The many facets of euler’s totient

  • J. Sándor
  • B. Crstici
Reference work entry

3.1 Introduction

Motivated by a generalization of Fermat’s divisibility theorem, in 1760 L. Euler [133] proved that


  1. [1]
    L. M. Adleman, C. Pomerance and R. S. Rumely, On distinguishing prime numbers from composite numbers, Ann. of Math. 117(1983), 173–206.MathSciNetGoogle Scholar
  2. [2]
    A. Aigner, Das quadratfreie Kern der Eulerschen ϕ-Funktion, Monatsh. Math. 83(1977), 89–91.zbMATHMathSciNetGoogle Scholar
  3. [3]
    L. Alaoglu and P. Erdös, A conjecture in elementary number theory, Bull. Amer. Math. Soc. 50(1944), no. 12, 881–882.zbMATHMathSciNetGoogle Scholar
  4. [4]
    H. L. Alder, A generalization of Euler’s ϕ-function, Amer. Math. Monthly 65(1958), 690–692.zbMATHMathSciNetGoogle Scholar
  5. [5]
    K. Alladi, On arithmetic functions and divisors of higher order, pp. 1–20, in: K. Alladi, New Concepts in Arithmetic Functions, Math.-Science Report 83, The Institute of Math. Sciences, Madras.Google Scholar
  6. [6]
    E. Altinisik and D. Tasci, On a generalization of the reciprocal lcm matrix, Comm. Fac. Sci. Univ. Ank. Series A1, 51(2002), no. 2, 37–46.zbMATHMathSciNetGoogle Scholar
  7. [7]
    E. Altinisik, N. Tuglu and P. Haukkanen, A note on bounds for norms of the reciprocal LCM matrix, Math. Ineq. Appl. (to appear).Google Scholar
  8. [8]
    H. Alzer, The Euler-Fermat theorem, Intern. J. Math. Educ. Sci. Tech. 18(1987), 635–636.zbMATHGoogle Scholar
  9. [9]
    F. Amoroso, Algebraic numbers close to 1 and variants of Mahler’s measure, J. Number Theory 60(1996), no. 1, 80–96.zbMATHMathSciNetGoogle Scholar
  10. [10]
    F. Amoroso, On the height of a product of cyclotomic polynomials, Rend. Semin. Mat. Torino 53(1995), no. 3, 183–191.zbMATHMathSciNetGoogle Scholar
  11. [11]
    T. M. Apostol, Resultants of cyclotomic polynomials, Proc. Amer. Math. Soc. 24(1970), 457–462.zbMATHMathSciNetGoogle Scholar
  12. [12]
    T. M. Apostol, The resultants of the cyclotomic polynomials F m (ax) and F n (bx), Math. Comp. 29(1975), 1–6.zbMATHMathSciNetGoogle Scholar
  13. [13]
    T. M. Apostol, Arithmetical properties of generalized Ramanujan sums, Pacific J. Math. 41(1972), 281–293.zbMATHMathSciNetGoogle Scholar
  14. [14]
    F. Arndt, Einfacher Beweis für die Irreduzibilität einer Gleichung in der Kreisteilung, J. Reine Angew. Math. 56(1858), 178–181.Google Scholar
  15. [15]
    L. K. Arnold, S. J. Benkoski and B. J. McCabe, The discriminator (A simple application of Bertrand’s postulate), Amer. Math. Monthly 92(1985), 275–277.zbMATHMathSciNetGoogle Scholar
  16. [16]
    K. Atanassov, A new formula for the n-th prime number, Comptes Rendus de l’Acad. Bulg. Sci. 54(1992), no. 7, 5–6.MathSciNetGoogle Scholar
  17. [17]
    K. T. Atanassov, Remarks on ϕ, σ and other functions, C. R. Acad. Bulg. Sci. 41(1988), no. 8, 41–44.zbMATHMathSciNetGoogle Scholar
  18. [18]
    K. T. Atanassov, New integer functions, related to ϕ and σ functions, Bull. Numb. Theory Rel. Topics 11(1987), 3–26.zbMATHMathSciNetGoogle Scholar
  19. [19]
    A. Axer, Monath. Math. Phys. 22(1911), 187–194.zbMATHMathSciNetGoogle Scholar
  20. [20]
    E. Bach and J. Shallit, Factoring with cyclotomic polynomials, Math. Comp. 52(1989), no. 185, 201–219.MathSciNetGoogle Scholar
  21. [21]
    G. Bachman, On the coefficients of cyclotomic polynomials, Mem. Amer. Math. Soc. 106(1993), no. 510, 80 p.Google Scholar
  22. [22]
    A. Bager, Problem E2833*, Amer. Math. Monthly 87(1980), 404, Solution in the same journal 88(1981), 622.MathSciNetGoogle Scholar
  23. [23]
    R. Baillie, Table of φ(n)=φ(n+1), Math. Comp. 29(1975), 329–330.Google Scholar
  24. [24]
    U. Balakrishnan, Some remarks on σ(ϕ(n)), Fib. Quart. 32(1994), 293–296.zbMATHGoogle Scholar
  25. [25]
    R. Ballieu, Factorisation des polynomes cyclotomiques modulo un nombre premier, Ann. Soc. Sci. Bruxelles Sér. I 68(1954), 140–144.zbMATHMathSciNetGoogle Scholar
  26. [26]
