Skip to main content

Minimum k-Connected Geometric Networks

2000; Czumaj, Lingas

  • Reference work entry

Keywords and Synonyms

Geometric graphs; Euclidean graphs          

Problem Definition

The following classical optimization problem is considered: for a given undirected weighted geometric network, find its minimum-cost sub-network that satisfies a priori given multi-connectivity requirements.

Notations

Let \( { G = (V,E) } \) be a  geometric network, whose vertex set V corresponds to a set of n points in ℝ d for certain integer d, \( { d \ge 2 } \), and whose edge set E corresponds to a set of straight-line segments connecting pairs of points in V. G is called complete if E connects all pairs of points in V.

The cost \( { \delta(x,y) } \) of an edge connecting a pair of points \( { x, y \in \mathbb{R}^d } \) is equal to the Euclidean distance between points x and y, that is, \( { \delta(x,y) = \sqrt{\sum_{i=1}^d (x_i - y_i)^2} } \), where \( { x = (x_1, \dots, x_d) } \) and \( { y = (y_1, \dots, y_d) } \). More generally, the cost \( { \delta(x,y) } \) could be defined using other norms, such as \...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   399.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Recommended Reading

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B., Reddy, M.R.: Applications of network optimization. In: Handbooks in Operations Research and Management Science, vol. 7, Network Models, chapter 1, pp. 1–83. North-Holland, Amsterdam (1995)

    Google Scholar 

  2. Arora, S.: Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. J. ACM 45(5), 753–782 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berger, A., Czumaj, A., Grigni, M., Zhao, H.: Approximation schemes for minimum 2-connected spanning subgraphs in weighted planar graphs. Proc. 13th Annual European Symposium on Algorithms, pp. 472–483. (2005)

    Google Scholar 

  4. Cheriyan, J., Vetta, A.: Approximation algorithms for network design with metric costs. Proc. 37th Annual ACM Symposium on Theory of Computing, Baltimore, 22–24 May 2005, pp. 167–175. (2005)

    Google Scholar 

  5. Czumaj, A., Lingas, A.: Fast approximation schemes for Euclidean multi-connectivity problems. Proc. 27th Annual International Colloquium on Automata, Languages and Programming, Geneva, 9–15 July 2000, pp. 856–868

    Google Scholar 

  6. Czumaj, A., Lingas, A.: On approximability of the minimum-cost k-connected spanning subgraph problem. Proc. 10th Annual ACM-SIAM Symposium on Discrete Algorithms, Baltimore, 17–19 January 1999, pp. 281–290

    Google Scholar 

  7. Czumaj, A., Lingas, A., Zhao, H.: Polynomial-time approximation schemes for the Euclidean survivable network design problem. Proc. 29th Annual International Colloquium on Automata, Languages and Programming, Malaga, 8–13 July 2002, pp. 973–984

    Google Scholar 

  8. Frederickson, G.N., JáJá, J.: On the relationship between the biconnectivity augmentation and Traveling Salesman Problem. Theor. Comput. Sci. 19(2), 189–201 (1982)

    Article  MATH  Google Scholar 

  9. Gabow, H.N., Goemans, M.X., Williamson, D.P.: An efficient approximation algorithm for the survivable network design problem. Math. Program. Ser. B 82(1–2), 13–40 (1998)

    MathSciNet  MATH  Google Scholar 

  10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness. Freeman, New York, NY (1979)

    MATH  Google Scholar 

  11. Goemans, M.X., Williamson, D.P.: The primal-dual method for approximation algorithms and its application to network design problems. In: Hochbaum, D. (ed.) Approximation Algorithms for \( { \mathcal{NP} } \)-Hard Problems, Chapter 4, pp. 144–191. PWS Publishing Company, Boston (1996)

    Google Scholar 

  12. Grötschel, M., Monma, C.L., Stoer, M.: Computational results with a cutting plane algorithm for designing communication networks with low-connectivity constraints. Oper. Res. 40(2), 309–330 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Grötschel, M., Monma, C.L., Stoer, M.: Design of survivable networks. In: Handbooks in Operations Research and Management Science, vol. 7, Network Models, chapter 10, pp. 617–672. North-Holland, Amsterdam (1995)

    Google Scholar 

  14. Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Problem. North-Holland, Amsterdam (1992)

    MATH  Google Scholar 

  15. Khuller, S.: Approximation algorithms for finding highly connected subgraphs. In: Hochbaum, D. (ed.) Approximation Algorithms for \( { \mathcal{NP} } \)-Hard Problems, Chapter 6, pp. 236–265. PWS Publishing Company, Boston (1996)

    Google Scholar 

  16. Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial‐time approximation scheme for geometric TSP, k-MST, and related problems. SIAM J. Comput. 28(4), 1298–1309 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Monma, C.L., Shallcross, D.F.: Methods for designing communications networks with certain two-connected survivability constraints. Operat. Res. 37(4), 531–541 (1989)

    Article  Google Scholar 

  18. Stoer, M.: Design of Survivable Networks. Springer, Berlin (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Czumaj, A., Lingas, A. (2008). Minimum k-Connected Geometric Networks. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30162-4_237

Download citation

Publish with us

Policies and ethics