Encyclopedia of Algorithms

2008 Edition
| Editors: Ming-Yang Kao

Direct Routing Algorithms

2006; Busch, Magdon-Ismail, Mavronicolas, Spirakis
  • Costas Busch
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30162-4_113

Keywords and Synonyms

Hot-potato routing ; Bufferless packet switching; Collision‐free packet scheduling          

Problem Definition

The performance of a communication network is affected by the packet collisions which occur when two or more packets appear simultaneously in the same network node (router) and all these packets wish to follow the same outgoing link from the node. Since network links have limited available bandwidth, the collided packets wait on buffers until the collisions are resolved. Collisions cause delays in the packet delivery time and also contribute to the network performance degradation.

Direct routingis a packet delivery method which avoids packet collisions in the network. In direct routing, after a packet is injected into the network it follows a path to its destination without colliding with other packets, and thus without delays due to buffering, until the packet is absorbed at its destination node. The only delay that a packet experiences is at the...

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Adler, M., Khanna, S., Rajaraman, R., Rosén, A.: Time-constrained scheduling of weighted packets on trees and meshes. Algorithmica 36, 123–152 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Alon, N., Chung, F., Graham, R.: Routing permutations on graphs via matching. SIAM J. Discret. Math. 7(3), 513–530 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Alstrup, S., Holm, J., de Lichtenberg, K., Thorup, M.: Direct routing on trees. In: Proceedings of the Ninth Annual ACM-SIAM, Symposium on Discrete Algorithms (SODA 98), pp. 342–349. San Francisco, California, United States (1998) Google Scholar
  4. 4.
    Ben-Dor, A., Halevi, S., Schuster, A.: Potential function analysis of greedy hot-potato routing. Theor. Comput. Syst. 31(1), 41–61 (1998)Google Scholar
  5. 5.
    Busch, C., Herlihy, M., Wattenhofer, R.: Hard-potato routing. In: Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, pp. 278–285. Portland, Oregon, United States (2000)Google Scholar
  6. 6.
    Busch, C., Magdon-Ismail, M., Mavronicolas, M., Spirakis, P.: Direct routing: Algorithms and Complexity. Algorithmica 45(1), 45–68 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Cypher, R., Meyer auf der Heide, F., Scheideler, C., Vöcking, B.: Universal algorithms for store-and-forward and wormhole routing. In: Proceedings of the 28th ACM Symposium on Theory of Computing, pp. 356–365. Philadelphia, Pennsylvania, USA (1996)Google Scholar
  8. 8.
    Feige, U., Raghavan, P.: Exact analysis of hot-potato routing. In: IEEE (ed.) Proceedings of the 33rd Annual, Symposium on Foundations of Computer Science, pp. 553–562, Pittsburgh (1992)Google Scholar
  9. 9.
    Kaklamanis, C., Krizanc, D., Rao, S.: Hot-potato routing on processor arrays. In: Proceedings of the 5th Annual ACM, Symposium on Parallel Algorithms and Architectures, pp. 273–282, Velen (1993)Google Scholar
  10. 10.
    Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: Arrays – Trees – Hypercubes. Morgan Kaufmann, San Mateo (1992)zbMATHGoogle Scholar
  11. 11.
    Leighton, F.T., Maggs, B.M., Rao, S.B.: Packet routing and job-scheduling in O(congestion+dilation) steps. Combinatorica 14, 167–186 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Leighton, T., Maggs, B., Richa, A.W.: Fast algorithms for finding O(congestion + dilation) packet routing schedules. Combinatorica 19, 375–401 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Symvonis, A.: Routing on trees. Inf. Process. Lett. 57(4), 215–223 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Valiant, L.G.: A scheme for fast parallel communication. SIAM J. Comput. 11, 350–361 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Valiant, L.G., Brebner, G.J.: Universal schemes for parallel communication. In: Proceedings of the 13th Annual ACM, Symposium on Theory of Computing, pp. 263–277. Milwaukee, Wisconsin, United States (1981)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Costas Busch
    • 1
  1. 1.Department of Computer ScienceLousiana State UniversityBaton RougeUSA