Mol Biol Evol 22: 432–436.PubMedCrossRefGoogle Scholar
  35. Frank M. 1973. An analysis of hamster afferent taste nerve response functions. J Gen Physiol 61: 588–618.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Frank ME, Bieber SL, Smith DV. 1988. The organization of taste sensibilities in hamster chorda tympani nerve fibers. J Gen Physiol 91: 861–896.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Frank RA, Preshaw RL, Stutz RM, Valenstein ES. 1982. Lateral hypothalamic stimulation: Stimulus-bound eating and self-deprivation. Physiol Behav 29: 17–21.PubMedCrossRefGoogle Scholar
  38. Fuzessery ZM, Hall JC. 1996. Role of GABA in shaping frequency tuning and creating FM sweep selectivity in the inferior colliculus. J Neurophysiol 76: 1059–1073.PubMedGoogle Scholar
  39. Gilbertson TA, Roper SD, Kinnamon SC. 1993. Proton currents through amiloride-sensitive Na+ channels in isolated hamster taste cells: Enhancement by vasopressin and cAMP. Neuron 10: 931–942.PubMedCrossRefGoogle Scholar
  40. Gilbertson TA, Boughter JD Jr, Zhang H, Smith DV. 2001. Distribution of gustatory sensitivities in rat taste cells: Whole-cell responses to apical chemical stimulation. J Neurosci 21: 4931–4941.PubMedGoogle Scholar
  41. Giza BK, Scott TR. 1983. Blood glucose selectively affects taste-evoked activity in rat nucleus tractus solitarius. Physiol Behav 31: 643–650.PubMedGoogle Scholar
  42. Giza BK, Scott TR. 1987. Intravenous insulin infusions in rats decrease gustatory-evoked responses to sugars. Am J Physiol 252: R994–R1002.PubMedGoogle Scholar
  43. Giza BK, Deems RO, Vanderweele DA, Scott TR. 1993. Pancreatic glucagon suppresses gustatory responsiveness to glucose. Am J Physiol 265: R1231–R1237.PubMedGoogle Scholar
  44. Grossman SP, Dacey D, Halaris AE, Collier T, Routtenberg A. 1978. Aphagia and adipsia after preferential destruction of nerve cell bodies in hypothalamus. Science 202: 537–539.PubMedCrossRefGoogle Scholar
  45. Guth L. 1957. The effects of glossopharyngeal nerve transection on the circumvallate papilla of the rat. Anat Rec 128: 715–731.PubMedCrossRefGoogle Scholar
  46. Halsell CB. 1992. Organization of parabrachial nucleus efferents to the thalamus and amygdala in the golden hamster. J Comp Neurol 317: 57–78.PubMedCrossRefGoogle Scholar
  47. Halsell CB. 1998. Differential distribution of amygdaloid input across rostral solitary nucleus subdivisions in rat. Ann NY Acad Sci 855: 482–485.PubMedCrossRefGoogle Scholar
  48. Hamilton RB, Norgren R. 1984. Central projections of gustatory nerves in the rat. J Comp Neurol 222: 560–577.PubMedCrossRefGoogle Scholar
  49. Hanamori T, Smith DV. 1989. Gustatory innervation in the rabbit: Central distribution of sensory and motor components of the chorda tympani, glossopharyngeal and superior laryngeal nerves. J Comp Neurol 282: 1–14.PubMedCrossRefGoogle Scholar
  50. HanamoriT, Miller IJ Jr, Smith DV. 1988. Gustatory responsiveness of fibers in the hamster glossopharyngeal nerve. J Neurophysiol 60: 478–498.PubMedGoogle Scholar
  51. Herness MS. 1989. Vasoactive intestinal peptide-like immunoreactivity in rodent taste cells. Neuroscience 33: 411–419.PubMedCrossRefGoogle Scholar
  52. Herness MS, Gilbertson TA. 1999. Cellular mechanisms of taste transduction. Ann Rev Physiol 61: 873–900.CrossRefGoogle Scholar
