Encyclopedia of Algorithms

2008 Edition
| Editors: Ming-Yang Kao

Minimum k-Connected Geometric Networks

2000; Czumaj, Lingas
  • Artur Czumaj
  • Andrzej Lingas
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30162-4_237

Keywords and Synonyms

Geometric graphs; Euclidean graphs          

Problem Definition

The following classical optimization problem is considered: for a given undirected weighted geometric network, find its minimum-cost sub-network that satisfies a priori given multi-connectivity requirements.


Let \( { G = (V,E) } \)

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B., Reddy, M.R.: Applications of network optimization. In: Handbooks in Operations Research and Management Science, vol. 7, Network Models, chapter 1, pp. 1–83. North-Holland, Amsterdam (1995)Google Scholar
  2. 2.
    Arora, S.: Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. J. ACM 45(5), 753–782 (1998)MathSciNetMATHGoogle Scholar
  3. 3.
    Berger, A., Czumaj, A., Grigni, M., Zhao, H.: Approximation schemes for minimum 2-connected spanning subgraphs in weighted planar graphs. Proc. 13th Annual European Symposium on Algorithms, pp. 472–483. (2005)Google Scholar
  4. 4.
    Cheriyan, J., Vetta, A.: Approximation algorithms for network design with metric costs. Proc. 37th Annual ACM Symposium on Theory of Computing, Baltimore, 22–24 May 2005, pp. 167–175. (2005)Google Scholar
  5. 5.
    Czumaj, A., Lingas, A.: Fast approximation schemes for Euclidean multi-connectivity problems. Proc. 27th Annual International Colloquium on Automata, Languages and Programming, Geneva, 9–15 July 2000, pp. 856–868Google Scholar
  6. 6.
    Czumaj, A., Lingas, A.: On approximability of the minimum-cost k-connected spanning subgraph problem. Proc. 10th Annual ACM-SIAM Symposium on Discrete Algorithms, Baltimore, 17–19 January 1999, pp. 281–290Google Scholar
  7. 7.
    Czumaj, A., Lingas, A., Zhao, H.: Polynomial-time approximation schemes for the Euclidean survivable network design problem. Proc. 29th Annual International Colloquium on Automata, Languages and Programming, Malaga, 8–13 July 2002, pp. 973–984Google Scholar
  8. 8.
    Frederickson, G.N., JáJá, J.: On the relationship between the biconnectivity augmentation and Traveling Salesman Problem. Theor. Comput. Sci. 19(2), 189–201 (1982)MATHGoogle Scholar
  9. 9.
    Gabow, H.N., Goemans, M.X., Williamson, D.P.: An efficient approximation algorithm for the survivable network design problem. Math. Program. Ser. B 82(1–2), 13–40 (1998)MathSciNetGoogle Scholar
  10. 10.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness. Freeman, New York, NY (1979)MATHGoogle Scholar
  11. 11.
    Goemans, M.X., Williamson, D.P.: The primal-dual method for approximation algorithms and its application to network design problems. In: Hochbaum, D. (ed.) Approximation Algorithms for \( { \mathcal{NP} } \)-Hard Problems, Chapter 4, pp. 144–191. PWS Publishing Company, Boston (1996)Google Scholar
  12. 12.
    Grötschel, M., Monma, C.L., Stoer, M.: Computational results with a cutting plane algorithm for designing communication networks with low-connectivity constraints. Oper. Res. 40(2), 309–330 (1992)MathSciNetMATHGoogle Scholar
  13. 13.
    Grötschel, M., Monma, C.L., Stoer, M.: Design of survivable networks. In: Handbooks in Operations Research and Management Science, vol. 7, Network Models, chapter 10, pp. 617–672. North-Holland, Amsterdam (1995)Google Scholar
  14. 14.
    Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Problem. North-Holland, Amsterdam (1992)MATHGoogle Scholar
  15. 15.
    Khuller, S.: Approximation algorithms for finding highly connected subgraphs. In: Hochbaum, D. (ed.) Approximation Algorithms for \( { \mathcal{NP} } \)-Hard Problems, Chapter 6, pp. 236–265. PWS Publishing Company, Boston (1996)Google Scholar
  16. 16.
    Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial‐time approximation scheme for geometric TSP, k-MST, and related problems. SIAM J. Comput. 28(4), 1298–1309 (1999)MathSciNetMATHGoogle Scholar
  17. 17.
    Monma, C.L., Shallcross, D.F.: Methods for designing communications networks with certain two-connected survivability constraints. Operat. Res. 37(4), 531–541 (1989)Google Scholar
  18. 18.
    Stoer, M.: Design of Survivable Networks. Springer, Berlin (1992)MATHGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Artur Czumaj
    • 1
  • Andrzej Lingas
    • 2
  1. 1.DIMAP and Computer ScienceUniversity of WarwickCoventryUK
  2. 2.Department of Computer ScienceLund UniversityLundSweden