Encyclopedia of Algorithms

2008 Edition
| Editors: Ming-Yang Kao

Set Cover with Almost Consecutive Ones

2004; Mecke, Wagner
  • Michael Dom
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30162-4_368

Keywords and Synonyms

Hitting set      

Problem Definition

The Set Cover problem has as input a set R of m items, a set C of n subsets of R and a weight function \( { w \colon C \rightarrow \mathbb{Q} } \)

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Atkins, J.E., Middendorf, M.: On physical mapping and the consecutive ones property for sparse matrices. Discret. Appl. Math. 71(1–3), 23–40 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13, 335–379 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pac. J. Math. 15(3), 835–855 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)zbMATHGoogle Scholar
  5. 5.
    Goldberg, P.W., Golumbic, M.C., Kaplan, H., Shamir, R.: Four strikes against physical mapping of DNA. J. Comput. Biol. 2(1), 139–152 (1995)CrossRefGoogle Scholar
  6. 6.
    Hsu, W.L., McConnell, R.M.: PC trees and circular-ones arrangements. Theor. Comput. Sci. 296(1), 99–116 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Mecke, S., Wagner, D.: Solving geometric covering problems by data reduction. In: Proceedings of the 12th Annual European Symposium on Algorithms (ESA '04). LNCS, vol. 3221, pp. 760–771. Springer, Berlin (2004)Google Scholar
  8. 8.
    Ruf, N., Schöbel, A.: Set covering with almost consecutive ones property. Discret. Optim. 1(2), 215–228 (2004)zbMATHCrossRefGoogle Scholar
  9. 9.
    Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Michael Dom
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of JenaJenaGermany