Mantled gneiss domes

  • John M. Dixon
Reference work entry

The term mantled gneiss dome was first used by Professor Pentti Eskola (1949) in his discussion of the domes of the Karelian Province of eastern Finland, although structures of this type had previously been described by a number of workers (e.g., Hitchcock, 1877; Trustedt, 1907) and the similar term mantled diapir had been coined by Wegmann (1930). The origin of gneiss domes is reviewed by Brun (1983).

Gneiss domes are characteristic of the core zones of orogenic belts the world over; other wellknown examples include the so-called Oliverian domes of the Appalachian Orogen of New England (United States) ( Chapman, 1939, 1942; Billings, 1945; Thompson et al., 1968; see Figs. 1 and 2); the Rum Jungle and Waterhouse domes of the Pine Creek Geosyncline, northern Australia ( Sullivan and Matheson, 1952; Rhodes, 1965; Stephansson and Johnson, 1976); the domes of the Albion Range, Idaho ( Armstrong, 1968); the spectacular mushroom-shaped structures exposed in the fjords of the East Greenland...
This is a preview of subscription content, log in to check access


  1. Armstrong, R. L., 1968, Mantled gneiss domes in the Albion Range, southern Idaho, Geol. Soc. America Bull. 79, 1295–1314.Google Scholar
  2. Armstrong, R. L., 1982, Cordilleran metamorphic core complexes—from Arizona to southern Canada, Ann. Rev. Earth Planetary Sci. 10, 129–154.Google Scholar
  3. Berner, H.; Ramberg, H.; and Stephansson, O., 1972, Diapirism in theory and experiment, Tectonophysics 15, 197–218.Google Scholar
  4. Billings, M. P., 1945, Mechanics of igneous intrusion in New Hampshire, Am. Jour. Sci. 243A, 40–68.Google Scholar
  5. Biot, M. A., 1966, Three-dimensional gravity instability derived from two-dimensional solutions, Geophysics 31, 153–166.Google Scholar
  6. Biot, M. A., and Odé, H., 1965, Theory of gravity instability with variable overburden and compaction, Geophysics 30, 213–227.Google Scholar
  7. Brown, R. L., and Read, P. B., 1983, Shuswao terrane of British Columbia: A Mesozoic “core complex,” Geology 11, 164–168.Google Scholar
  8. Brown, R. L., Journeay, J. M., Lane, L. S., Murphy, D. M., and Rees, C. J., 1986, Obduction, backfolding, and piggyback thrusting in the metamorphic hinterland of the southeast Canadian Cordillera, Jour. Struct. Geol. 8.Google Scholar
  9. Brun, J. P., 1980, The cluster-ridge pattern of mantled gneiss domes in eastern Finland: evidence for largescale gravitational instability of the Proterozoic crust, Earth and Planetary Sci. Letters 47, 441–449.Google Scholar
  10. Brun, J. P., 1983, L'origine des domes gneissiques: Modeleset tests, Bull. Soc. Geol. France 25, 219–228.Google Scholar
  11. Brun, J. P.; Gapais, D.; and LeTheoff, B., 1981, The mantled gneiss domes of Kuopio (Finland): interfering diapirs, Tectonophysics 74, 283–304.Google Scholar
  12. Chapman, C. A., 1939, Geology of the Mascoma Quadrangle, New Hampshire, Geol. Soc. America Bull. 50, 127–180.Google Scholar
  13. Chapman, C. A., 1942, Intrusive domes of the Claremont-Newport Area, New Hampshire, Geol. Soc. America Bull. 53, 889–916.Google Scholar
  14. Combe, A. D., 1932, The geology of southwest Ankole, Uganda Geol. Survey Mem. 2.Google Scholar
  15. Coney, P. J., 1980, Cordilleran metamorphic core complexes: An overview, in, M. D. Crittenden, Jr., P. J. Coney, and G. H. Davis, eds., Cordilleran Metamorphic Core Complexes, Geol. Soc. America Mem. 153, 7–31.Google Scholar
  16. Coward, M. P., 1981, Diapirism and gravity tectonics: report of a tectonic studies conference held at Leeds University, 25–26 March 1980 (includes abstracts), Jour. Struct. Geol. 3, 89–95.Google Scholar
  17. Crittenden, M., Jr., 1977, Tectonic significance of metamorphic core complexes in the North American Cordillera, Geology 6, 79–80.Google Scholar