  53. HernessMS, ZhaoF-L, Lu S-G, Kaya N, Shen T. 2002. Expression and physiological actions of cholecystokinin in rat taste receptor cells. J Neurosci 22: 10018–10029.PubMedGoogle Scholar
  54. Herness S, Chen Y. 1997. Serotonin inhibits calcium-activated K+ current in rat taste receptor cells. Neuroreport 8: 3257–3261.PubMedCrossRefGoogle Scholar
  55. Herness S, Zhao FL, Kaya N, Lu SG, Shen T, et al. 2002. Adrenergic signaling between rat taste receptor cells. J Physiol 543: 601–614.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Huang YJ, Maruyama Y, Lu KS, Pereira E, Plonsky I, et al. 2005. Mouse taste buds use serotonin as a neurotransmitter. J Neurosci 25: 843–847.PubMedCrossRefGoogle Scholar
  57. Kaya N, Shen T, Lu SG, Zhao FL, Herness S. 2004. A paracrine signaling role for serotonin in rat taste buds: Expression and localization of serotonin receptor subtypes. Am J Physiol 286: R649–R658.Google Scholar
  58. Khaisman EB. 1976. Particular features of the innervation of taste buds of the epiglottis in monkeys. Acta Anat 95: 101–115.PubMedCrossRefGoogle Scholar
  59. KimM-R, Kusakabe Y, Miura H, Shindo Y, Ninomiya Y, et al. 2003. Regional expression patterns of taste receptors and gustducin in the mouse tongue. Biochem Biophys Res Commun 312: 500–506.PubMedCrossRefGoogle Scholar
  60. Kim U, Wooding S, Ricci D, Jorde LB, Drayna D. 2005. Worldwide haplotype diversity and coding sequence variation at human bitter taste receptor loci. Hum Mutat 26: 199–204.PubMedCrossRefGoogle Scholar
  61. Kim UK, Jorgenson E, Coon H, Leppert M, Risch N, et al. 2003. Positional cloning of the human quantitative trait locus underlying taste sensitivity to phenylthiocarbamide. Science 299: 1221–1225.PubMedCrossRefGoogle Scholar
  62. King MS, Wang L, Bradley RM. 1993. Substance P excites neurons in the gustatory zone of the rat nucleus tractus solitarius. Brain Res 619: 120–130.PubMedCrossRefGoogle Scholar
  63. Kinnamon JC. 1987. Organization and innervation of taste buds. Neurobiology of taste and smell. Finger TE, Silver WL, editors. New York: Wiley; pp. 277–297.Google Scholar
  64. Kinnamon JC, Taylor BJ, Delay RJ, Roper SD. 1985. Ultrastructure of mouse vallate taste buds. I. Taste cells and their associated synapses. J Comp Neurol 235: 48–60.PubMedCrossRefGoogle Scholar
  65. Kinnamon S. 1988. Taste transduction: A diversity of mechanisms. Trends Neurosci 11: 491–496.PubMedCrossRefGoogle Scholar
  66. Kinnamon SC, Roper SD. 1988. Membrane properties of isolated mudpuppy taste cells. J Gen Physiol 91: 351–371.PubMedCrossRefGoogle Scholar
  67. Kitagawa M, Kusakabe Y, Miura H, Ninomiya Y, Hino A. 2001. Molecular genetic indentification of a candidate receptor gene for sweet taste. Biochem Biophys Res Commun 283: 236–242.PubMedCrossRefGoogle Scholar
  68. Knapp L, Lawton A, Oakley B, Wong L, Zhang C. 1995. Keratins as markers of differentiated taste cells of the rat. Differentiation 58: 341–349.PubMedCrossRefGoogle Scholar
  69. Kosar E, Grill HJ, Norgren R. 1986. Gustatory cortex in the rat. II. Thalamocortical projections. Brain Res 379: 342–352.PubMedCrossRefGoogle Scholar
  70. Kuhn C, Bufe B, Winnig M, Hofmann T, Frank O, et al. 2004. Bitter taste receptors for saccharin and acesulfame K. J Neurosci 24: 10260–10265.PubMedCrossRefGoogle Scholar
