Encyclopedia of Algorithms

Editors: Ming-Yang Kao

Constructing a Galled Phylogenetic Network

2006; Jansson, Nguyen, Sung
  • Wing-Kin Sung
DOI: https://doi.org/10.1007/978-0-387-30162-4_92

Keywords and Synonyms

Topology with independent recombination events; Galled-tree; Gt-network; Level-1 phylogenetic network   

Problem Definition

phylogenetic tree is a binary, rooted, unordered tree whose leaves are distinctly labeled. A phylogenetic network is a generalization of a phylogenetic tree formally defined as a rooted, connected, directed acyclic graph in which: (1) each node has outdegree at most 2; (2) each node has indegree 1 or 2, except the root node, which has indegree 0; (3) no node has both indegree 1 and outdegree 1; and (4) all nodes with outdegree 0 are labeled by elements from a finite set L in such a way that no two nodes are assigned the same label. Nodes of outdegree 0 are referred to as leaves and identified with their corresponding elements in L. For any phylogenetic network N, let \( { \mathcal{U}(N) } \)

This is a preview of subscription access content, login to check access

Recommended Reading

  1. 1.
    Chor, B., Hendy, M., Penny, D.: Analytic solutions for three-taxon MLMC trees with variable rates across sites. In: Proc. 1st Workshop on Algorithms in Bioinformatics (WABI 2001). LNCS, vol. 2149, pp. 204–213. Springer, Berlin (2001)Google Scholar
  2. 2.
    Choy, C., Jansson, J., Sadakane, K., Sung, W.-K.: Computing the maximum agreement of phylogenetic networks. In: Proc. Computing: the 10th Australasian Theory Symposium (CATS 2004), 2004, pp. 33–45Google Scholar
  3. 3.
    Gusfield, D., Eddhu, S., Langley, C.: Efficient reconstruction of phylogenetic networks with constrained recombination. In: Proc. of Computational Systems Bioinformatics (CSB2003), 2003 pp. 363–374Google Scholar
  4. 4.
    He, Y.-J., Huynh, T.N.D., Jannson, J., Sung, W.-K.: Inferring phylogenetic relationships avoiding forbidden rooted triplets. J Bioinform. Comput. Biol. 4(1), 59–74 (2006)Google Scholar
  5. 5.
    Hein, J.: Reconstructing evolution of sequences subject to recombination using parsimony. Math. Biosci. 98(2), 185–200 (1990)MathSciNetMATHGoogle Scholar
  6. 6.
    Henzinger, M.R., King, V., Warnow, T.: Constructing a tree from homeomorphic subtrees, with applications to computational evolutionary biology. Algorithmica 24(1), 1–13 (1999)MathSciNetMATHGoogle Scholar
  7. 7.
    Jansson, J., Sung, W.-K.: Inferring a level-1 phylogenetic network from a dense set of rooted triplets. In: Proc. 10th International Computing and Combinatorics Conference (COCOON 2004), 2004Google Scholar
  8. 8.
    Jansson, J., Nguyen, N.B., Sung, W.-K.: Algorithms for combining rooted triplets into a galled phylogenetic network. SIAM J. Comput. 35(5), 1098–1121 (2006)MathSciNetMATHGoogle Scholar
  9. 9.
    Jiang, T., Kearney, P., Li, M.: A polynomial time approximation scheme for inferring evolutionary trees from quartet topologies and its application. SIAM J. Comput. 30(6), 1942–1961 (2001)MathSciNetMATHGoogle Scholar
  10. 10.
    Kannan, S., Lawler, E., Warnow, T.: Determining the evolutionary tree using experiments. J. Algorithms 21(1), 26–50 (1996)MathSciNetMATHGoogle Scholar
  11. 11.
    Kearney, P.: Phylogenetics and the quartet method. In: Jiang, T., Xu, Y., and Zhang, M.Q. (eds.) Current Topics in Computational Molecular Biology, pp. 111–133. MIT Press, Cambridge (2002)Google Scholar
  12. 12.
    Li., W.-H.: Molecular Evolution. Sinauer, Sunderland (1997)Google Scholar
  13. 13.
    Nakhleh, L., Warnow, T., Linder, C.R.: Reconstructing reticulate evolution in species – theory and practice. In: Proc. 8th Annual International Conference on Research in Computational Molecular Biology (RECOMB 2004), 2004, pp. 337–346Google Scholar
  14. 14.
    Ng, M.P., Wormald, N.C.: Reconstruction of rooted trees from subtrees. Discrete Appl. Math. 69(1–2), 19–31 (1996)MathSciNetMATHGoogle Scholar
  15. 15.
    Posada, D., Crandall, K.A.: Intraspecific gene genealogies: trees grafting into networks. TRENDS Ecol. Evol. 16(1), 37–45 (2001)Google Scholar
  16. 16.
    Setubal, J.C., Meidanis, J.: Introduction to Computational Molecular Biology. PWS, Boston (1997)Google Scholar
  17. 17.
    Wang, L., Zhang, K., Zhang, L.: Perfect phylogenetic networks with recombination. J. Comput. Biol. 8(1), 69–78 (2001)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Wing-Kin Sung
    • 1
  1. 1.Department of Computer ScienceNational University of SingaporeSingaporeSingapore