Encyclopedia of Algorithms

2008 Edition
| Editors: Ming-Yang Kao

Facility Location

1997; Shmoys, Tardos, Aardal
  • Karen Aardal
  • Jaroslaw Byrka
  • Mohammad Mahdian
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30162-4_139

Keywords and Synonyms

Plant location; Warehouse location          

Problem Definition

Facility location problems concern situations where a planner needs to determine the location of facilities intended to serve a given set of clients. The objective is usually to minimize the sum of the cost of opening the facilities and the cost of serving the clients by the facilities, subject to various constraints, such as the number and the type of clients a facility can serve. There are many variants of the facility location problem, depending on the structure of the cost function and the constraints imposed on the solution. Early references on facility location problems include Kuehn and Hamburger [35], Balinski and Wolfe [8], Manne [40], and Balinski [7]. Review works include Krarup and Pruzan [34] and Mirchandani and Francis [42]. It is interesting to notice that the algorithm that is probably one of the most effective ones to solve the uncapacitated facility location problem to optimality is...

Keywords

Field Programmable Gate Array Facility Location Failure Detector Facility Location Problem Edge Deletion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Aardal, K., Chudak, F.A., Shmoys, D.B.: A 3-approximation algorithm for the k-level uncapacitated facility location problem. Inf. Process. Lett. 72, 161–167 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Ageev, A.A., Sviridenko, M.I.: An 0.828-approximation algorithm for the uncapacitated facility location problem. Discret. Appl. Math. 93, 149–156 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Anagnostopoulos, A., Bent, R., Upfal, E., van Hentenryck, P.: A simple and deterministic competitive algorithm for online facility location. Inf. Comput. 194(2), 175–202 (2004)zbMATHCrossRefGoogle Scholar
  4. 4.
    Andrews, M., Zhang, L.: The access network design problem. In: Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 40–49. IEEE Computer Society, Los Alamitos, CA, USA (1998)Google Scholar
  5. 5.
    Arora, S., Raghavan, P., Rao, S.: Approximation schemes for Euclidean k-medians and related problems. In: Proceedings of the 30th Annual ACM Symposium on Theory of Computing (STOC), pp. 106–113. ACM, New York (1998)Google Scholar
  6. 6.
    Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k-median and facility location problems. In: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing (STOC), pp. 21–29. ACM, New York (2001)Google Scholar
  7. 7.
    Balinski, M.L.: On finding integer solutions to linear programs. In: Proceedings of the IBM Scientific Computing Symposium on Combinatorial Problems, pp. 225–248 IBM, White Plains, NY (1966)Google Scholar
  8. 8.
    Balinski, M.L., Wolfe, P.: On Benders decomposition and a plant location problem. In ARO-27. Mathematica Inc. Princeton (1963)Google Scholar
  9. 9.
    Beasley, J.E.: Operations research library. http://people.brunel.ac.uk/~mastjjb/jeb/info.html. Accessed 2008
  10. 10.
    Byrka, J.: An optimal bifactor approximation algorithm for the metric uncapacitated facility location problem. In: Proceedings of the 10th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX), Lecture Notes in Computer Science, vol. 4627, pp. 29–43. Springer, Berlin (2007)Google Scholar
  11. 11.
    Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k-median problem. In: Proceedings of the 31st Annual ACM Symposium on Theory of Computing (STOC), pp. 1–10. ACM, New York (1999)Google Scholar
  12. 12.
    Charikar, M., Khuller, S., Mount, D., Narasimhan, G.: Facility location with outliers. In: Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 642–651. SIAM, Philadelphia (2001)Google Scholar
  13. 13.
    Chudak, F.A., Shmoys, D.B.: Improved approximation algorithms for the uncapacitated facility location problem. SIAM J Comput. 33(1), 1–25 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Chudak, F.A., Wiliamson, D.P.: Improved approximation algorithms for capacitated facility location problems. In: Proceedings of the 7th Conference on Integer Programing and Combinatorial Optimization (IPCO). Lecture Notes in Computer Science, vol. 1610, pp. 99–113. Springer, Berlin (1999)Google Scholar
  15. 15.
    Cornuéjols, G., Fisher, M.L., Nemhauser, G.L.: Location of bank accounts to optimize float: An analytic study of exact and approximate algorithms. Manag. Sci. 8, 789–810 (1977)CrossRefGoogle Scholar