  71. Kyriazi HT, Carvell GE, Brumberg JC, Simons DJ. 1996. Quantitative effects of GABA and bicuculline methiodide on receptive-field properties of neurons in real and simulated whisker barrels. J Neurophysiol 75: 547–560.PubMedGoogle Scholar
  72. Lawton DM, Furness DN, Lindemann B, Hackney CM. 2000. Localization of the glutamate-aspartate transporter, GLAST, in rat taste buds. Eur J Neurosci 12: 3163–3171.PubMedCrossRefGoogle Scholar
  73. Lemon CH, Smith DV. 2005. Neural representation of bitter taste in the nucleus of the solitary tract. J Neurophysiol 94: 3719-3729.Google Scholar
  74. Li C-S, Smith DV. 1997. Glutamate receptor antagonists block gustatory afferent input to the nucleus of the solitary tract. J Neurophysiol 77: 1514–1525.PubMedGoogle Scholar
  75. Li C-S, Cho YK, Smith DV. 2002. Taste responses of neurons in the hamster solitary nucleus are modulated by the central nucleus of the amygdala. J Neurophysiol 88: 2979–2992.PubMedCrossRefGoogle Scholar
  76. Li C-S, Cho YC, Smith DV. 2005. Modulation of parabrachial taste neurons by electrical and chemical stimulation of the lateral hypothalamus and amygdala. J Neurophysiol 93: 1183–1196.PubMedCrossRefGoogle Scholar
  77. Li C-S, Davis BJ, Smith DV. 2003. Opioid modulation of taste responses in the nucleus of the solitary tract. Brain Res 965: 21–34.PubMedCrossRefGoogle Scholar
  78. Li X, Staszewski L, Xu H, Durick K, Zoller M, et al. 2002. Human receptors for sweet and umami taste. Proc Natl Acad Sci USA 99: 4692–4696.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Lin W, Ogura T, Kinnamon SC. 2002. Acid-activated cation currents in rat vallate taste receptor cells. J Neurophysiol 88: 133–141.PubMedGoogle Scholar
  80. Lin W, Burks CA, Hansen DR, Kinnamon SC, Gilbertson TA. 2004. Taste receptor cells express pH-sensitive leak K+ channels. J Neurophysiol 92: 2909–2919.PubMedCrossRefGoogle Scholar
  81. Lindemann B. 1996. Taste reception. Physiol Rev 76: 719–766.Google Scholar
  82. Liu H, Behbehani MM, Smith DV. 1993. The influence of GABA on cells in the gustatory region of the hamster solitary nucleus. Chem Senses 18: 285–305.CrossRefGoogle Scholar
  83. Lu SG, Zhao FL, Herness S. 2003. Physiological phenotyping of cholecystokinin-responsive rat taste receptor cells. Neurosci Lett 351: 157–160.PubMedCrossRefGoogle Scholar
  84. Lundy RF, Norgren R. 2004. Activity in the hypothalamus, amygdala, and cortex generates bilateral and convergent modulation of pontine gustatory neurons. J Neurophysiol 91: 1143–1157.PubMedCrossRefGoogle Scholar
  85. Lundy RF Jr, Norgren R. 2001. Pontine gustatory activity is altered by electrical stimulation in the central nucleus of the amygdala. J Neurophysiol 85: 770–783.PubMedGoogle Scholar
  86. Lush IE, Hornigold N, King P, Stoye JP. 1995. The genetics of tasting in mice. VII. Glycine revisited, and the chromosomal location of Sac and Soa. Genet Res 66: 167–174.PubMedCrossRefGoogle Scholar
  87. Lyall V, Heck GL, Vinnikova AK, Ghosh S, Phan TH, et al. 2004. The mammalian amiloride-insensitive non-specific salt taste receptor is a vanilloid receptor-1 variant. J Physiol 558: 147–159.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Mark GP, Scott TR, Chang F-CT, Grill HJ. 1988. Taste responses in the nucleus tractus solitarius of the chronic decerebrate rat. Brain Res 443: 137–148.PubMedCrossRefGoogle Scholar