    A. S. Bang, On Ligningen φ n(x)=0, Nyt Tidsskrift for Mathematik, 6(1895), 6–12.Google Scholar
  27. [27]
    C. W. Barnes, The infinitude of primes. A proof using continued fractions, L’Enseignement Math. 23(1976), 313–316.Google Scholar
  28. [28]
    A. Batholomé, Eine Eigenschaft primitiver Primteiler von Φd (a), Arch. Math., Basel 63(1994), no. 6, 500–508.MathSciNetGoogle Scholar
  29. [29]
    N. L. Bassily, I. Kátai and M. Wijsmuller, Number of prime divisors of ϕ k(n), where ϕ k is the k-fold iterate of ϕ, J. Number Theory 65(1997), 226–239.zbMATHMathSciNetGoogle Scholar
  30. [30]
    P. T. Bateman, The distribution of values of the Euler function, Acta Arith. 21(1972), 329–345.zbMATHMathSciNetGoogle Scholar
  31. [31]
    P. T. Bateman, Solution of a problem by Ore, Amer. Math. Monthly 70(1963), 101–102.MathSciNetGoogle Scholar
  32. [32]
    P. T. Bateman, Note on the coefficients of the cyclotomic polynomial, Bull. Amer. Math. Soc. 55(1949), 1180–1181.zbMATHMathSciNetGoogle Scholar
  33. [33]
    P. T. Bateman, C. Pomerance and R. C. Vaughan, On the size of the coefficients of the cyclotomic polynomial, Coll. Math. Soc. J. Bolyai, 1981, 171–202.Google Scholar
  34. [34]
    M. Beiter, The midterm coefficient of the cyclotomic polynomial F pq(x), Amer. Math. Monthly 71(1964), 769–770.zbMATHMathSciNetGoogle Scholar
  35. [35]
    E. Belaga and M. Mignotte, Cyclic structure of dynamical systems associated with 3x+d extensions of Collatz problem, Prépublication de l’Inst. Rech. Math. Avancée, Univ. Louis Pasteur, 2000/18, pp. 1–62.Google Scholar
  36. [36]
    R. Bellman and H. N. Shapiro, The algebraic independence of arithmetic functions (I) Multiplicative functions, Duke Math. J. 15(1948), no. 1, 229–235.zbMATHMathSciNetGoogle Scholar
  37. [37]
    L. Berardi and B. Rizzi, Generalized Ramanujan sums by Stevens’ totient (Italian), La Ricerca, Mat. Pure Appl., Roma, 31(1980), no. 3, 1–7.MathSciNetGoogle Scholar
  38. [38]
    H. Bereková and T. Šalát, On values of the function ϕ+d, Acta Math. Univ. Comenian 54/55(1988), 267–278 (1989).Google Scholar
  39. [39]
    B. C. Berndt, A new method in arithmetical functions and contour integration, Canad. Math. Bull. 16(1973), no. 3, 381–387.zbMATHMathSciNetGoogle Scholar
  40. [40]
    S. Beslin, Reciprocal GCD matrices and LCM matrices, Fib. Quart. 29(1991), 271–274.zbMATHMathSciNetGoogle Scholar
  41. [41]
    S. Beslin and S. Ligh, Another generalization of Smith’s determinant, Bull. Austral. Math. Soc. 40(1989), 413–415.zbMATHMathSciNetGoogle Scholar
  42. [42]
    S. Beslin and S. Ligh, GCD-closed sets and the determinants of GCD matrices, Fib. Quart. 30(1992), 157–160.zbMATHMathSciNetGoogle Scholar
  43. [43]
    G. Bhowmik, Average orders of certain functions connected with arithmetic functions of matrices, J. Indian Math. Soc. 59(1993), 97–106.zbMATHMathSciNetGoogle Scholar
  44. [44]
    G. Bhowmik and O. Ramaré, Average orders of multiplicative arithmetic functions of integer matrices, Acta Math. 66(1994), no. 1, 45–62.zbMATHGoogle Scholar
  45. [45]
    D. M. Bloom, On the coefficients of the cyclotomic polynomials, Amer. Math. Monthly 75(1968), 372–377.zbMATHMathSciNetGoogle Scholar
  46. [46]
    H. Bonse, Über eine bekannte Eigenschaft der Zahl 30 und ihre Verallgemeinerung, Archiv. der Math. und Physik 3(1907), no. 12, 292–295.Google Scholar
  47. [47]
    W. Bosma, Computation of cyclotomic polynomials with Magma, In: Bosma, Wieb (ed.) et al., computational algebra and number theory, based on a meeting on comp. algebra and number th., held at Sydney Univ., Australia, Nov. 1992, Dordrecht, Kluwer A.P., Math. Appl. Dordrecht 325(1995), 213–225.Google Scholar
  48. [48]
    K. Bourque and S. Ligh, Matrices associated with arithmetical functions, Linear and Multilinear Algebra 34(1993), 261–267.zbMATHMathSciNetGoogle Scholar
  49. [49]
    K. Bourque and S. Ligh, On GCD and LCM matrices, Linear Algebra Appl. 174(1992), 65–74.zbMATHMathSciNetGoogle Scholar
