Encyclopedia of Parallel Computing

2011 Edition
| Editors: David Padua

SPAI (SParse Approximate Inverse)

Reference work entry
DOI: https://doi.org/10.1007/978-0-387-09766-4_144
  • 504 Downloads

Synonyms

Definition

For a given sparse matrix A a sparse matrix \(M \approx {A}^{-1}\)

This is a preview of subscription content, log in to check access.

Bibliography

  1. 1.
    Alleon G, Benzi M, Giraud L (1997) Sparse approximate inverse preconditioning for dense linear systems arising in computational electromagnetics. Numer Algorith 16(1):1–15zbMATHMathSciNetGoogle Scholar
  2. 2.
    Barnard S, Grote M (1999) A block version of the SPAI preconditioner. Proceedings of the 9th SIAM conference on Parallel Processing for Scientific Computing, San Antonio, TXGoogle Scholar
  3. 3.
    Barnard ST, Clay RL (1997) A portable MPI implemention of the SPAI preconditioner in ISIS++. In: Heath M, et al (eds) Proceedings of the eighth SIAM conference on parallel processing for scientific computing, Philadelphia, PAGoogle Scholar
  4. 4.
    Benson MW, Frederickson PO (1982) Iterative solution of large sparse linear systems arising in certain multidimensional approximation problems. Utilitas Math 22:127–140zbMATHMathSciNetGoogle Scholar
  5. 5.
    Bröker O, Grote M, Mayer C, Reusken A (2001) Robust parallel smoothing for multigrid via sparse approximate inverses. SIAM J Scient Comput 23(4):1396–1417zbMATHGoogle Scholar
  6. 6.
    Bröker O, Grote M (2002) Sparse approximate inverse smoothers for geometric and algebraic multigrid. Appl Num Math 41(1):61–80zbMATHGoogle Scholar
  7. 7.
    Chan TFC, Mathew TP (1992) The interface probing technique in domain decomposition. SIAM J Matrix Anal Appl 13(1):212–238zbMATHMathSciNetGoogle Scholar
  8. 8.
    Chan TF, Tang WP, Wan WL (1997) Wavelet sparse approximate inverse preconditioners. BIT 37(3):644–660zbMATHMathSciNetGoogle Scholar
  9. 9.
    Chow E (2000) A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM J Sci Comput 21(5):1804–1822zbMATHMathSciNetGoogle Scholar
  10. 10.
    Cosgrove JDF, D´iaz JC, Griewank A (1992) Approximate inverse preconditionings for sparse linear systems. Int J Comput Math 44:91–110zbMATHGoogle Scholar
  11. 11.
    Demko S, Moss WF, Smith PW (1984) Decay rates of inverses of band matrices. Math Comp 43:491–499zbMATHMathSciNetGoogle Scholar
  12. 12.
    Gould NIM, Scott JA (1995) On approximate-inverse preconditioners. Technical Report RAL-TR-95-026, Rutherford Appleton Laboratory, Oxfordshire, EnglandGoogle Scholar
  13. 13.
    Grote MJ, Huckle T (1997) Parallel preconditioning with sparse approximate inverses. SIAM J Sci Comput 18(3):838–853zbMATHMathSciNetGoogle Scholar
  14. 14.
    Huckle T (2003) Factorized sparse approximate inverses for preconditioning. J Supercomput 25:109–117zbMATHGoogle Scholar
  15. 15.
    Huckle T, Kallischko A (2007) Frobenius norm minimization and probing for preconditioning. Int J Comp Math 84(8):1225–1248zbMATHMathSciNetGoogle Scholar
  16. 16.
    Huckle T, Sedlacek M (2010) Smoothing and regularization with modified sparse approximate inverses. Journal of Electrical and Computer Engineering – Special Issue on Iterative Signal Processing in Communications, Appearing (2010)Google Scholar
  17. 17.
    Holland RM, Shaw GJ, Wathen AJ (2005) Sparse approximate inverses and target matrices. SIAM J Sci Comput 26(3):1000–1011zbMATHMathSciNetGoogle Scholar
  18. 18.
    Kaporin IE (1994) New convergence results and preconditioning strategies for the conjugate gradient method. Numer Linear Algebra Appl 1:179–210zbMATHMathSciNetGoogle Scholar
  19. 19.
    Kolotilina LY, Yeremin AY (1993) Factorized sparse approximate inverse preconditionings I: Theory. SIAM J Matrix Anal Appl 14(1):45–58zbMATHMathSciNetGoogle Scholar
  20. 20.
    Kolotilina LY, Yeremin AY (1995) Factorized sparse approximate inverse preconditionings II: Solution of 3D FE systems on massively parallel computers. Inter J High Speed Comput 7(2):191–215Google Scholar
  21. 21.
    Tang W-P (1999) Toward an effective sparse approximate inverse preconditioner. SIAM J Matrix Anal Appl 20(4):970–986zbMATHMathSciNetGoogle Scholar
  22. 22.
    Tang WP, Wan WL (2000) Sparse approximate inverse smoother for multigrid. SIAM J Matrix Anal Appl 21(4):1236–1252zbMATHMathSciNetGoogle Scholar
  23. 23.
    Zhang J (2002) A sparse approximate inverse technique for parallel preconditioning of general sparse matrices. Appl Math Comput 130(1):63–85zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institut fr InformatikTechnische Universität MünchenGarchingGermany