  89. Matsuo R, Shimizu N, Kusano K. 1984. Lateral hypothalamic modulation of oral sensory afferent activity in nucleus tractus solitarius neurons of rats. J Neurosci 4: 1201–1207.PubMedGoogle Scholar
  90. Max M, Shanker YG, Huang L, Rong M, Liu Z, et al. 2001. Tas1r3, encoding a new candidate taste receptor, is allelic to the sweet responsiveness locus Sac. Nat Genet 28: 58–63.PubMedGoogle Scholar
  91. Medler KF, Margolskee RF, Kinnamon SC. 2003. Electrophysiological characterization of voltage-gated currents in defined taste cell types in mice. J Neurosci 23: 2608–2617.PubMedGoogle Scholar
  92. Miller IJ Jr, Smith DV. 1984. Quantitative taste bud distribution in the hamster. Physiol Behav 32: 275–285.PubMedCrossRefGoogle Scholar
  93. Miller IJ Jr, Spangler KM. 1982. Taste bud distribution and innervation on the palate of the rat. Chem Senses 7: 99–108.CrossRefGoogle Scholar
  94. Miyoshi M, Abe K, Emori Y. 2001. IP(3) receptor type 3 and PLCbeta2 are co-expressed with taste receptors T1R and T2R in rat taste bud cells. Chem Senses 26: 259–265.PubMedCrossRefGoogle Scholar
  95. Montmayeur JP, Liberles SD, Matsunami H, Buck LB. 2001. A candidate taste receptor gene near a sweet taste locus. Nat Neurosci 4: 492–498.PubMedGoogle Scholar
  96. Mueller KL, Hoon MA, Erlenbach I, Chandrashekar J, Zuker CS, et al. 2005. The receptors and coding logic for bitter taste. Nature 434: 225–229.PubMedCrossRefGoogle Scholar
  97. Murray RG. 1971. Ultrastructure of taste receptors. Handbook of sensory physiology, Vol. IV. Chemical Senses. Part 2. Taste. Beidler LM, editor. Berlin: Springer-Verlag; pp. 31–50.Google Scholar
  98. Murray RG. 1986. The mammalian taste bud type III cell: a critical analysis. J Ultrastruct Molec Struct Res 95: 175–188.CrossRefGoogle Scholar
  99. Murzi E, Hernandez L, Baptista T. 1986. Lateral hypothalamic sites eliciting eating affect medullary taste neurons in rats. Physiol Behav 36: 829–834.PubMedCrossRefGoogle Scholar
  100. Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, et al. 2002. An amino-acid taste receptor. Nature 416: 199–202.PubMedCrossRefGoogle Scholar
  101. Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJP, et al. 2001. Mammalian sweet taste receptors. Cell 106: 381–390.PubMedCrossRefGoogle Scholar
  102. Nelson GM, Finger TE. 1993. Immunolocalization of different forms of neural cell adhesion molecule (NCAM) in rat taste buds. J Comp Neurol 336: 507–516.PubMedCrossRefGoogle Scholar
  103. Nelson TM, Munger SD, Boughter JD Jr, 2005. Haplotypes at the Tas2r locus on distal chromosome 6 vary with quinine taste sensitivity in inbred mice. BMC Genet 6: 32.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Nishijo H, Uwano T, Tamura R, Ono T. 1998. Gustatory and multimodal neuronal responses in the amygdala during licking and discrimination of sensory stimuli in awake rats. J Neurophysiol 79: 21–36.PubMedGoogle Scholar
  105. Norgren R. 1970. Gustatory responses in the hypothalamus. Brain Res 21: 63–71.PubMedCrossRefGoogle Scholar
  106. Norgren R. 1974. Gustatory afferents to ventral forebrain. Brain Res 81: 285–295.PubMedCrossRefGoogle Scholar
  107. Norgren R. 1976. Taste pathways to hypothalamus and amygdala. J Comp Neurol 166: 17–30.PubMedCrossRefGoogle Scholar
  108. Norgren R. 1978. Projections from the nucleus of the solitary tract in the rat. Neuroscience 3: 207–218.PubMedCrossRefGoogle Scholar
