Encyclopedia of Algorithms

2008 Edition
| Editors: Ming-Yang Kao

Distance-Based Phylogeny Reconstruction (Fast-Converging)

2003; King, Zhang, Zhou
  • Miklós Csűrös
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30162-4_114

Keywords and Synonyms

Learning an evolutionary tree      

Problem Definition


From a mathematical point of view, a phylogeny defines a probability space for random sequences observed at the leaves of a binary tree T. The tree T represents the unknown hierarchy of common ancestors to the sequences. It is assumed that (unobserved) ancestral sequences are associated with the inner nodes. The tree along with the associated sequences models the evolution of a molecular sequence, such as the protein sequence of a gene. In the conceptually simplest case, each tree node corresponds to a species, and the gene evolves within the organismal lineages by vertical descent.

Phylogeny reconstruction consists of finding Tfrom observed sequences. The possibility of such reconstruction is implied by fundamental principles of molecular evolution, namely, that random mutations within individuals at the genetic level spreading to an entire mating population are not uncommon, since often they...

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Chang, J.T.: Full reconstruction of Markov models on evolutionary trees: identifiability and consistency. Math. Biosci. 137, 51–73 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Csürös, M.: Fast recovery of evolutionary trees with thousands of nodes. J. Comput. Biol. 9(2), 277–297 (2002) Conference version at RECOMB 2001CrossRefGoogle Scholar
  3. 3.
    Csürös, M., Kao, M.-Y.: Provably fast and accurate recovery of evolutionary trees through Harmonic Greedy Triplets. SIAM J. Comput. 31(1), 306–322 (2001) Conference version at SODA (1999)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Daskalakis, C., Hill, C., Jaffe, A., Mihaescu, R., Mossel, E., Rao, S.: Maximal accurate forests from distance matrices. In: Proc. Research in Computational Biology (RECOMB), pp. 281–295 (2006)Google Scholar
  5. 5.
    Daskalakis, C., Mossel, E., Roch, S.: Optimal phylogenetic reconstruction. In: Proc. ACM Symposium on Theory of Computing (STOC), pp. 159–168 (2006)Google Scholar
  6. 6.
    Erdős, P.L., Steel, M.A., Székely, L.A., Warnow, T.J.: A few logs suffice to build (almost) all trees (I). Random Struct. Algorithm 14, 153–184 (1999) Preliminary version as DIMACS TR97-71CrossRefGoogle Scholar
  7. 7.
    Erdős, P.L., Steel, M.A., Székely, L. A., Warnow, T.J.: A few logs suffice to build (almost) all trees (II). Theor. Comput. Sci. 221, 77–118 (1999) Preliminary version as DIMACS TR97-72CrossRefGoogle Scholar
  8. 8.
    Felsenstein, J.: Inferring Pylogenies. Sinauer Associates, Sunderland, Massachusetts (2004)Google Scholar
  9. 9.
    Huson, D., Nettles, S., Warnow, T.: Disk-covering, a fast converging method of phylogenetic reconstruction. J. Comput. Biol. 6(3–4) 369–386 (1999) Conference version at RECOMB (1999)CrossRefGoogle Scholar
  10. 10.
    King, V., Zhang, L., Zhou, Y.: On the complexity of distance-based evolutionary tree reconstruction. In: Proc. ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 444–453 (2003)Google Scholar
  11. 11.
    Lagergren, J.: Combining polynomial running time and fast convergence for the disk-covering method. J. Comput. Syst. Sci. 65(3), 481–493 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Lake, J.A.: Reconstructing evolutionary trees from DNA and protein sequences: paralinear distances. Proc. Natl. Acad. Sci. USA 91, 1455–1459 (1994)CrossRefGoogle Scholar
  13. 13.
    Lockhart, P.J., Steel, M.A., Hendy, M.D., Penny, D.: Recovering evolutionary trees under a more realistic model of sequence evolution. Mol. Biol. Evol. 11, 605–612 (1994)Google Scholar
  14. 14.
    Neyman, J.: Molecular studies of evolution: a source of novel statistical problems. In: Gupta, S.S., Yackel, J. (eds) Statistical Decision Theory and Related Topics, pp. 1–27. Academic Press, New York (1971)Google Scholar
  15. 15.
    Ohta, T.: Near-neutrality in evolution of genes and gene regulation. Proc. Natl. Acad. Sci. USA 99, 16134–16137 (2002)CrossRefGoogle Scholar
  16. 16.
    Steel, M.A.: Recovering a tree from the leaf colourations it generates under a Markov model. Appl. Math. Lett. 7, 19–24 (1994)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Miklós Csűrös
    • 1
  1. 1.Department of Computer ScienceUniversity of MontrealMontrealCanada