Encyclopedia of Algorithms

2008 Edition
| Editors: Ming-Yang Kao

Distributed Vertex Coloring

2004; Finocchi, Panconesi, Silvestri
  • Devdatt Dubhashi
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30162-4_118

Keywords and Synonyms

Vertex coloring; Distributed computation

Problem Definition

The vertex coloring problem takes as input an undirected graph \( { G:=(V,E) } \)

Keywords

Time Slot Register Allocation Vertex Coloring Random Graph Model Vertex Coloring Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Alon, N., Spencer, J.: The Probabilistic Method. Wiley (2000)CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Ftp site of DIMACS implementation challenges, ftp://dimacs.rutgers.edu/pub/challenge/
  4. 4.
    Finocchi, I., Panconesi, A., Silvestri, R.: An experimental Analysis of Simple Distributed Vertex Coloring Algorithms. Algorithmica 41, 1–23 (2004)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Garey, M., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness. W.H. Freeman (1979)zbMATHGoogle Scholar
  6. 6.
    Grable, D.A., Panconesi, A.: Fast distributed algorithms for Brooks–Vizing colorings. J. Algorithms 37, 85–120 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Johansson, Ö.: Simple distributed \( { (\Delta + 1) } \)-coloring of graphs. Inf. Process. Lett. 70, 229–232 (1999)Google Scholar
  8. 8.
    Kim, J.-H.: On Brook's Theorem for sparse graphs. Combin. Probab. Comput. 4, 97–132 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Luby, M.: Removing randomness in parallel without processor penalty. J. Comput. Syst. Sci. 47(2), 250–286 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Molly, M., Reed, B.: Graph Coloring and the Probabilistic method. Springer (2002)Google Scholar
  11. 11.
    Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. In: SIAM Monographs on Discrete Mathematics and Applications 5 (2000)Google Scholar
  12. 12.
    Trick, M.: Michael Trick's coloring page: http://mat.gsia.cmu.edu/COLOR/color.html

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Devdatt Dubhashi
    • 1
  1. 1.Department of Computer ScienceChalmers University of Technology and Gothenburg UniversityGothenburgSweden