  109. Norgren R. 1985. Taste and the autonomic nervous system. Chem Senses 10: 143–161.CrossRefGoogle Scholar
  110. Norgren R, Leonard CM. 1973. Ascending central gustatory pathways. J Comp Neurol 150: 217–238.PubMedCrossRefGoogle Scholar
  111. Nosrat CA, Blomlof J, El Shamy WM, Ernfors P, Olson L. 1997. Lingual deficits in BDNF and NT3 mutant mice leading to gustatory and somatosensory disturbances, respectively. Development 124: 1333–1342.PubMedGoogle Scholar
  112. Oakley B. 1974. On the specification of taste neurons in the rat tongue. Brain Res 75: 85–96.PubMedCrossRefGoogle Scholar
  113. Oakley B. 1975. Receptive fields of cat taste fibers. Chem Senses Flav 1: 431–442.CrossRefGoogle Scholar
  114. Ogawa H, Hasegawa K, Otawa S, Ikeda I. 1998. GABAergic inhibition and modifications of taste responses in the cortical taste area in rats. Neurosci Res 32: 85–95.PubMedCrossRefGoogle Scholar
  115. Otawa S, Takagi K, Ogawa H. 1995. NMDA and non-NMDA receptors mediate taste afferent inputs to cortical taste neurons in rats. Exp Brain Res 106: 391–402.PubMedCrossRefGoogle Scholar
  116. Ozeki M, Sato M. 1972. Responses of gustatory cells in the tongue of rat to stimuli representing four taste qualities. Comp Biochem Physiol A 41: 391–407.PubMedCrossRefGoogle Scholar
  117. Perez CA, Margolskee RF, Kinnamon SC, Ogura T. 2003. Making sense with TRP channels: Store-operated calcium entry and the ion channel Trpm5 in taste receptor cells. Cell Calcium 33: 541–549.PubMedCrossRefGoogle Scholar
  118. Pfaffmann C. 1955. Gustatory nerve impulses in rat, cat and rabbit. J Neurophysiol 18: 429–440.PubMedGoogle Scholar
  119. Pfaffmann C. 1959. The afferent code for sensory quality. Am Psychol 14: 226–232.CrossRefGoogle Scholar
  120. Pfaffmann C. 1964. Taste, its sensory and motivating properties. Am Sci 52: 187–206.Google Scholar
  121. Pritchard T. 1991. The primate gustatory system. Smell and taste in health and disease. Getchell TV, Doty RL, Bartoshuk LM, Snow JB Jr, editors. New York: Raven; pp. 109–125.Google Scholar
  122. Pronin AN, Tang H, Connor J, Keung W. 2004. Identification of ligands for two human bitter T2R receptors. Chem Senses 29: 583–593.PubMedCrossRefGoogle Scholar
  123. Pumplin DW, Getschman E. 2000. Synaptic proteins in rat taste bud cells: Appearance in the Golgi apparatus and relationship to α-gustducin and the Lewisb and A antigens. J Comp Neurol 427: 171–184.PubMedCrossRefGoogle Scholar
  124. Pumplin DW, Yu C, Smith DV. 1997. Light and dark cells of rat vallate taste buds are morphologically distinct cell types. J Comp Neurol 378: 389–410.PubMedCrossRefGoogle Scholar
  125. Pumplin DW, Getschman E, Boughter JD Jr, Yu C, Smith DV. 1999. Differential expression of carbohydrate antigens on rat taste bud cells: Relation to the functional marker α-gustducin. J Comp Neurol 415: 230–239.PubMedCrossRefGoogle Scholar
  126. Reutter K, Witt M. 1993. Morphology of vertebrate taste organs and their nerve supply. Mechanisms of taste transduction. Simon SA, Roper SD, editors. Boca Raton, FL: CRC Press; pp. 29–82.Google Scholar
  127. Richter TA, Dvoryanchikov GA, Chaudhari N, Roper SD. 2004. Acid-sensitive two-pore domain potassium (K2P) channels in mouse taste buds. J Neurophysiol 92: 1928–1936.PubMedCrossRefGoogle Scholar
