Skip to main content

Xenopus as a Model Organism for Functional Genomics: Rich History, Promising Future

  • Reference work entry
  • 123 Accesses

Definition

The human genome project and subsequent efforts have driven technological advances and led to an exponential increase in sequence data acquisition. New bioinformatic tools allow researchers to query and analyze sequence data as never before. Yet, the functional meaning of sequence and expression information, how genotype maps to phenotype (and vice versa), and the dynamic relationship between gene expression and cellular behavior, tissue function, developmental processes and homeostatic and adaptive mechanisms, has lagged behind. There is an urgent need for the integration of high-throughput genomics methods and experimentally accessible model systems, in order to answer central questions of biological behavior. An obvious choice for a biological system in which to reconcile genomics and functions is the clawed frog Xenopus laevis . We discuss the advantages of Xenopus as an experimental model, and its potential for making significant contributions in the area of functional...

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/3-540-29623-9_2110
  • Chapter length: 7 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   849.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-29623-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   849.99
Price excludes VAT (USA)
Figure 1
Figure 2
Figure 3
Figure 4

References

  1. Kumano G, Smith WC (2002) Revisions to the Xenopus gastrula fate map: implications for mesoderm induction and patterning. Dev Dyn 225:409–21

    PubMed  CrossRef  Google Scholar 

  2. Dale L, Slack JM (1987) Fate map for the 32-cell stage of Xenopus laevis. Development 99:527–51

    PubMed  CAS  Google Scholar 

  3. Kroll KL, Amaya E (1996) Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development 122:3173–83

    PubMed  CAS  Google Scholar 

  4. Hirsch N, Zimmerman LB, Grainger RM (2002) Xenopus, the next generation: X. tropicalis genetics and genomics. Dev Dyn 225:422–33

    PubMed  CAS  CrossRef  Google Scholar 

  5. Khokha MK, Chung C, Bustamante EL et al (2002) Techniques and probes for the study of Xenopus tropicalis development. Dev Dyn 225:499–510

    PubMed  CAS  CrossRef  Google Scholar 

  6. D'Souza A, Lee M, Taverner N et al (2003) Molecular components of the endoderm specification pathway in Xenopus tropicalis. Dev Dyn 226:118–27

    PubMed  CrossRef  Google Scholar 

  7. Green J (1999) The animal cap assay. Methods Mol Biol 127:1–13

    PubMed  CAS  Google Scholar 

  8. Ariizumi T, Asashima M (2001) In vitro induction systems for analyses of amphibian organogenesis and body patterning. Int J Dev Biol 45:173–179

    Google Scholar 

  9. Zhang C, Basta T, Klymkowsky MW (2005). SOX7 and SOX18 are essential for the induction of cardiogenesis in Xenopus. Dev Dyn, in press

    Google Scholar 

  10. Hausen P, Riebesell M (1991) The early development of Xenopus laevis: an atlas of histology. Verlag der Zeitschrift für Naturforschung, Tubingen

    Google Scholar 

  11. Sive HL, Grainger RM, Harland RM (2000) Early development of Xenopus laevis: a laboratory manual. Cold Spring Harbor Press

    Google Scholar 

  12. Grammer TC, Liu KJ, Mariani FV, Harland RM (2000) Use of large-scale expression cloning screens in the Xenopus laevis tadpole to identify gene function. Dev Biol 228:197–210

    PubMed  CAS  CrossRef  Google Scholar 

  13. Kolker SJ, Tajchman U, Weeks DL (2000) Confocal imaging of early heart development in Xenopus laevis. Dev Biol 218:64–73

    PubMed  CAS  CrossRef  Google Scholar 

  14. Hartley KO, Nutt SL, Amaya E (2002) Targeted gene expression in transgenic Xenopus using the binary Gal4-UAS system. Proc Natl Acad Sci USA 99:1377–82

    PubMed  CAS  CrossRef  Google Scholar 

  15. Heasman J (2002) Morpholino oligos: making sense of antisense? Dev Biol. 243:209–14.

    PubMed  CAS  CrossRef  Google Scholar 

  16. Baldessari D, Shin Y, Krebs O et al (2005) Global gene expression profiling and cluster analysis in Xenopus laevis. Mech Dev 122:441–75

    PubMed  CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael W. Klymkowsky .

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Grow, M.W., Klymkowsky, M.W. (2006). Xenopus as a Model Organism for Functional Genomics: Rich History, Promising Future. In: Encyclopedic Reference of Genomics and Proteomics in Molecular Medicine. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-29623-9_2110

Download citation