Encyclopedia of Algorithms

2008 Edition
| Editors: Ming-Yang Kao

Thresholds of Random k-Sat

2002; Kaporis, Kirousis, Lalas
  • Alexis Kaporis
  • Lefteris Kirousis
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30162-4_423

Keywords and Synonyms

Phase transitions; Probabilistic analysis of a Davis–Putnam heuristic      

Problem Definition

Consider n Boolean variables \( { V= \{x_1, \ldots, x_n \} } \)

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Achioptas, D., Sorkin, G.B.: Optimal myopic algorithms for random 3-sat. In: 41st Annual Symposium on Foundations of Computer Science, pp. 590–600. IEEE Computer Society, Washington (2000)CrossRefGoogle Scholar
  2. 2.
    Achlioptas, D.: Lower bounds for random 3-sat via differential equations. Theor. Comput. Sci. 265(1–2), 159–185 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Chvátal, V., Reed, B.: Mick gets some (the odds are on his side). In: 33rd Annual Symposium on Foundations of Computer Science, pp. 620–627. IEEE Computer Society, Pittsburgh (1992)CrossRefGoogle Scholar
  4. 4.
    Davis, M., Logemann, G., Loveland, D.: A machine program for theorem‐proving. Commun. ACM 5, 394–397 (1962)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Davis, M., Putnam, H.: A computing procedure for quantification theory. J. Assoc. Comput. Mach. 7(4), 201–215 (1960)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Dubois, O.: Upper bounds on the satisfiability threshold. Theor. Comput. Sci. 265, 187–197 (2001)zbMATHCrossRefGoogle Scholar
  7. 7.
    Dubois, O., Boufkhad, Y., Mandler, J.: Typical random 3-sat formulae and the satisfiability threshold. In: 11th ACM-SIAM symposium on Discrete algorithms, pp. 126–127. Society for Industrial and Applied Mathematics, San Francisco (2000)Google Scholar
  8. 8.
    Franco, J.: Probabilistic analysis of the pure literal heuristic for the satisfiability problem. Annal. Oper. Res. 1, 273–289 (1984)CrossRefGoogle Scholar
  9. 9.
    Franco, J.: Results related to threshold phenomena research in satisfiability: Lower bounds. Theor. Comput. Sci. 265, 147–157 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Friedgut, E.: Sharp thresholds of graph properties, and the k-sat problem. J. AMS 12, 1017–1054 (1997)MathSciNetGoogle Scholar
  11. 11.
    Goerdt, A.: A threshold for unsatisfiability. J. Comput. Syst. Sci. 33, 469–486 (1996)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kaporis, A.C., Kirousis, L.M., Lalas, E.G.: The probabilistic analysis of a greedy satisfiability algorithm. Random Struct. Algorithms 28(4), 444–480 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Kirousis, L., Stamatiou, Y., Zito, M.: The unsatisfiability threshold conjecture: the techniques behind upper bound improvements. In: A. Percus, G. Istrate, C. Moore (eds.) Computational Complexity and Statistical Physics, Santa Fe Institute Studies in the Sciences of Complexity, pp. 159–178. Oxford University Press, New York (2006)Google Scholar
  14. 14.
    Mitchell, D., Selman, B., Levesque, H.: Hard and easy distribution of sat problems. In: 10th National Conference on Artificial Intelligence, pp. 459–465. AAAI Press, Menlo Park (1992)Google Scholar
  15. 15.
    Monasson, R., Zecchina, R.: Statistical mechanics of the random k-sat problem. Phys. Rev. E 56, 1357–1361 (1997)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Alexis Kaporis
    • 1
  • Lefteris Kirousis
    • 1
  1. 1.Department of Computer Engineering and InformaticsUniversity of PatrasPatrasGreece