Encyclopedia of Algorithms

2008 Edition
| Editors: Ming-Yang Kao

Fully Dynamic Planarity Testing

1999; Galil, Italiano, Sarnak
  • Giuseppe F. Italiano
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30162-4_157

Problem Definition

In this entry, the problem of maintaining a dynamic planar graph subject to edge insertions and edge deletions that preserve planarity but that can change the embedding is considered. Before formally defining the problem, few preliminary definitions follow.       

A graph is planar if it can be embedded in the plane so that no two edges intersect. In a dynamic framework, a planar graph that is committed to an embedding is called plane, and the general term planar is used only when changes in the embedding are allowed. An edge insertion that preserves the embedding is called embedding‐preserving, whereas it is called planarity‐preserving if it keeps the graph planar, even though its embedding can change; finally, an edge insertion is called arbitraryif it is not known to preserve planarity. Extensive work on dynamic graph algorithms has used ad hoc techniques to solve a number of problems such as minimum spanning forests, 2-edge‐connectivity and planarity testing...

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Cimikowski, R.: Branch-and-bound techniques for the maximum planar subgraph problem. Int. J. Computer Math. 53, 135–147 (1994)zbMATHCrossRefGoogle Scholar
  2. 2.
    Eppstein, D., Galil, Z., Italiano, G.F., Nissenzweig, A.: Sparsification – a technique for speeding up dynamic graph algorithms. J. Assoc. Comput. Mach. 44(5), 669–696 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Eppstein, D., Galil, Z., Italiano, G.F., Spencer, T.H.: Separator based sparsification I: planarity testing and minimum spanning trees. J. Comput. Syst. Sci. Special issue of STOC 93 52(1), 3–27 (1996)Google Scholar
  4. 4.
    Eppstein, D., Galil, Z., Italiano, G.F., Spencer, T.H.: Separator based sparsification II: edge and vertex connectivity. SIAM J. Comput. 28, 341–381 (1999)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Eppstein, D., Italiano, G.F., Tamassia, R., Tarjan, R.E., Westbrook, J., Yung, M.: Maintenance of a minimum spanning forest in a dynamic plane graph. J. Algorithms 13, 33–54 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Frederickson, G.N.: Data structures for on-line updating of minimum spanning trees, with applications. SIAM J. Comput. 14, 781–798 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Frederickson, G.N.: Ambivalent data structures for dynamic 2-edge‐connectivity and k smallest spanning trees. SIAM J. Comput. 26(2), 484–538 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Galil, Z., Italiano, G.F., Sarnak, N.: Fully dynamic planarity testing with applications. J. ACM 48, 28–91 (1999)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Giammarresi, D., Italiano, G.F.: Decremental 2- and 3‐connectivity on planar graphs. Algorithmica 16(3):263–287 (1996)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Hershberger, J., Suri, M.R., Suri, S.: Data structures for two-edge connectivity in planar graphs. Theor. Comput. Sci. 130(1), 139–161 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Italiano, G.F., La Poutré, J.A., Rauch, M.: Fully dynamic planarity testing in planar embedded graphs. 1st Annual European Symposium on Algorithms, Bad Honnef, Germany, 30 September–2 October 1993Google Scholar
  12. 12.
    Tamassia, R.: A dynamic data structure for planar graph embedding. 15th Int. Colloq. Automata, Languages, and Programming. LNCS, vol. 317, pp. 576–590. Springer, Berlin (1988)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Giuseppe F. Italiano
    • 1
  1. 1.Department of Information and Computer SystemsUniversity of RomeRomeItaly