Encyclopedia of Algorithms

2008 Edition
| Editors: Ming-Yang Kao

Fully Dynamic Connectivity: Upper and Lower Bounds

2000; Thorup
  • Giuseppe F. Italiano
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30162-4_153

Keywords and Synonyms

Dynamic connected components; Dynamic spanning forests        

Problem Definition

The problem is concerned with efficiently maintaining information about connectivity in a dynamically changing graph. A dynamic graph algorithm maintains a given property \( \mathcal{P} \)

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Alberts, D., Cattaneo, G., Italiano, G.F.: An empirical study of dynamic graph algorithms. ACM J. Exp. Algorithmics 2 (1997)Google Scholar
  2. 2.
    Beame, P., Fich, F.E.: Optimal bounds for the predecessor problem and related problems. J. Comp. Syst. Sci. 65(1), 38–72 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Eppstein, D.: Dynamic Connectivity in Digital Images. Inf. Process. Lett. 62(3), 121–126 (1997)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Eppstein, D., Galil, Z., Italiano, G.F., Nissenzweig, A.: Sparsification – a technique for speeding up dynamic graph algorithms. J. Assoc. Comp. Mach. 44(5), 669–696 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Eppstein, D., Italiano, G.F., Tamassia, R., Tarjan, R.E., Westbrook, J., Yung, M.: Maintenance of a minimum spanning forest in a dynamic plane graph. J. Algorithms 13, 33–54 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Eyal, E., Halperin, D.: Improved Maintenance of Molecular Surfaces Using Dynamic Graph Connectivity. in: Proc. 5th International Workshop on Algorithms in Bioinformatics (WABI 2005), Mallorca, Spain, 2005, pp. 401–413Google Scholar
  7. 7.
    Frederickson, G.N.: Data structures for on-line updating of minimum spanning trees. SIAM J. Comp. 14, 781–798 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Frederickson, G.N.: Ambivalent data structures for dynamic 2‐edge‐connectivity and k smallest spanning trees. In: Proc. 32nd Symp. Foundations of Computer Science, 1991, pp. 632–641MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Henzinger, M.R., Fredman, M.L.: Lower bounds for fully dynamic connectivity problems in graphs. Algorithmica 22(3), 351–362 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Henzinger, M.R., King, V.: Randomized fully dynamic graph algorithms with polylogarithmic time per operation. J. ACM 46(4), 502–516 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Holm, J., de Lichtenberg, K., Thorup, M.: Poly‐logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J. ACM 48, 723–760 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Iyer, R., Karger, D., Rahul, H., Thorup, M.: An Experimental Study of Polylogarithmic, Fully Dynamic, Connectivity Algorithms. ACM J. Exp. Algorithmics 6 (2001)Google Scholar
  13. 13.
    Miltersen, P.B.: Cell probe complexity – a survey. In: 19th Conference on the Foundations of Software Technology and Theoretical Computer Science (FSTTCS), Advances in Data Structures Workshop, 1999Google Scholar
  14. 14.
    Miltersen, P.B., Subramanian, S., Vitter, J.S., Tamassia, R.: Complexity models for incremental computation. In: Ausiello, G., Italiano, G.F. (eds.) Special Issue on Dynamic and On-line Algorithms. Theor. Comp. Sci. 130(1), 203–236 (1994)Google Scholar
  15. 15.
    Pǎtraşcu, M., Demain, E.D.: Lower Bounds for Dynamic Connectivity. In: Proc. 36th ACM Symposium on Theory of Computing (STOC), 2004, pp. 546–553Google Scholar
  16. 16.
    Pǎtraşcu, M., Tarniţǎ, C.: On Dynamic Bit-Probe Complexity, Theoretical Computer Science, Special Issue on ICALP'05. In: Italiano, G.F., Palamidessi, C. (eds.) vol. 380, pp. 127–142 (2007) A preliminary version in Proc. 32nd International Colloquium on Automata, Languages and Programming (ICALP'05), 2005, pp. 969–981Google Scholar
  17. 17.
    Tarjan, R.E., Vishkin, U.: An efficient parallel biconnectivity algorithm. SIAM J. Comp. 14, 862–874 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Thorup, M.: Near-optimal fully-dynamic graph connectivity. In: Proc. 32nd ACM Symposium on Theory of Computing (STOC), 2000, pp. 343–350Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Giuseppe F. Italiano
    • 1
  1. 1.Department of Information and Computer SystemsUniversity of RomeRomeItaly