SPAI (SParse Approximate Inverse)
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-09766-4_144
- 504 Downloads
Synonyms
Definition
For a given sparse matrix A a sparse matrix \(M \approx {A}^{-1}\)
This is a preview of subscription content, log in to check access.
Bibliography
- 1.Alleon G, Benzi M, Giraud L (1997) Sparse approximate inverse preconditioning for dense linear systems arising in computational electromagnetics. Numer Algorith 16(1):1–15zbMATHMathSciNetGoogle Scholar
- 2.Barnard S, Grote M (1999) A block version of the SPAI preconditioner. Proceedings of the 9th SIAM conference on Parallel Processing for Scientific Computing, San Antonio, TXGoogle Scholar
- 3.Barnard ST, Clay RL (1997) A portable MPI implemention of the SPAI preconditioner in ISIS++. In: Heath M, et al (eds) Proceedings of the eighth SIAM conference on parallel processing for scientific computing, Philadelphia, PAGoogle Scholar
- 4.Benson MW, Frederickson PO (1982) Iterative solution of large sparse linear systems arising in certain multidimensional approximation problems. Utilitas Math 22:127–140zbMATHMathSciNetGoogle Scholar
- 5.Bröker O, Grote M, Mayer C, Reusken A (2001) Robust parallel smoothing for multigrid via sparse approximate inverses. SIAM J Scient Comput 23(4):1396–1417zbMATHGoogle Scholar
- 6.Bröker O, Grote M (2002) Sparse approximate inverse smoothers for geometric and algebraic multigrid. Appl Num Math 41(1):61–80zbMATHGoogle Scholar
- 7.Chan TFC, Mathew TP (1992) The interface probing technique in domain decomposition. SIAM J Matrix Anal Appl 13(1):212–238zbMATHMathSciNetGoogle Scholar
- 8.Chan TF, Tang WP, Wan WL (1997) Wavelet sparse approximate inverse preconditioners. BIT 37(3):644–660zbMATHMathSciNetGoogle Scholar
- 9.Chow E (2000) A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM J Sci Comput 21(5):1804–1822zbMATHMathSciNetGoogle Scholar
- 10.Cosgrove JDF, D´iaz JC, Griewank A (1992) Approximate inverse preconditionings for sparse linear systems. Int J Comput Math 44:91–110zbMATHGoogle Scholar
- 11.Demko S, Moss WF, Smith PW (1984) Decay rates of inverses of band matrices. Math Comp 43:491–499zbMATHMathSciNetGoogle Scholar
- 12.Gould NIM, Scott JA (1995) On approximate-inverse preconditioners. Technical Report RAL-TR-95-026, Rutherford Appleton Laboratory, Oxfordshire, EnglandGoogle Scholar
- 13.Grote MJ, Huckle T (1997) Parallel preconditioning with sparse approximate inverses. SIAM J Sci Comput 18(3):838–853zbMATHMathSciNetGoogle Scholar
- 14.Huckle T (2003) Factorized sparse approximate inverses for preconditioning. J Supercomput 25:109–117zbMATHGoogle Scholar
- 15.Huckle T, Kallischko A (2007) Frobenius norm minimization and probing for preconditioning. Int J Comp Math 84(8):1225–1248zbMATHMathSciNetGoogle Scholar
- 16.Huckle T, Sedlacek M (2010) Smoothing and regularization with modified sparse approximate inverses. Journal of Electrical and Computer Engineering – Special Issue on Iterative Signal Processing in Communications, Appearing (2010)Google Scholar
- 17.Holland RM, Shaw GJ, Wathen AJ (2005) Sparse approximate inverses and target matrices. SIAM J Sci Comput 26(3):1000–1011zbMATHMathSciNetGoogle Scholar
- 18.Kaporin IE (1994) New convergence results and preconditioning strategies for the conjugate gradient method. Numer Linear Algebra Appl 1:179–210zbMATHMathSciNetGoogle Scholar
- 19.Kolotilina LY, Yeremin AY (1993) Factorized sparse approximate inverse preconditionings I: Theory. SIAM J Matrix Anal Appl 14(1):45–58zbMATHMathSciNetGoogle Scholar
- 20.Kolotilina LY, Yeremin AY (1995) Factorized sparse approximate inverse preconditionings II: Solution of 3D FE systems on massively parallel computers. Inter J High Speed Comput 7(2):191–215Google Scholar
- 21.Tang W-P (1999) Toward an effective sparse approximate inverse preconditioner. SIAM J Matrix Anal Appl 20(4):970–986zbMATHMathSciNetGoogle Scholar
- 22.Tang WP, Wan WL (2000) Sparse approximate inverse smoother for multigrid. SIAM J Matrix Anal Appl 21(4):1236–1252zbMATHMathSciNetGoogle Scholar
- 23.Zhang J (2002) A sparse approximate inverse technique for parallel preconditioning of general sparse matrices. Appl Math Comput 130(1):63–85zbMATHMathSciNetGoogle Scholar
Copyright information
© Springer Science+Business Media, LLC 2011