Encyclopedia of Algorithms

2008 Edition
| Editors: Ming-Yang Kao

Phylogenetic Tree Construction from a Distance Matrix

1989; Hein
  • Jesper Jansson
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30162-4_292

Keywords and Synonyms

Phylogenetic tree construction from a dissimilarity matrix            

Problem Definition

Let n be a positive integer. A distance matrix of order n (also called a dissimilarity matrix of order n) is a matrix D of size \( { (n \times n) } \)

This is a preview of subscription content, log in to check access.



Supported in part by Kyushu University, JSPS (Japan Society for the Promotion of Science), and INRIA Lille – Nord Europe.

Recommended Reading

  1. 1.
    Abdi, H.: Additive-tree representations. In: Dress, A., von Haeseler, A. (eds.) Trees and Hierarchical Structures: Proceedings of a conference held at Bielefeld, FRG, Oct. 5–9th, 1987. Lecture Notes in Biomathematics, vol. 84, pp. 43–59. Springer (1990)Google Scholar
  2. 2.
    Batagelj, V., Pisanski, T., Simões-Pereira, J.M.S.: An algorithm for tree-realizability of distance matrices. Int. J. Comput. Math. 34, 171–176 (1990)Google Scholar
  3. 3.
    Bennett, C.H., Li, M., Ma, B.: Chain letters and evolutionary histories. Sci. Am. 288, 76–81 (2003)Google Scholar
  4. 4.
    Boesch, F.T.: Properties of the distance matrix of a tree. Quarterly Appl. Math. 26, 607–609 (1968)MathSciNetGoogle Scholar
  5. 5.
    Culberson, J.C., Rudnicki, P.: A fast algorithm for constructing trees from distance matrices. Inf. Process. Lett. 30, 215–220 (1989)MathSciNetGoogle Scholar
  6. 6.
    Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Inc. (2004)Google Scholar
  7. 7.
    Gusfield, D.M.: Algorithms on Strings, Trees, and Sequences. Cambridge University Press, New York (1997)Google Scholar
  8. 8.
    Hakimi, S.L., Yau, S.S.: Distance matrix of a graph and its realizability. Quarterly Appl. Math. 22, 305–317 (1964)MathSciNetGoogle Scholar
  9. 9.
    Hein, J.: An optimal algorithm to reconstruct trees from additive distance data. Bull. Math. Biol. 51, 597–603 (1989)Google Scholar
  10. 10.
    King, V., Zhang, L., Zhou, Y.: On the complexity of distance-based evolutionary tree construction. In: Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2003), pp. 444–453 (2003)Google Scholar
  11. 11.
    Nakhleh, L., Warnow, T., Ringe, D., Evans, S.N.: A comparison of phylogenetic reconstruction methods on an Indo-European dataset. Trans. Philol. Soc. 103, 171–192 (2005)Google Scholar
  12. 12.
    Reyzin, L., Srivastava, N.: On the longest path algorithm for reconstructing trees from distance matrices. Inf. Process. Lett. 101, 98–100 (2007)MathSciNetGoogle Scholar
  13. 13.
    The Canterbury Tales Project: University of Birmingham, Brigham Young University, University of Münster, New York University, Virginia Tech, and Keio University. Website: http://www.canterburytalesproject.org/
  14. 14.
    Warnow, T.: Some combinatorial optimization problems in phylogenetics. In: Lovász, L., Gyárfás, G., Katona, G., Recski, A., Székely, L. (eds.) Graph Theory and Combinatorial Biology. Bolyai Society Mathematical Studies, vol. 7, pp. 363–413. Bolyai János Matematikai Társulat (1999)Google Scholar
  15. 15.
    Waterman, M.S., Smith, T.F., Singh, M., Beyer, W.A.: Additive evolutionary trees. J. Theor. Biol. 64, 199–213 (1977)MathSciNetGoogle Scholar
  16. 16.
    Wu, B.Y., K.-Chao, M., Tang, C.Y.: Approximation and exact algorithms for constructing minimum ultrametric trees from distance matrices. J. Combin. Optim. 3, 199–211 (1999)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Jesper Jansson
    • 1
  1. 1.Ochanomizu UniversityTokyoJapan