Boser, B., Guyon,
I., Vapnik, V.: A training algorithm for optimal margin classifiers. In: Proceedings of
the Fifth Annual Workshop on Computational Learning Theory, Pittsburgh
(1992)
Google Scholar
Cristianini, N.,
Shawe-Taylor, J.: An Introduction to Support Vector Machines and other kernel-based learning
methods. Cambridge University Press, Cambrigde, Book website:
www.support-vector.net (2000)
Vapnik, V.: The
Nature of Statistical Learning Theory. Springer, New York (1995)
MATH
CrossRef
Google Scholar
Cortes, C., Vapnik,
V.: Support-vector network. Mach. Learn. 20, 273–297
(1995)
MATH
Google Scholar
Hastie, T., Rosset,
S., Tibshirani, R., Zhu, J.: The entire regularization path for the support vector
machine. J. Mach. Learn. Res. 5, 1391–1415
(2004)
MathSciNet
MATH
Google Scholar
Drucker, H., Burges,
C.J.C., Kaufman, L., Smola, A., Vapnik, V.: Support Vector Regression
Machines. Adv. Neural. Inf. Process. Syst. (NIPS) 9,
155–161 MIT Press (1997)
Google Scholar
Platt, J.: Fast
training of support vector machines using sequential minimal optimization. In: Schölkopf, B.,
Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods Support Vector
Learning. pp 185–208. MIT Press, Cambridge (1999)
Google Scholar
Shawe-Taylor, J.,
Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press,
Cambridge. Book website: www.kernel-methods.net
(2004)
Scholkopf, B.,
Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2002)
Google Scholar
Lanckriet, G.R.G.,
Cristianini, N., Bartlett, P., El Ghaoui, L., Jordan, M.I.: Learning the Kernel Matrix with
Semidefinite Programming. J. Mach. Learn. Res. 5,
27–72 (2004)
MATH
Google Scholar
Joachims, T.: Text
categorization with support vector machines. In: Proceedings of European Conference on Machine
Learning (ECML) Chemnitz (1998)
Google Scholar
Dumais, S., Platt,
J., Heckerman, D., Sahami, M.: Inductive learning algorithms and representations for text
categorization. In: 7th International Conference on Information and Knowledge Management
(1998)
Google Scholar
LeCun, Y., Jackel,
L.D., Bottou, L., Brunot, A., Cortes, C., Denker, J.S., Drucker, H., Guyon, I., Muller, U.A.,
Sackinger, E., Simard, P., Vapnik, V.: Comparison of learning algorithms for handwritten digit
recognition. In: Fogelman-Soulie F., Gallinari P. (eds.), Proceedings International Conference
on Artificial Neural Networks (ICANN) 2, 5360. EC2
(1995)
Google Scholar
Jaakkola, T.S.,
Haussler, D.: Probabilistic kernel regression models. In: Proceedings of the 1999 Conference
on AI and Statistics Fort Lauderdale (1999)
Google Scholar
Brown, M., Grundy,
W., Lin, D., Cristianini, N., Sugnet, C., Furey, T., Ares Jr., M., Haussler, D.:
Knowledge-based analysis of mircoarray gene expression data using support vector machines. In:
Proceedings of the National Academy of Sciences 97(1),
262–267 (2000)
Google Scholar