  128. Royer SM, Kinnamon JC. 1988. Ultrastructure of mouse foliate taste buds: Synaptic and nonsynaptic interactions between taste cells and nerve fibers. J Comp Neurol 270: 11–24.PubMedCrossRefGoogle Scholar
  129. Royer SM, Kinnamon JC. 1991. HVEM serial-section analysis of rabbit foliate taste buds: I. Type III cells and their synapses. J Comp Neurol 306: 49–72.PubMedCrossRefGoogle Scholar
  130. Sainz E, Korley JN, Battey JF, Sullivan SL. 2001. Identification of a novel member of the T1R family of putative taste receptors. J Neurochem 77: 896–903.PubMedCrossRefGoogle Scholar
  131. Saper CB, Loewy AD. 1980. Efferent connections of the parabrachial nucleus in the rat. Brain Res 197: 291–317.PubMedCrossRefGoogle Scholar
  132. Sato T, Beidler LM. 1997. Broad tuning of rat taste cells to four basic taste stimuli. Chem Senses 22: 287–293.PubMedCrossRefGoogle Scholar
  133. Sato H, Katsuyama N, Tamura H, Hata Y, Tsumoto T. 1996. Mechanisms underlying orientation selectivity of neurons in the primary visual cortex of the macaque. J Physiol 494: 757–771.PubMedPubMedCentralCrossRefGoogle Scholar
  134. Scott K. 2004. The sweet and the bitter of mammalian taste. Curr Opin Neurobiol 14: 423–427.PubMedCrossRefGoogle Scholar
  135. Shen T, Kaya N, Zhao FL, Lu SG, Cao Y, et al. 2005. Co-expression patterns of the neuropeptides vasoactive intestinal peptide and cholecystokinin with the transduction molecules alpha-gustducin and T1R2 in rat taste receptor cells. Neuroscience 130: 229–238.PubMedCrossRefGoogle Scholar
  136. Shigemura N, Miura H, Kusakabe Y, Hino A, Ninomiya Y. 2003. Expression of leptin receptor (Ob-R) isoforms and signal transducers and activators of transcription (STATs) mRNAs in the mouse taste buds. Arch Histol Cytol 66: 253–260.PubMedCrossRefGoogle Scholar
  137. Smith DV, Li C-S. 1998. Tonic GABAergic inhibition of taste-responsive neurons in the nucleus of the solitary tract. Chem Senses 23: 159–169.PubMedCrossRefGoogle Scholar
  138. Smith DV, Li C-S. 2000. GABA-mediated corticofugal inhibition of taste-responsive neurons in the nucleus of the solitary tract. Brain Res 858: 408–415.PubMedCrossRefGoogle Scholar
  139. Smith DV, Scott TR. 2003. Gustatory neural coding. Handbook of olfaction and gustation, 2nd Edition. Doty RL, editor. New York: Marcel Dekker; pp. 731–758.Google Scholar
  140. Smith DV, Shepherd GM. 2003. Chemical senses: Taste and olfaction. Fundamental neuroscience. Squire LR, Bloom FE, McConnell S, Roberts J, Spitzer N, Zigmond MJ, editors. New York: Academic; pp. 631–667.Google Scholar
  141. Smith DV, Akeson RA, Shipley MT. 1993. NCAM expression by subsets of taste cells is dependent upon innervation. J Comp Neurol 336: 493–506.PubMedCrossRefGoogle Scholar
  142. Smith DV, Ye M-K, Li C-S. 2005. Medullary taste responses are modulated by the bed nucleus of the stria terminalis. Chem Senses 30: 421–434.PubMedCrossRefGoogle Scholar
  143. Smith DV, Klevitsky R, Akeson R, Shipley MT. 1994. Taste bud expression of human blood group antigens. J Comp Neurol 343: 130–142.PubMedCrossRefGoogle Scholar
  144. Smith DV, Van Buskirk RL, Travers JB, Bieber SL. 1983. Gustatory neuron types in hamster brain stem. J Neurophysiol 50: 522–540.PubMedGoogle Scholar