  50. [50]
    K. Bourque and S. Ligh, Matrices associated with multiplicative functions, Linear Algebra Appl. 216(1995), 267–275.zbMATHMathSciNetGoogle Scholar
  51. [51]
    D. Bozkurt and S. Solak, On the norms of GCD matrices, Math. Comp. Appl. 7(2002), no. 3, 205–210.zbMATHMathSciNetGoogle Scholar
  52. [52]
    R. P. Brent, On computing factors of cyclotomic polynomials, Math. Comp. 61(1993), no. 203, 131–149.zbMATHMathSciNetGoogle Scholar
  53. [53]
    J. Browkin and A. Schinzel, On integers not of the form nϕ(n), Colloq. Math. 68(1995), no. 1, 55–58.zbMATHMathSciNetGoogle Scholar
  54. [54]
    E. Brown, Directed graphs defined by arithmetic (mod n), Fib. Quart. 35(1997), 346–351.zbMATHGoogle Scholar
  55. [55]
    K. S. Brown, The coset poset and probabilistic zeta function of a finite group, J. Algebra 225(2000), 989–1012.zbMATHMathSciNetGoogle Scholar
  56. [56]
    R. A. Brualdi and M. Newman, An enumeration problem for a congruence equation, J. Res. Nat. Bur. Stand. (U. S.) 74B(Math. Sci.), No. 1, 37–40 (Jan–March 1970).MathSciNetGoogle Scholar
  57. [57]
    P. S. Bruckman, American Math. Monthly 92(1985), 434.MathSciNetGoogle Scholar
  58. [58]
    R. G. Buschman, Identities involving Golubev’s generalizations of the μ-function, Portug. Math. 29(1970), no. 3, 145–149.zbMATHMathSciNetGoogle Scholar
  59. [59]
    L. P. Cacho, Sobre la suma de indicadores de ordenes sucesivos, Rev. Matem. Hispano-Americana 5.3(1939), 45–50.Google Scholar
  60. [60]
    L. Carlitz, Note on an arithmetic function, Amer. Math. Monthly 59(1952), 385–387.Google Scholar
  61. [61]
    L. Carlitz, A theorem of Schemmel, Math. Mag. 39(1966), no. 2, 86–87.zbMATHMathSciNetGoogle Scholar
  62. [62]
    L. Carlitz, The number of terms in the cyclotomic polynomial F pq (x), Amer. Math. Monthly 73(1966), 979–981.zbMATHMathSciNetGoogle Scholar
  63. [63]
    L. Carlitz, The sum of the squares of the coefficients of the cyclotomic polynomial, Acta Math. Hungar. 18(1967), 295–302.Google Scholar
  64. [64]
    L. Carlitz, Some matrices related to the greatest integer function, J. Elisha Mitchell Sci. Soc. 76(1960), 5–7.zbMATHMathSciNetGoogle Scholar
  65. [65]
    R. D. Carmichael, Note on a new number theory function, Bull. Amer. Math. Soc. 16(1910), 232–238.MathSciNetGoogle Scholar
  66. [66]
    R. D. Carmichael, On composite numbers p which satisfy the Fermat congruence a p−1 ≡ 1 (mod p), Amer. Math. Monthly 19(1912), 22–27.MathSciNetGoogle Scholar
  67. [67]
    R. D. Carmichael, Note on Euler’s ϕ-function, Bull. Amer. Math. Soc. 28(1922), 109–110.zbMATHMathSciNetGoogle Scholar
  68. [68]
    R. D. Carmichael, Amer. Math. Monthly 18(1911), 232.Google Scholar
  69. [69]
    P. J. McCarthy, Introduction to arithmetical functions, Springer Verlag, New York, 1986.zbMATHGoogle Scholar
  70. [70]
    P. J. McCarthy, Note on the distribution of totatives, Amer. Math. Monthly 64(1957), 585–586.zbMATHMathSciNetGoogle Scholar
  71. [71]
    P. J. McCarthy, A generalization of Smith’s determinant, Canad. Math. Bull. 29(1986), 109–113.zbMATHMathSciNetGoogle Scholar
  72. [72]
    P. J. McCarthy, Some more remarks on arithmetical identities, Portug. Math. 21(1962), 45–57.zbMATHMathSciNetGoogle Scholar
  73. [73]
    J. Chidambaraswamy, Sum functions of unitary and semi-unitary divisors, J. Indian Math. Soc. 21(1968), 117–126.MathSciNetGoogle Scholar
  74. [74]
    Chung-Yan Chao, Generalizations of theorems of Wilson, Fermat and Euler, J. Number Theory 15(1982), 95–114.zbMATHMathSciNetGoogle Scholar
  75. [75]
    P. Codecá and M. Nair, Calculating a determinant associated with multiplicative functions, Boll. Unione Mat. Ital. Ser. B Artic. Ric. Mat. (8) 5(2002), no. 2, 545–555.zbMATHGoogle Scholar
  76. [76]
    E. Cohen, Rings of arithmetic functions, Duke Math. J. 19(1952), 115–129.zbMATHMathSciNetGoogle Scholar
  77. [77]
    E. Cohen, A class of arithmetical functions, Proc. Nat. Acad. Sci. U.S.A. 41(1955), 939–944.zbMATHMathSciNetGoogle Scholar