  16. 16.
    Erlenkotter, D.: A dual-based procedure for uncapacitated facility location problems. Oper. Res. 26, 992–1009 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Feige, U.: A threshold of \( { \ln n } \) for approximating set cover. J. ACM 45, 634–652 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Fotakis, D.: On the competitive ratio for online facility location. In: Proceedings of the 30th International Colloquium on Automata, Languages and Programming (ICALP). Lecture Notes in Computer Science, vol. 2719, pp. 637–652. Springer, Berlin (2003)Google Scholar
  19. 19.
    Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. In: Proceedings of the 9th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 228–248. SIAM, Philadelphia (1998)Google Scholar
  20. 20.
    Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. J. Algorithms 31, 228–248 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Guha, S., Meyerson, A., Munagala, K.: A constant factor approximation for the single sink edge installation problem. In: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing (STOC), pp. 383–388. ACM Press, New York (2001)Google Scholar
  22. 22.
    Guha, S., Meyerson, A., Munagala, K.: Hierarchical placement and network design problems. In: Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 603–612. IEEE Computer Society, Los Alamitos, CA, USA (2000)Google Scholar
  23. 23.
    Gupta, A., Pál, M., Ravi, R., Sinha, A.: Boosted sampling: approximation algorithms for stochastic optimization. In: Proceedings of the 36st Annual ACM Symposium on Theory of Computing (STOC), pp. 417–426. ACM, New York (2004)Google Scholar
  24. 24.
    Hajiaghayi, M., Mahdian, M., Mirrokni, V.S.: The facility location problem with general cost functions. Netw. 42(1), 42–47 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Hochbaum, D.S.: Heuristics for the fixed cost median problem. Math. Program. 22(2), 148–162 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Hochbaum, D.S., Shmoys, D.B.: A best possible approximation algorithm for the k-center problem. Math. Oper. Res. 10, 180–184 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Hoefer, M.: Experimental comparison of heuristic and approximation algorithms for uncapacitated facility location. In: Proceedings of the 2nd International Workshop on Experimental and Efficient Algorithms (WEA). Lecture Notes in Computer Science, vol. 2647, pp. 165–178. Springer, Berlin (2003)Google Scholar
  28. 28.
    Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.V.: Approximation algorithms for facility location via dual fitting with factor-revealing LP. J. ACM 50(6), 795–824 (2003)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Jain, K., Mahdian, M., Saberi, A.: A new greedy approach for facility location problems. In: Proceedings of the 34st Annual ACM Symposium on Theory of Computing (STOC) pp. 731–740, ACM Press, New York (2002)Google Scholar
  30. 30.
    Jain, K., Vazirani, V.V.: An approximation algorithm for the fault tolerant metric facility location problem. In: Approximation Algorithms for Combinatorial Optimization, Proceedings of APPROX (2000), vol. (1913) of Lecture Notes in Computer Science, pp. 177–183. Springer, Berlin (2000)Google Scholar
  31. 31.
    Jamin, S., Jin, C., Jin, Y., Raz, D., Shavitt, Y., Zhang, L.: On the placement of internet instrumentations. In: Proceedings of the 19th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), vol. 1, pp. 295–304. IEEE Computer Society, Los Alamitos, CA, USA (2000)Google Scholar
  32. 32.
    Karger, D., Minkoff, M.: Building Steiner trees with incomplete global knowledge. In: Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer Science (FOCS), IEEE Computer Society, pp. 613–623. Los Alamitos (2000)Google Scholar
  33. 33.
    Krarup, J., Pruzan, P.M.: Ingredients of locational analysis. In: Mirchandani, P., Francis, R. (eds.) Discrete Location Theory, pp. 1–54. Wiley, New York (1990)Google Scholar
  34. 34.
    Krarup, J., Pruzan, P.M.: The simple plant location problem: Survey and synthesis. Eur. J. Oper. Res. 12, 38–81 (1983)Google Scholar
  35. 35.
    Kuehn, A.A., Hamburger, M.J.: A heuristic program for locating warehouses. Manag. Sci. 9, 643–666 (1963)CrossRefGoogle Scholar
  36. 36.
    Li, B., Golin, M., Italiano, G., Deng, X., Sohraby, K.: On the optimal placement of web proxies in the internet. In: Proceedings of the 18th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), pp. 1282–1290. IEEE Computer Society, Los Alamitos (1999)Google Scholar
  37. 37.
