Encyclopedia of Algorithms

2008 Edition
| Editors: Ming-Yang Kao

Traveling Sales Person with Few Inner Points

2004; Deĭneko, Hoffmann, Okamoto, Woeginger
  • Yoshio Okamoto
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30162-4_426

Keywords and Synonyms

Traveling salesman problem; Traveling salesperson problem; Minimum‐cost Hamiltonian circuit problem ; Minimum‐weight Hamiltonian circuit problem; Minimum‐cost Hamiltonian cycle problem; Minimum‐weight Hamiltonian cycle problem    

Problem Definition

In the traveling salesman problem (TSP) n cities 1, 2, \( { \dots } \)

Keywords

Time Complexity Travel Salesman Problem Travel Salesman Problem Vertex Cover Euclidean Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Deĭneko, V.G., Hoffmann, M., Okamoto, Y., Woeginger, G.J.: The traveling salesman problem with few inner points. Oper. Res. Lett. 31, 106–110 (2006)Google Scholar
  2. 2.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. In: Monographs in Computer Science. Springer, New York (1999)Google Scholar
  3. 3.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science An EATCS Series. Springer, Berlin (2006)Google Scholar
  4. 4.
    Garey, M.R., Graham, R.L., Johnson, D.S.: Some NP-complete geometric problems. In: Proceedings of 8th Annual ACM Symposium on Theory of Computing (STOC '76), pp. 10–22. Association for Computing Machinery, New York (1976)CrossRefGoogle Scholar
  5. 5.
    Grantson, M.: Fixed‐parameter algorithms and other results for optimal partitions. Lecentiate Thesis, Department of Computer Science, Lund University (2004)Google Scholar
  6. 6.
    Grantson, M., Borgelt, C., Levcopoulos, C.: A fixed parameter algorithm for minimum weight triangulation: Analysis and experiments. Tech. Rep. 154, Department of Computer Science, Lund University (2005)Google Scholar
  7. 7.
    Grantson, M., Borgelt, C., Levcopoulos, C.: Minimum weight triangulation by cutting out triangles. In: Deng, X., Du, D.-Z. (eds.) Proceedings of the 16th Annual International Symposium on Algorithms and Computation (ISAAC). Lecture Notes in Computer Science, vol. 3827, pp. 984–994. Springer, New York (2005)Google Scholar
  8. 8.
    Grantson, M., Borgelt, C., Levcopoulos, C.: Fixed parameter algorithms for the minimum weight triangulation problem. Tech. Rep. 158, Department of Computer Science, Lund University (2006)Google Scholar
  9. 9.
    Grantson, M., Levcopoulos, C.: A fixed parameter algorithm for the minimum number convex partition problem. In: Akiyama, J., Kano, M., Tan, X. (eds.) Proceedings of Japanese Conference on Discrete and Computational Geometry (JCDCG 2004). Lecture Notes in Computer Science, vol. 3742, pp. 83–94. Springer, New York (2005)Google Scholar
  10. 10.
    Hoffmann, M., Okamoto, Y.: The minimum weight triangulation problem with few inner points. Comput. Geom. Theory Appl. 34, 149–158 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Jansen, K., Woeginger, G.J.: The complexity of detecting crossingfree configurations in the plane. BIT 33, 580–595 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Knauer, C., Spillner, A.: Fixed‐parameter algorithms for finding crossing‐free spanning trees in geometric graphs. Tech. Rep. 06–07, Department of Computer Science, Friedrich‐Schiller‐Universität Jena (2006)Google Scholar
  13. 13.
    Knauer, C., Spillner, A.: A fixed‐parameter algorithm for the minimum weight triangulation problem based on small graph separators. In: Proceedings of the 32nd International Workshop on Graph‐Theoretic Concepts in Computer Science (WG). Lecture Notes in Computer Science, vol. 4271, pp. 49–57. Springer, New York (2006)Google Scholar
  14. 14.
    Lawler, E., Lenstra, J., Rinnooy Kan, A., Shmoys, D. (eds.): The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley, Chichester (1985)zbMATHGoogle Scholar
  15. 15.
    Mulzer, W., Rote, G.: Minimum Weight Triangulation is NP-hard. In: Proceedings of the 22nd Annual ACM Symposium on Computational Geometry (SoCG), Association for Computing Machinery, New York 2006, pp. 1–10Google Scholar
  16. 16.
    Niedermeier, R.: Invitation to Fixed‐Parameter Algorithms. Oxford Lecture Series in Mathematics and Its Applications, vol. 31. Oxford University Press, Oxford (2006)CrossRefGoogle Scholar
  17. 17.
    Papadimitriou, C.H.: The Euclidean travelling salesman problem is NP‑complete. Theor. Comput. Sci. 4, 237–244 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Spillner, A.: A faster algorithm for the minimum weight triangulation problem with few inner points. In: Broersma, H., Johnson, H., Szeider, S. (eds.) Proceedings of the 1st ACiD Workshop. Texts in Algorithmics, vol. 4, pp. 135–146. King's College, London (2005)Google Scholar
  19. 19.
    Spillner, A.: Optimal convex partitions of point sets with few inner points. In: Proceedings of the 17th Canadian Conference on Computational Geometry (CCCG), 2005, pp. 34–37Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Yoshio Okamoto
    • 1
  1. 1.Department of Information and Computer SciencesToyohashi University of TechnologyToyohashiJapan