  78. [78]
    E. Cohen, An extension of Ramanujan’s sum, Duke Math. J. 19(1952), 115–129.zbMATHMathSciNetGoogle Scholar
  79. [79]
    E. Cohen, Generalizations of the Euler ϕ-function, Scripta Math. 23(1957), 157–161.MathSciNetGoogle Scholar
  80. [80]
    E. Cohen, Some totient functions, Duke Math. J. 23(1956), 515–522.zbMATHMathSciNetGoogle Scholar
  81. [81]
    E. Cohen, Nagell’s totient function, Math. Scand. 8(1960), 55–58.zbMATHMathSciNetGoogle Scholar
  82. [82]
    E. Cohen, Trigonometric sums in elementary number theory, Amer. Math. Monthly 66(1959), 105–117.zbMATHMathSciNetGoogle Scholar
  83. [83]
    E. Cohen, Arithmetical functions associated with the unitary divisors of an integer, Math. Z. 74(1960), 66–80.zbMATHMathSciNetGoogle Scholar
  84. [84]
    E. Cohen, A property of Dedekind’s function, Proc. Amer. Math. Soc. 12(1961), 996.zbMATHMathSciNetGoogle Scholar
  85. [85]
    G. L. Cohen, On a conjecture of Makowski and Schinzel, Colloq. Math. 74(1997), no. 1, 1–8.zbMATHMathSciNetGoogle Scholar
  86. [86]
    G. L. Cohen and P. Hagis, Jr., On the number of prime factors of n if φ(n)|(n−1), Nieuw Arch. Wiskunde (3)28(1980), 177–185.zbMATHMathSciNetGoogle Scholar
  87. [87]
    G. L. Cohen and P. Hagis, Jr., Arithmetic functions associated with the infinitary divisors of an integer, Intern. J. Math. Math. Sci. 16(1993), no. 2, 373–384.zbMATHMathSciNetGoogle Scholar
  88. [88]
    G. L. Cohen and S. L. Segal, A note concerning those n for which ϕ(n)+1 divides n, Fib. Quart. 27(1989), 285–286.zbMATHMathSciNetGoogle Scholar
  89. [89]
    E. B. Cossi, Problem 6623, Amer. Math. Monthly 99(1990), 162; solution by J. Herzog and P. R. Smith, same journal 101(1992), 573–575.Google Scholar
  90. [90]
    R. Creutzburg and M. Tasche, Parameter determination for complex number-theoretic transforms using cyclotomic polynomials, Math. Comp. 52(1989), no. 185, 189–200.zbMATHMathSciNetGoogle Scholar
  91. [91]
    L. Cseh, Generalized integers and Bonse’s theorem, Studia Univ. Babeş-Bolyai Math. 34(1989), no. 1, 3–6.zbMATHMathSciNetGoogle Scholar
  92. [92]
    L. Cseh and I. Merényi, Problem E3215, Amer. Math. Monthly 94(1987), 548. Solution by K. D. Wallace and R. G. Powers, same journal 95(1989), 64.MathSciNetGoogle Scholar
  93. [93]
    G. Daniloff, Contribution à la théorie des fonctions arithmetiques (Bulgarian), Sb. Bulgar. Akad. Nauk 35(1941), 479–590.MathSciNetGoogle Scholar
  94. [94]
    H. Davenport, On a generalization of Euler’s function ϕ(n), J. London Math. Soc., 7(1932), 290–296.zbMATHGoogle Scholar
  95. [95]
    M. Deaconescu, Adding units (mod n), Elem. Math. 55(2000), 123–127.zbMATHMathSciNetGoogle Scholar
  96. [96]
    M. Deaconescu and H. K. Du, Counting similar automorphisms of finite cyclic groups, Math. Japonica 46(1997), 345–348.zbMATHMathSciNetGoogle Scholar
  97. [97]
    M. Deaconescu and J. Sándor, A divisibility property (Romanian), Gazeta Mat., Bucureşti, XCI, 1986, no. 2, 48–49.Google Scholar
  98. [98]
    M. Deaconescu and J. Sándor, Variations on a theme by Hurwitz, Gazeta Mat. A 8(1987), no. 4, 186–191.zbMATHGoogle Scholar
  99. [99]
    M. Deaconescu and J. Sándor, On a conjecture of Lehmer, 1988, unpublished manuscript.Google Scholar
  100. [100]
    R. Dedekind, Beweis für die Irreductibilität der Kreistheilungsgleichungen, J. Reine Angew. Math. 54(1857), 27–30 (see also Werke I, 1930, 68–71).zbMATHGoogle Scholar
  101. [101]
    H. Delange, Sur les fonctions multiplicatives à valeurs entiers, C. R. Acad. Sci. Paris, Série A 283(1976), 1065–1067.zbMATHMathSciNetGoogle Scholar
  102. [102]
    T. Dence and C. Pomerance, Euler’s function in residue classes, Ramanujan J. 2(1998), 7–20.zbMATHMathSciNetGoogle Scholar
  103. [103]
    L. E. Dickson, History of the theory of numbers, vol. 1, Divisibility and primality, Chelsea Publ. Co. 1999 (original: 1919).Google Scholar
  104. [104]