  18. Crittenden, M., Jr.; Coney, P. J.; and Davis, G. H., eds., 1980, Cordilleran Metamorphic Core Complexes, Geol. Soc. America Mem. 153, 490p.Google Scholar
  19. Danes, Z. F., 1964, Mathematical formulation of saltdome dynamics, Geophysics 29, 414–424.Google Scholar
  20. Davis, G. H., and Coney, P. J., 1979, Geologic development of the Cordilleran metamorphic core complexes, Geology 7, 120–124.Google Scholar
  21. Dieterich, J. H., 1969, Origin of cleavage in folded rocks, Am. Jour. Sci. 267, 155–165.CrossRefGoogle Scholar
  22. Dixon, J. M., 1975, Finite strain and progressive deformation in models of diapiric structures, Tectonophysics 28, 89–124.Google Scholar
  23. Dixon, J. M., and Sommers, J. M., 1983, Patterns of total and incremental strain in subsiding troughs: Experimental centrifuge models of inter-diapir synclines, Canadian Jour. Earth Sci. 20, 1893–1861.Google Scholar
  24. Eskola, P. E., 1949, The problem of mantled gneiss domes, Geol. Soc. London Quart. Jour. 104, 461–476.Google Scholar
  25. Fletcher, R. C., 1972, Application of a mathematical model to the emplacement of mantled gneiss domes, Am. Jour. Sci. 272, 197–216.CrossRefGoogle Scholar
  26. Flood, R. H., and Vernon, R. H., 1978, The Cooma granodiorite, Australia: an example of in situ crustal anatexis? Geology 6, 81–84.Google Scholar
  27. Hadley, J. B., 1942, Stratigraphy, structure, and petrology of the Mt. Cube area, New Hampshire, Geol. Soc. America Bull. 53, 113–176.Google Scholar
  28. Haller, J., 1971, Geology of the East Greenland Caledonides. London: John Wiley & Sons, 413p.Google Scholar
  29. Hitchcock, C. H., 1877, The Geology of New Hampshire, Part II—Stratigraphical Geology. Concord, N.H.: 684p.Google Scholar
  30. Hobbs, B. E.; Means, W. D.; and Williams, P. F., 1976, An Outline of Structural Geology. New York: John Wiley & Sons, 571p.Google Scholar
  31. Journeay, J. M., 1986, Stratigraphy, internal strain, and thermotectonic evolution of northern Frenchman Cap Dome, an exhumed basement duplex structure, Omineca Hinterland, S.E. Canadian Cordillera, Ph.D. Dissertation, Queen's University.Google Scholar
  32. Laitakari, A., 1917, Om några kontakter från Pitkäranta område (Abst.), Medd. Geol. Fören. Helsingfors, år 1916, p. xx.Google Scholar
  33. MacGregor, A. M., 1951, Some milestones in the Pre-Cambrian of Southern Rhodesia, Geol. Soc. South Africa Trans. and Proc. 54, xxvii–lxxi.Google Scholar
  34. Naylor, R. S., 1969, Age and origin of the Oliverian Domes, central-western New Hampshire, Geol. Soc. America Bull. 80, 405–428.Google Scholar
  35. Nicholson, R., 1965, The structure and metamorphism of the mantling Karagwe-Ankolean sediments of the Ntungamo gneiss dome and their time-relation to the development of the dome, Geol. Soc. London Quart. Jour. 121, 143–162.Google Scholar
  36. Platt, J. P., 1980, Archaean greenstone belts: a structural test of tectonic hypotheses, Tectonophysics 65, 127–150.Google Scholar
  37. Ramberg, H., 1967, Gravity, Deformation and the Earth's Crust. London: Academic Press, 214p.Google Scholar
  38. Ramberg, H., 1968, Instability of layered systems in the field of gravity, parts I and II, Physics Earth and Planetary Interiors 1, 427–474.Google Scholar
  39. Ramberg, H., 1972, Theoretical models of density stratification and diapirism in the Earth, Jour. Geophys. Research 77, 877–889.Google Scholar
  40. Ramberg, H., 1973, Model studies of gravity-controlled tectonics by the centrifuge technique, in K. DeJong and R. Scholten, eds., Gravity and Tectonics. New York: Wiley-Interscience, 49–66.Google Scholar
  41. Ramsay, J. G., 1967, Folding and Fracturing of Rocks. New York: McGraw-Hill, 568p.Google Scholar
  42. Reesor, J. E., 1965, Structural evolution and plutonism in Valhalla gneiss complex, British Columbia, Canada Geol. Survey Bull. 129, 128p.Google Scholar
  43. Reesor, J. E., and Moore, J. M., 1971, Petrology and structure of Thor-Odin gneiss dome, Shuswap Metamorphic Complex, British Columbia, Canada Geol. Surv. Bull. 195, 149p.Google Scholar