    Mahdian, M.: Facility Location and the Analysis of Algorithms through Factor-Revealing Programs. Ph. D. thesis, MIT, Cambridge (2004) Google Scholar
  38. 38.
    Mahdian, M., Pál, M.: Universal facility location. In: Proceedings of the 11th Annual European Symposium on Algorithms (ESA). Lecture Notes in Computer Science, vol. 2832, pp. 409–421. Springer, Berlin (2003)Google Scholar
  39. 39.
    Mahdian, M., Ye, Y., Zhang, J.: Approximation algorithms for metric facility location problems. SIAM J. Comput. 36(2), 411–432 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Manne, A.S.: Plant location under economies-of-scale – decentralization and computation. Manag. Sci. 11, 213–235 (1964)CrossRefGoogle Scholar
  41. 41.
    Meyerson, A.: Online facility location. In: Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 426–431. IEEE Computer Society, Los Alamitos (2001)Google Scholar
  42. 42.
    Mirchandani, P.B., Francis, R.L.: Discrete Location Theory. Wiley, New York (1990)zbMATHGoogle Scholar
  43. 43.
    Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, New York (1990)Google Scholar
  44. 44.
    Pál, M., Tardos, E., Wexler, T.: Facility location with nonuniform hard capacities. In: Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 329–338. IEEE Computer Society, Los Alamitos (2001)Google Scholar
  45. 45.
    Qiu, L., Padmanabhan, V.N., Voelker, G.: On the placement of web server replicas. In: Proceedings of the 20th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM ), pp. 1587–1596. IEEE Computer Society, Los Alamitos (2001)Google Scholar
  46. 46.
    Ravi, R., Sinha, A.: Hedging uncertainty: Approximation algorithms for stochastic optimization problems. Math. Program. 108(1), 97–114 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Ravi, R., Sinha, A.: Integrated logistics: Approximation algorithms combining facility location and network design. In: Proceedings of the 9th Conference on Integer Programming and Combinatorial Optimization (IPCO). Lecture Notes in Computer Science, vol. 2337, pp. 212–229. Springer, Berlin (2002)Google Scholar
  48. 48.
    Ravi, R., Sinha, A.: Multicommodity facility location. In: Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 342–349. SIAM, Philadelphia (2004)Google Scholar
  49. 49.
    Shmoys, D.B.: Approximation algorithms for facility location problems. In: Jansen, K., Khuller, S. (eds.) Approximation Algorithms for Combinatorial Optimization. Lecture Notes in Computer Science, vol. 1913, pp. 27–33. Springer, Berlin (2000)CrossRefGoogle Scholar
  50. 50.
    Shmoys, D.B.: The design and analysis of approximation algorithms: Facility location as a case study. In: Thomas, R.R., Hosten, S., Lee, J. (eds) Proceedings of Symposia in Appl. Mathematics, vol. 61, pp. 85–97. AMS, Providence, RI, USA (2004)Google Scholar
  51. 51.
    Shmoys, D.B., Tardos, E., Aardal, K.: Approximation algorithms for facility location problems. In: Proceedings of the 29th Annual ACM Symposium on Theory of Computing (STOC), pp. 265–274. ACM Press, New York (1997)Google Scholar
  52. 52.
    Svitkina, Z., Tardos, E.: Facility location with hierarchical facility costs. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithm (SODA), pp. 153–161. SIAM, Philadelphia, PA, USA (2006)CrossRefGoogle Scholar
  53. 53.
    Swamy, C., Kumar, A.: Primal-dual algorithms for connected facility location problems. Algorithmica 40(4), 245–269 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Swamy, C., Shmoys, D.B.: Fault-tolerant facility location. In: Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 735–736. SIAM, Philadelphia (2003)Google Scholar
  55. 55.
    Vygen, J.: Approximation algorithms for facility location problems (lecture notes). Technical report No. 05950-OR, Research Institute for Discrete Mathematics, University of Bonn (2005) http://www.or.uni-bonn.de/~vygen/fl.pdf
  56. 56.
    Zhang, J.: Approximating the two-level facility location problem via a quasi-greedy approach. In: Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 808–817. SIAM, Philadelphia (2004). Also, Math. Program. 108, 159–176 (2006)Google Scholar
  57. 57.
    Zhang, J., Chen, B., Ye, Y.: A multiexchange local search algorithm for the capacitated facility location problem. Math. Oper. Res. 30(2), 389–403 (2005)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Karen Aardal
    • 1
    • 2
  • Jaroslaw Byrka
    • 1
    • 2
  • Mohammad Mahdian
    • 3
  1. 1.CWIAmsterdamThe Netherlands
  2. 2.Department of Mathematics and Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands
  3. 3.Yahoo! ResearchSanta ClaraUSA