  145. SmithDV, Som J, Boughter JD Jr, St. John SJ, Yu C, et al. 1999. Cellular expression of α-gustducin and the A blood group antigen in rat fungiform taste buds cross-reinnervated by the IXth nerve. J Comp Neurol 409: 118–130.PubMedCrossRefGoogle Scholar
  146. Spector AC, Guagliardo NA, St. John SJ. 1996. Amiloride disrupts NaCl versus KCl discrimination performance: Implications for salt taste coding in rats. J Neurosci 16: 8115–8122.PubMedGoogle Scholar
  147. St. John SJ, Smith DV. 2000. Neural representation of salts in the rat solitary nucleus: Brainstem correlates of taste discrimination. J Neurophysiol 84: 628–638.Google Scholar
  148. Suga N, Zhang YF, Yan J. 1997. Sharpening of frequency tuning by inhibition in the thalamic auditory nucleus of the moustached bat. J Neurophysiol 77: 2098–2114.PubMedGoogle Scholar
  149. Tokita K, Karadi Z, Shimura T, Yamamoto T. 2004. Centrifugal inputs modulate taste aversion learning associated parabrachial neuronal activities. J Neurophysiol 92: 265–279.PubMedCrossRefGoogle Scholar
  150. Tonosaki K, Funakoshi M. 1984. Intracellular taste cell responses of mouse. Comp Biochem Physiol A 78: 651–656.PubMedCrossRefGoogle Scholar
  151. Touzani K, Velley L. 1990. Ibotenic acid lesion of the lateral hypothalamus increases preference and aversion thresholds for saccharin and alters the morphine modulation of taste. Pharmacol Biochem Behav 36: 585–591.PubMedCrossRefGoogle Scholar
  152. Travers JB. 1988. Efferent projections from the anterior nucleus of the solitary tract of the hamster. Brain Res 455: 283–294.CrossRefGoogle Scholar
  153. Travers JB, Smith DV. 1979. Gustatory sensitivities in neurons of the hamster nucleus tractus solitarius. Sens Processes 3: 1–26.PubMedGoogle Scholar
  154. Travers SP. 1993. Orosensory processing in neural systems of the nucleus of the solitary tract. Mechanisms of Taste Transduction. Simon SA, Roper SD, editors. Boca Raton FL: CRC Press; pp. 339–394.Google Scholar
  155. Travers SP, Norgren R. 1991. Coding the sweet taste in the nucleus of the solitary tract: Differential roles for anterior tongue and nasoincisor duct gustatory receptors in the rat. J Neurophysiol 65: 1372–1380.PubMedGoogle Scholar
  156. Travers SP, Pfaffmann C, Norgren R. 1986. Convergence of lingual and palatal gustatory neural activity in the nucleus of the solitary tract. Brain Res 365: 305–320.PubMedCrossRefGoogle Scholar
  157. Van Buskirk RL, Smith DV. 1981. Taste sensitivity of hamster parabrachial pontine neurons. J Neurophysiol 45: 144–171.PubMedGoogle Scholar
  158. Kooy van der D, Koda LY, McGinty JF, Gerfen CR, Bloom FE. 1984. The organization of projections from the cortex, amygdala, and hypothalamus to the nucleus of the solitary tract in rat. J Comp Neurol 224: 1–24.PubMedCrossRefGoogle Scholar
  159. Uteshev VV, Smith DV. 2006. Cholinergic modulation of neurons in the gustatory region of the nucleus of the solitary tract. Brain Research 1084: 38-53.Google Scholar
  160. Vasudev R, Gentil CG, Covian MR. 1985. Effect of electrical and chemical stimulation of the lateral hypothalamus on taste preferences. Braz J Med Biol Res 18: 3–14.PubMedGoogle Scholar
  161. Vogt MB, Mistretta CM. 1990. Convergence in mammalian nucleus of solitary tract during development and functional differentiation of salt taste circuits. J Neurosci 10: 3148–3157.PubMedGoogle Scholar