  44. Rhodes, J. M., 1965, The geological relationships of the Rum Jungle Complex, Australia Bur. Mineral Resources, Geology and Geophysics Rep. 89.Google Scholar
  45. Richards, J. R.; Berry, H.; and Rhodes, J. M, 1966, Isotopic and lead-alpha ages of some Australian zircons, Geol. Soc. Australia Jour. 13, 69–96.Google Scholar
  46. Rosenfeld, J. L., 1968, Garnet rotations due to the major Paleozoic deformations in southeast Vermont, in E-an Zen et al., eds., Studies of Appalachian Geology: Northern and Maritime. New York: Wiley-Interscience, 185–202.Google Scholar
  47. Schrijver, K., 1975, Deformed root of a composite diapir in granulite facies, Geotektonische Forschungen 49, 1–118.Google Scholar
  48. Schwerdtner, W. M., 1982, Salt stocks as natural analogues of Archaean gneiss diapirs, Geol. Rundschau 71, 370–379.Google Scholar
  49. Schwerdtner, W. M.; Stone, D.; Osadetz, K.; Morgan, J.; and Stott, G. T., 1979, Granitoid complexes and the Archean tectonic record in the southern part of northwestern Ontario, Canadian Jour. Earth Sci. 16, 1965–1977.Google Scholar
  50. Schwerdtner, W. M.; Sutcliffe, R. H.; and Troeng, B., 1978, Patterns of total strain within the crestal regions of immature diapirs, Canadian Jour. Earth Sci. 15, 1437–1447.Google Scholar
  51. Schwerdtner, W. M., and Troeng, B., 1978, Strain distribution within arcuate diapiric ridges of silicone putty, Tectonophysics 50, 13–28.Google Scholar
  52. Selig, F., 1965, A theoretical prediction of salt dome patterns, Geophysics 30, 633–643.Google Scholar
  53. Stephansson, O., and Johnson, K., 1976, Granite diapirism in the Rum Jungle area, Northern Australia, Precambrian Research 3, 159–185.Google Scholar
  54. Sullivan, C. J., and Matheson, R. S., 1952, Uraniumcopper deposits, Rum Jungle, Australia, Econ. Geology 147, 751–758.CrossRefGoogle Scholar
  55. Talbot, C. J., 1971, Thermal convection below the solidus in a mantled gneiss dome, Fungwi Reserve, Rhodesia, Geol. Soc. London Jour. 127, 377–410.Google Scholar
  56. Talbot, C. J., 1974, Fold nappes as asymmetric mantled gneiss domes and ensialic orogeny, Tectonophysics 24, 259–276.Google Scholar
  57. Talbot, C. J., 1977, Inclined and asymmetric upward-moving gravity structures, Tectonophysics 42, 159–181.Google Scholar
  58. Talbot, C. J., 1979, Infrastructural migmatite upwelling in East Greenland interpreted as thermal convective structures, Precambrian Research 8, 77–93.Google Scholar
  59. Thompson, J. B., Jr.,; Robinson, P.; Clifford, T. N.; and Trask, N., 1968, Nappes and gneiss domes in west-central New England, in E-an Zen et al., eds., Studies of Appalachian Geology: Northern and Maritime. New York: Wiley-Interscience, 203–218.Google Scholar
  60. Tippett, C. R., 1980, A geological cross-section through the southern margin of the Foxe Fold Belt, Baffin Island, Arctic Canada, and its relevance to the tectonic evolution of the northeastern Churchill Province, Ph.D. dissertation, Queen's University.Google Scholar
  61. Trusheim, F., 1960, Mechanism of salt migration in northern Germany, Am. Assoc. Petroleum Geologists Bull. 44, 1519–1541.Google Scholar
  62. Trustedt, O., 1907, Die Erzlagerstatten von Pitkaranta am Ladoga-See, Finlande Comm. Géol. Bull. 19, 1–333.Google Scholar
  63. Watson, J., 1967, Evidence of mobility in reactivated basement complexes, Geol. Soc. London Proc. 78, 211–235.Google Scholar
  64. Wegmann, C. E., 1930, Uber Diapirismus (besonders im Grundgebirge), Finlande Comm. Géol. Bull. 92, 58–76.Google Scholar
  65. Wetherill, G. W.; Kouvo, O.; Tilton, G. R.; and Gast, P. W., 1962, Age measurements on rocks from the Finnish Precambrian, Jour. Geology 70, 74–88.Google Scholar

Copyright information

© Van Nostrand Reinhold Company Inc. 1987

Authors and Affiliations

  • John M. Dixon

There are no affiliations available