Encyclopedia of Algorithms

2008 Edition
| Editors: Ming-Yang Kao

Engineering Geometric Algorithms

2004; Halperin
  • Dan Halperin
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30162-4_126

Keywords and Synonyms

Certified and efficient implementation of geometric algorithms; Geometric computing with certified numerics and topology          

Problem Definition

Transforming a theoretical geometric algorithm into an effective computer program abounds with hurdles. Overcoming these difficulties is the concern of engineering geometric algorithms, which deals, more generally, with the design and implementation of certified and efficient solutions to algorithmic problems of geometric nature. Typical problems in this family include the construction of Voronoi diagrams, triangulations, arrangements of curves and surfaces (namely, space subdivisions), two- or higher-dimensional search structures, convex hulls and more.

Geometric algorithms strongly couple topological/combinatorial structures (e. g., a graph describing the triangulation of a set of points) on the one hand, with numerical information (e. g., the coordinates of the vertices of the triangulation) on the other. Slight...


Geographic Information System Voronoi Diagram Computational Geometry Search Structure Geometric Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    The Cgal project homepage. http://www.cgal.org/. Accessed 6 Apr 2008
  2. 2.
    The Core library homepage. http://www.cs.nyu.edu/exact/core/. Accessed 6 Apr 2008
  3. 3.
    The Gmp webpage. http://gmplib.org/. Accessed 6 Apr 2008
  4. 4.
    Agarwal, P.K., Flato, E., Halperin, D.: Polygon decomposition for efficient construction of Minkowski sums. Comput. Geom. Theor. Appl. 21(1–2), 39–61 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Barber, C.B., Dobkin, D.P., Huhdanpaa, H.T.: Imprecision in Qhull. http://www.qhull.org/html/qh-impre.htm. Accessed 6 Apr 2008
  6. 6.
    Boissonnat, J.-D., Teillaud, M. (eds.) Effective Computational Geometry for Curves and Surfaces. Springer, Berlin (2006)Google Scholar
  7. 7.
    Boissonat, J.-D., Devillers, O., Pion, S., Teillaud, M., Yvinec, M.: Triangulations in CGAL. Comput. Geom. Theor. Appl. 22(1–3), 5-19 (2002)Google Scholar
  8. 8.
    Fabri, A., Giezeman, G.-J., Kettner, L., Schirra, S., Schönherr, S.: On the design of Cgal a computational geometry algorithms library. Softw. Pract. Experience 30(11), 1167–1202 (2000)zbMATHCrossRefGoogle Scholar
  9. 9.
    Halperin, D., Leiserowitz, E.: Controlled perturbation for arrangements of circles. Int. J. Comput. Geom. Appl. 14(4–5), 277–310 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Haran, I., Halperin, D.: An experimental study of point location in general planar arrangements. In: Proceedings of 8th Workshop on Algorithm Engineering and Experiments, pp. 16–25 (2006)Google Scholar
  11. 11.
    Held, M.: VRONI: An engineering approach to the reliable and efficient computation of Voronoi diagrams of points and line segments. Comput. Geom. Theor. Appl. 18(2), 95–123 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Joswig, M.: Software. In: Goodman, J.E., O'Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, 2nd edn., chap. 64, pp. 1415–1433. Chapman & Hall/CRC, Boca Raton (2004)Google Scholar
  13. 13.
    Kettner, L., Näher, S.: Two computational geometry libraries: Leda and Cgal. In: Goodman, J.E., O'Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, Chapter 65, pp. 1435–1463, 2nd edn. Chapman & Hall/CRC, Boca Raton (2004)Google Scholar
  14. 14.
    Mehlhorn, K., Näher, S.: Leda: A Platform for Combinatorial and Geometric Computing. Cambridge University Press, Cambridge (2000)Google Scholar
  15. 15.
    Wein, R., Fogel, E., Zukerman, B., Halperin, D.: Advanced programming techniques applied to Cgal's arrangement package. Comput. Geom. Theor. Appl. 36(1–2), 37–63 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Dan Halperin
    • 1
  1. 1.School of Computer ScienceTel-Aviv UniversityTel AvivIsrael