  162. Wang L, Bradley RM. 1993. Influence of GABA on neurons of the gustatory zone of the rat nucleus of the solitary tract. Brain Res 616: 144–153.PubMedCrossRefGoogle Scholar
  163. Wang L, Bradley RM. 1995. In vitro study of afferent synaptic transmission in the rostral gustatory zone of the rat nucleus of the solitary tract. Brain Res 702: 188–198.PubMedCrossRefGoogle Scholar
  164. Whiteside B. 1927. Nerve overlap in the gustatory apparatus of the rat. J Comp Neurol 44: 363–377.CrossRefGoogle Scholar
  165. Xu H, Staszewski L, Tang H, Adler E, Zoller M, et al. 2004. Different functional roles of T1R subunits in the heteromeric taste receptors. Proc Natl Acad Sci USA 101: 14258–14263.PubMedPubMedCentralCrossRefGoogle Scholar
  166. Yamamoto T, Matsuo R, Kiyomitsu Y, Kitamura R. 1989. Response properties of lateral hypothalamic neurons during ingestive behavior with special reference to licking of various taste solutions. Brain Res 481: 286–297.PubMedCrossRefGoogle Scholar
  167. Yamamoto T, Shimura T, Saiko N, Yasoshima Y, Sakai N. 1994. Neural substrates for conditioned taste aversion in the rat. Behav Brain Res 65: 123–137.PubMedCrossRefGoogle Scholar
  168. Yamamoto T, Matsuo R, Ichikawa H, Wakisaka S, Akai M, et al. 1990. Aversive taste stimuli increase CGRP levels in the gustatory insular cortex of the rat. Neurosci Lett 112: 167–172.PubMedCrossRefGoogle Scholar
  169. Yang R, Stoick CL, Kinnamon JC. 2004. Synaptobrevin-2-like immunoreactivity is associated with vesicles at synapses in rat circumvallate taste buds. J Comp Neurol 471: 59–71.PubMedCrossRefGoogle Scholar
  170. Yang R, Crowley HH, Rock ME, Kinnamon JC. 2000. Taste cells with synapses in rat circumvallate papillae display SNAP-25-like immunoreactivity. J Comp Neurol 424: 205–215.PubMedCrossRefGoogle Scholar
  171. Yang R, Tabata S, Crowley HH, Margolskee RF, Kinnamon JC. 2000. Ultrastructural localization of gustducin immunoreactivity in micovilli of type II taste cells in the rat. J Comp Neurol 425: 139–151.PubMedCrossRefGoogle Scholar
  172. Ye Q, Heck GL, De Simone JA. 1991. The anion paradox in sodium taste reception: Resolution by voltage-clamp studies. Science 254: 724–726.PubMedCrossRefGoogle Scholar
  173. Yee C, Jones KR, Finger TE. 2003. Brain-derived neurotrophic factor is present in adult mouse taste cells with synapses. J Comp Neurol 459: 15–24.PubMedCrossRefGoogle Scholar
  174. Yee C, Yang R, Bottger B, Finger TE, Kinnamon JC. 2001. “Type III” cells of rat taste buds: Immunohistochemical and ultrastructural studies of neuron-specific enolase, protein gene product 9.5, and serotonin. J Comp Neurol 440: 97–108.PubMedCrossRefGoogle Scholar
  175. Zhang C, Oakley B. 1996. The distribution and origin of keratin 20-containing taste buds in rat and human. Differentiation 61: 121–127.PubMedCrossRefGoogle Scholar
  176. Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, et al. 2003. Coding of sweet, bitter, and umami tastes: Different receptor cells sharing similar signalling pathways. Cell 112: 293–301.PubMedCrossRefGoogle Scholar
  177. Zhao GQ, Shang Y, Hoon MA, Chandrashekar J, Erlenbach I, et al. 2003. The receptors for mammalian sweet and umami taste. Cell 115: 255–266.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • D. V. Smith
  • J. D. BoughterJr

There are no affiliations available

Personalised recommendations