    L. E. Dickson, A new extension of Dirichlet’s theorem on prime numbers, Messenger of Math. 33(1904), 155–161.Google Scholar
  105. [105]
    F.-E. Diederichsen, Über die Ausreduktion ganzzahliger Gruppendarstellungen bei arithmetischer Äquivalenz, Abh. Math. Sem. Hansischen Univ. 13(1940), 357–412.MathSciNetGoogle Scholar
  106. [106]
    R. B. Eggleton, Problem Q645, Math. Mag. 50(1977), 166; Solution by R. B. Eggleton, 50(1977), 169, same journal.MathSciNetGoogle Scholar
  107. [107]
    A. Ehrlich, Cycles in doubling diagrams (mod m), Fib. Quart. 32 (1994), 74–78.zbMATHMathSciNetGoogle Scholar
  108. [108]
    M. Endo, On the coefficients of the cyclotomic polynomials, Comment. Math. Univ. St. Paul 23(1974/75), 121–126.MathSciNetGoogle Scholar
  109. [109]
    P. Erdös, On pseudoprimes and Carmichael’s numbers, Publ. Math. Debrecen 4(1955–6), 201–206.Google Scholar
  110. [110]
    P. Erdös, Proposed problem P294, Canad. Math. Bull. 23(1980), 505.Google Scholar
  111. [111]
    P. Erdös, Some remarks on Euler’s ϕ-function and some related problems, Bull. Amer. Math. Soc. 51(1945), 540–545.zbMATHMathSciNetGoogle Scholar
  112. [112]
    P. Erdös, On a conjecture of Klee, Amer. Math. Monthly 58(1951), 98–101.zbMATHMathSciNetGoogle Scholar
  113. [113]
    P. Erdös, Some remarks on Euler’s ϕ function, Acta Arith. 4(1958), 10–19.zbMATHMathSciNetGoogle Scholar
  114. [114]
    P. Erdös, On the normal number of prime factors of p−1 and some other related problems concerning Euler’s ϕ-function, Quart. J. Math. (Oxford Ser.) 6(1935), 205–213.Google Scholar
  115. [115]
    P. Erdös, Solutions of two problems of Jankowska, Bull. Acad. Polon. Sci., Sér. Sci. Math., Astr. et Phys. 6(1958), 545–547.zbMATHGoogle Scholar
  116. [116]
    P. Erdös, Some remarks on the functions ϕ and σ, Bull. Acad. Polon Sci., Sér. Sci. Math., Astr. et Phys. 10(1962), 617–619.zbMATHGoogle Scholar
  117. [117]
    P. Erdös, Some remarks on the iterates of the ϕ and σ functions, Colloq. Math. 17(1967), 195–202.zbMATHMathSciNetGoogle Scholar
  118. [118]
    P. Erdös, Some remarks on a paper of McCarthy, Canad. Math. Bull. 1(1958), 71–75.MathSciNetGoogle Scholar
  119. [119]
    P. Erdös, The difference of consecutive primes, Duke Math. J. 6(1940), 438–441.MathSciNetGoogle Scholar
  120. [120]
    P. Erdös, On the coefficients of the cyclotomic polynomial, Bull. Amer. Math. Soc. 54(1946), 179–184.Google Scholar
  121. [121]
    P. Erdös, On the coefficients of the cyclotomic polynomials, Portugal Math. 8(1949), 63–71.zbMATHGoogle Scholar
  122. [122]
    P. Erdös, On a problem in elementary number theory, Math. Student 17(1949), 32–33 (1950).MathSciNetGoogle Scholar
  123. [123]
    P. Erdös and C. W. Anderson, Problem 6070, Amer. Math. Monthly 83(1976), 62; Solution by R. E. Shafer, 84(1977), 662, same journal.Google Scholar
  124. [124]
    P. Erdös, A. Granville, C. Pomerance and C. Spiro, On the normal behaviour of the iterates of some arithmetic functions, Analytic Number Theory, Proc. Conf. in Honor of P. T. Bateman, Ed. by B. C. Berndt, H. G. Diamond, H. Halberstam and A. Hildebrand, 1990, pp. 165–204 (Birkhäuser Boston, Basel, Berlin).Google Scholar
  125. [125]
    P. Erdös, K. Györy and Z. Papp, On some new properties of functions σ(n), ϕ(n), d(n), and v(n) (Hungarian), Mat. Lapok 28(1980), 125–131.zbMATHMathSciNetGoogle Scholar
  126. [126]
    P. Erdös and R. R. Hall, Distinct values of Euler’s ϕ-function, Mathematica 23(1976), 1–3.zbMATHGoogle Scholar
  127. [127]
    P. Erdös and C. Pomerance, On the normal number of prime factors of ϕ(n), Rocky Mountain J. Math. 15(1985), 343–352.zbMATHMathSciNetGoogle Scholar
  128. [128]
    P. Erdös, C. Pomerance and A. Sárkazy, On locally repeated values of certain arithmetic functions, II, Acta Math. Hung. 49(1987), 251–259.zbMATHGoogle Scholar
  129. [129]
    P. Erdös, C. Pomerance and E. Schmutz, Carmichael’s lambda function, Acta Arith. LVIII(1991), no. 4, 363–385.Google Scholar
  130. [130]
    P. Erdös and M. V. Subbarao, On the iterates of some arithmetic functions, A. A. Gioia and D. L. Goldsmith (Editors): The theory of arithmetic functions, Springer Verlag, Lecture Notes 251, 1972, pp. 119–125.Google Scholar
  131. [131]
    P. Erdös and R. C. Vaughan, Bound for the r-th coefficients of cyclotomic polynomials, J. London Math. Soc. (2) 8(1974), 393–400.zbMATHMathSciNetGoogle Scholar
  132. [132]
    P. Erdös and S. S. Wagstaff, Jr., The fractional parts of the Bernoulli numbers, Illinois J. Math. 24(1980), 112–120.Google Scholar
  133. [133]
    L. Euler, Theoremata Arithmetica Nova Methodo Demonstrata, Opera Omnia, 1915, I.2, pp. 531–555 (original:1760).Google Scholar
  134. [134]
    M. Filaseta, S.W. Graham and C. Nicol, On the composition of σ(n) and ϕ(n), Abstracts AMS 13(1992), no. 4, p. 137.Google Scholar
  135. [135]
    S. Finch,; or Mathematical constants, Cambridge Univ. Press, 2003, XX + 620 pp., Cambridge.zbMATHGoogle Scholar
  136. [136]
    P. J. Forrester and M. L. Glasser, Problem E 2985, Amer. Math. Monthly 90(1983), 55; solution by H. L. Abbott, same journal 93(1986), p. 570.MathSciNetGoogle Scholar
  137. [137]
  138. [138]
    K. Ford, The distribution of totients, Ramanujan J. 2(1998), 67–151.zbMATHMathSciNetGoogle Scholar
  139. [139]
    K. Ford, The distribution of totients, Electron. Res. Announc. Amer. Math. Soc. 4(1998), 27–34.zbMATHMathSciNetGoogle Scholar
  140. [140]
    K. Ford, The number of solutions of ϕ(x)=m, Annals of Math. 150(1999), 283–311.zbMATHGoogle Scholar
  141. [141]
    K. Ford, An explicit sieve bound and small values of σ(ϕ(m)), Periodica Mat. Hung. 43(2001), no. 1–2, 15–29.zbMATHGoogle Scholar
  142. [142]
    K. Ford, S. Konyagin, On two conjectures of Sierpinski concerning the arithmetic functions σ and φ, in: Number Theory in Progress Proc. Intern. Conf. Number Theory in Honor of 60th birthday of A. Schinzel (Poland, 1997), Walter de Gruyter, New York, 1999, pp. 795–803.Google Scholar
  143. [143]
    K. Ford, S. Konyagin and C. Pomerance, Residue classes free of values of Euler’s function, Number Theory in Progress, Proc. Int. Conf. on Number Th., in Honor of the 60th Birthday of A. Schinzel, Poland 1997; Ed. K. Györy, H. Iwaniec and J. Urbanowicz, Walter de Gruyter, Berlin 1999, pp. 805–812.Google Scholar
  144. [144]
    J. B. Friedlander, Shifter primes without large prime factors, in: Number theory and applications (R. A. Mollin, ed.), Kluwer Acad. Publ., pp. 393–401.Google Scholar
  145. [145]
    P. G. Garcia and S. Ligh, A generalization of Euler’s ϕ-function, Fib. Quart. 21(1983), 26–28.zbMATHMathSciNetGoogle Scholar
  146. [146]
    C. F. Gauss, Disquisitiones arithmeticae, Göttingen, 1801.Google Scholar
  147. [147]
    L. Gegenbauer, Über ein theorem des Herrn Mac Mahon, Monatshefte für Math. und Phys. 11(1900), 287–288.zbMATHMathSciNetGoogle Scholar
  148. [148]
    L. Gegenbauer, Einige asymptotische Gesetze der Zahlentheorie, Sitzungsber. Akad. Wiss. Wien, Math., 92(1885), 1290–1306.Google Scholar
  149. [149]
    D. Goldsmith, A remark about Euler’s function, Amer. Math. Monthly 76(1969), 182–184.zbMATHMathSciNetGoogle Scholar
  150. [150]
    S. W. Golomb, Equality among number-theoretic functions, Abstract 882-11-16, Abstracts Amer. Math. Soc. 14(1993), 415–416.Google Scholar
  151. [151]
    V. A. Golubev, Sur certaines fonctions multiplicatives et le problème des jumeaux, Mathesis 67(1958), 11–20.zbMATHMathSciNetGoogle Scholar
  152. [152]
    V. A. Golubev, On the functions ϕ 2(n), μ 2(n) and ζ 2(s) (Russian), Ann. Polon. Math. 11(1961), 13–17.zbMATHMathSciNetGoogle Scholar
  153. [153]
    H. W. Gould and T. Shonhiwa, Functions of gcd’s and lcm’s, Indian J. Math. 39(1997), no. 1, 11–35.zbMATHMathSciNetGoogle Scholar
  154. [154]
    H. W. Gould and T. Shonhiwa, A generalization of Cesàro’s function and other results, Indian J. Math. 39(1997), no. 2, 183–194.zbMATHMathSciNetGoogle Scholar
  155. [155]
    K. Grandjot, Über die Irreduzibilität der Kreisteilungsgleichung, Math. Z. 19(1924), 128–129.MathSciNetGoogle Scholar
  156. [156]
    S. W. Graham, J. J. Holt and C. Pomerance, On the solutions to φ(n)=φ(n+k), Number Theory in Progress, Proc. Intern. Conf. in Honor of 60th Birthday of A. Schinzel, Poland, 1997, Walter de Gruyter, 1999, pp. 867–882.Google Scholar
  157. [157]
    A. Granville, R. A. Mollin and H. C. Williams, An upper bound on the least inert prime in a real quadratic field, Canad. J. Math. 52(2000), no. 2, 369–380.zbMATHMathSciNetGoogle Scholar
  158. [158]
    N. Gruber, On the theory of Fermat-type congruences (Hungarian), Math. Termész. Értesitö 12(1896), 22–25.Google Scholar
  159. [159]
    A. Grytczuk, On Ramanujan sums on arithmetical semigroups, Tsukuba J. Math. 16(1992), no. 2, 315–319.zbMATHMathSciNetGoogle Scholar
  160. [160]
    A. Grytczuk, F. Luca and M. Wójtowicz, A conjecture of Erdös concerning inequalities for the Euler totient function, Publ. Math. Debrecen 59(2001), no. 1–2, 9–16.zbMATHMathSciNetGoogle Scholar
  161. [161]
    A. Grytczuk, F. Luca and M. Wójtowicz, On a conjecture of Makowski and Schinzel concerning the composition of the arithmetic functions σ and ϕ, Colloq. Math. 86(2000), no. 1, 31–36.zbMATHMathSciNetGoogle Scholar
  162. [162]
    A. Grytczuk, F. Luca and M. Wójtowicz, Some results on σ(ϕ(n)), Indian J. Math. 43(2001), no. 3, 263–275.zbMATHMathSciNetGoogle Scholar
  163. [163]
    A. Grytczuk and M. Wójtowicz, On a Lehmer problem concerning Euler’s totient function, Proc. Japan Acad. Ser. A Math. Sci. 79(2003), no. 8, 136–138.zbMATHMathSciNetGoogle Scholar
  164. [164]
    N. G. Guderson, Some theorems on Euler’s ϕ function, Bull. Amer. Math. Soc. 49(1943), 278–280.MathSciNetGoogle Scholar
  165. [165]
    E. E. Guerin, A convolution related to Golomb’s root function, Pacific J. Math., 79(1978), 463–467.zbMATHMathSciNetGoogle Scholar
  166. [166]
    W. J. Guerrier, The factorization of the cyclotomic polynomial (mod p), Amer. Math. Monthly 75(1968), 46.zbMATHMathSciNetGoogle Scholar
  167. [167]
    R. Guitart, Fonctions d’Euler-Jordan et de Gauss et exponentielle dans les semi-anneaux de Burnside, Cahier de Topologie et Géometrie Diff. Catég. 33(1992), 256–260.Google Scholar
  168. [168]
    R. Guitart, Miroirs et Ambiguités, 70 p., multigraphié, Université Paris, 7 déc. 1987.Google Scholar
  169. [169]
    H. Gupta, A congruence property of Euler’s ϕ function, J. London Math. Soc. 39(1964), 303–306.zbMATHMathSciNetGoogle Scholar
  170. [170]
    H. Gupta, On a problem of Erdös, Amer. Math. Monthly 57(1950), 326–329.zbMATHMathSciNetGoogle Scholar
  171. [171]
    R. K. Guy, Unsolved problems in Number theory, Second ed., Springer-Verlag, 1994.Google Scholar
  172. [172]
    B. Gyires, Über eine Verallgemeinerung des Smith’schen Determinantensatzes, Publ. Math. Debrecen 5(1957), 162–171.zbMATHMathSciNetGoogle Scholar
  173. [173]
    P. Hagis, Jr., On the equation Mϕ(n)=n−1, Nieuw Arch. Wiskunde (4) 6(1988), no. 3, 255–261.zbMATHMathSciNetGoogle Scholar
  174. [174]
    R. R. Hall and P. Shiu, The distribution of totatives, Canad. Math. Bull. 45(2002), no. 1, 109–114.zbMATHMathSciNetGoogle Scholar
  175. [175]
    F. Halter-Koch and W. Steindl, Teilbarkeitseigenschaften der iterierten Euler’schen Phi-Funktion, Arch. Math. (Basel) 42(1984), 362–365.zbMATHMathSciNetGoogle Scholar
  176. [176]
    R. T. Hansen, Extension of the Euler-Fermat theorem, Bull. Number Theory Related Topics 2(1977), no. 2, 1–4, 20.MathSciNetGoogle Scholar
  177. [177]
    J. Hanumanthachari, Certain generalizations of Nagell’s totient function and Ramanujan’s sum, Math. Student 38(1970), no. 1,2,3,4; 183–187.zbMATHMathSciNetGoogle Scholar
  178. [178]
    G. H. Hardy and J. E. Littlewood, Some problems in “Partitio Numerorum”, III: On the expression of a number as a sum of primes, Acta Math. 44(1923), 1–70.MathSciNetGoogle Scholar
  179. [179]
    G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5th ed. Oxford, Clarendon Press, 1979.Google Scholar
  180. [180]
    K. Härtig and J. Surányi, Combinatorial and geometrical investigations in elementary number theory, Periodica Math. Hung. 6(1975), no. 3, 235–240.zbMATHGoogle Scholar
  181. [181]
    P. Haukkanen, Higher-dimensional GCD matrices, Linear Algebra Appl. 170(1992), 53–63.zbMATHMathSciNetGoogle Scholar
  182. [182]
    P. Haukkanen, Classical arithmetical identities involving a generalization of Ramanujan’s sum, Ann. Acad. Sci. Fenn. Ser. AI Math. Dissertationes 68(1988), 1–69.Google Scholar
  183. [183]
    P. Haukkanen, On meet matrices on posets, Linear Algebra Appl. 249(1996), 111–123.zbMATHMathSciNetGoogle Scholar
  184. [184]
    P. Haukkanen, Some generalized totient functions, Math. Student 56 (1988), 65–74.MathSciNetGoogle Scholar
  185. [185]
    P. Haukkanen, Some limits involving Jordan’s function and the divisor function, Octogon Math. Mag. 3(1995), no. 2, 8–11.zbMATHMathSciNetGoogle Scholar
  186. [186]
    P. Haukkanen, On an inequality related to the Legendre totient function, J. Ineq. Pure Appl. Math. 3(2002), no. 3, article 37, pp. 1–6 (electronic).MathSciNetGoogle Scholar
  187. [187]
    P. Haukkanen and J. Sillanpää, Some analogues of Smith’s determinant, Linear and Multilinear Algebra 41(1996), 233–244.zbMATHMathSciNetGoogle Scholar
  188. [188]
    P. Haukkanen and J. Sillanpää, On some analogues of the Bourque-Ligh conjecture on lcm-matrices, Notes Number Theory Discr. Math. 3(1997), no. 1, 52–57.Google Scholar
  189. [189]
    P. Haukkanen and R. Sivaramakrishnan, Cauchy multiplication and periodic functions (mod r), Collect. Math. 42(1991), no. 1, 33–44.zbMATHMathSciNetGoogle Scholar
  190. [190]
    P. Haukkanen and R. Sivaramakrishnan, On certain trigonometric sums in several variables, Collect. Math. 45(1994), no. 3, 245–261.zbMATHMathSciNetGoogle Scholar
  191. [191]
    P. Haukkanen and J. Wang, Euler’s totient function and Ramanujan’s sum in a poset-theoretic setting, Disc. Math. Algebra and Stoch. Meth. 17(1997), 79–87.zbMATHMathSciNetGoogle Scholar
  192. [192]
    P. Haukkanen, J. Wang and J. Sillanpää, On Smith’s determinant, Linear Algebra Appl. 258(1997), 251–269.zbMATHMathSciNetGoogle Scholar
  193. [193]
    M. Hausman, The solution of a special arithmetic equation, Canad. Math. Bull. 25(1982), 114–117.zbMATHMathSciNetGoogle Scholar
  194. [194]
    M. Hausman and H. N. Shapiro, Adding totitives, Math. Mag. 51(1978), no. 5, 284–288.zbMATHMathSciNetGoogle Scholar
  195. [195]
    M. Hausman and H. N. Shapiro, On the mean square distribution of primitive roots of unity, Comm. Pure Appl. Math. 26(1973), 539–547.zbMATHMathSciNetGoogle Scholar
  196. [196]
    E. Hecke, Vorslesungen über die Theorie der algebraischen Zahlen, 2nd ed., Chelsea, New York, 1948.Google Scholar
  197. [197]
    K. Heinrich and P. Horak, Euler’s theorem, Amer. Math. Monthly 101(1994), no. 3, 260–261.zbMATHMathSciNetGoogle Scholar
  198. [198]
    V. E. Hogatt and H. Edgar, Another proof that ϕ(F n)≡o (mod 4) for all nτ;4, Fib. Quart. 18(1980), 80–82.Google Scholar
  199. [199]
    J. J. Holt, The minimal number of solutions to φ(n)=φ(n+k), Math. Comp. 72(2003), no. 244, 2059–2061 (electronic).zbMATHMathSciNetGoogle Scholar
  200. [200]
    L. Holzer, Zahlentheorie, III, 1965 B. G. Teubner, Leipzig.zbMATHGoogle Scholar
  201. [201]
    S. Hong, LCM matrix on an r-fold GCD-closed set, Sichuan Daxue Xuebao 33(1996), no. 6, 650–657.zbMATHMathSciNetGoogle Scholar
  202. [202]
    S. Hong, gcd-closed sets and determinants of matrices associated with arithmetical functions, Acta Arith. 101(2002), no. 4, 321–332.zbMATHMathSciNetGoogle Scholar
  203. [203]
    S. Hong, On the Bourque-Ligh conjecture of least common multiple matrices, J. Algebra 218(1999), 216–228.zbMATHMathSciNetGoogle Scholar
  204. [204]
    C. Hooley, On the difference of consecutive numbers prime to n, Acta Arith. 8(1962/63), 343–347.MathSciNetGoogle Scholar
  205. [205]
    D. E. Iannucci, D. