Encyclopedia of Algorithms

2008 Edition
| Editors: Ming-Yang Kao

Geometric Spanners

2002; Gudmundsson, Levcopoulos, Narasimhan
  • Joachim Gudmundsson
  • Giri Narasimhan
  • Michiel Smid
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30162-4_167

Keywords and Synonyms

Dilation; t-spanners        

Problem Definition

Consider a set S of n points in d-dimensional Euclidean space. A network on S can be modeled as an undirected graph  G with vertex set S of size n and an edge set E where every edge ( u,  v) has a weight. A geometric (Euclidean) network is a network where the weight of the edge ( u,  v) is the Euclidean distance | uv| between its endpoints. Given a real number \( { t > 1 } \)
This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Abam, M.A., de Berg, M., Farshi, M., Gudmundsson, J.: Region-fault tolerant geometric spanners. In: Proceedings of the 18th ACM-SIAM Symposium on Discrete Algorithms, New Orleans, 7–9 January 2007Google Scholar
  2. 2.
    Arya, S., Das, G., Mount, D.M., Salowe, J.S., Smid, M.: Euclidean spanners: short, thin, and lanky. In: Proceedings of the 27th ACM Symposium on Theory of Computing, pp. 489–498. Las Vegas, 29 May–1 June 1995 Google Scholar
  3. 3.
    Arya, S., Mount, D.M., Smid, M.: Randomized and deterministic algorithms for geometric spanners of small diameter. In: Proceedings of the 35th IEEE Symposium on Foundations of Computer Science, pp. 703–712. Santa Fe, 20–22 November 1994Google Scholar
  4. 4.
    Arya, S., Mount, D.M., Smid, M.: Dynamic algorithms for geometric spanners of small diameter: Randomized solutions. Comput. Geom. Theor. Appl. 13(2), 91–107 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Arya, S., Smid, M.: Efficient construction of a bounded-degree spanner with low weight. Algorithmica 17, 33–54 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields. J. ACM 42, 67–90 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Czumaj, A., Lingas, A.: Fast approximation schemes for Euclidean multi-connectivity problems. In: Proceedings of the 27th International Colloquium on Automata, Languages and Programming. Lect. Notes Comput. Sci. 1853, 856–868 (2000)Google Scholar
  8. 8.
    Czumaj, A., Zhao, H.: Fault-tolerant geometric spanners. Discret. Comput. Geom. 32(2), 207–230 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Das, G.: The visibility graph contains a bounded-degree spanner. In: Proceedings of the 9th Canadian Conference on Computational Geometry, Kingston, 11–14 August 1997Google Scholar
  10. 10.
    Das, G., Narasimhan, G.: A fast algorithm for constructing sparse Euclidean spanners. Int. J. Comput. Geom. Appl. 7, 297–315 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Das, G., Narasimhan, G., Salowe, J.: A new way to weigh malnourished Euclidean graphs. In: Proceedings of the 6th ACM-SIAM Symposium on Discrete Algorithms, pp. 215–222. San Francisco, 22–24 January 1995 Google Scholar
  12. 12.
    Farshi, M., Gudmundsson, J.: Experimental study of geometric t-spanners. In: Proceedings of the 13th Annual European Symposium on Algorithms. Lect. Notes Comput. Sci. 3669, 556–567 (2005)Google Scholar
  13. 13.
    Gao, J., Guibas, L.J., Nguyen, A.: Deformable spanners and applications. In: Proceedings of the 20th ACM Symposium on Computational Geometry, pp. 190–199, New York, 9–11 June 2004 Google Scholar
  14. 14.
    Gudmundsson, J., Levcopoulos, C., Narasimhan, G.: Improved greedy algorithms for constructing sparse geometric spanners. SIAM J. Comput. 31(5), 1479–1500 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Levcopoulos, C., Lingas, A.: There are planar graphs almost as good as the complete graphs and almost as cheap as minimum spanning trees. Algorithmica 8(3), 251–256 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Levcopoulos, C., Narasimhan, G., Smid, M.: Improved algorithms for constructing fault-tolerant spanners. Algorithmica 32, 144–156 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Li, X.Y.: Applications of computational geometry in wireless ad hoc networks. In: Cheng, X.Z., Huang, X., Du, D.Z. (eds.) Ad Hoc Wireless Networking, pp. 197–264. Kluwer, Dordrecht (2003)Google Scholar
  18. 18.
    Narasimhan, G., Smid, M.: Geometric spanner networks. Cambridge University Press, New York (2006)Google Scholar
  19. 19.
    Navarro, G., Paredes, R.: Practical construction of metric t-spanners. In: Proceedings of the 5th Workshop on Algorithm Engineering and Experiments, pp. 69–81, 11 January 2003. SIAM Press, Baltimore Google Scholar
  20. 20.
    Rao, S., Smith, W.D.: Approximating geometrical graphs via spanners and banyans. In: Proceedings of the 30th ACM Symposium on Theory of Computing, pp. 540–550. Dallas, 23–26 May 1998 Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Joachim Gudmundsson
    • 1
  • Giri Narasimhan
    • 2
  • Michiel Smid
    • 3
  1. 1.DMiSTNational ICT Australia LtdAlexandriaAustralia
  2. 2.Department of Computer ScienceFlorida International UniversityMiamiUSA
  3. 3.School of Computer ScienceCarleton UniversityOttawaCanada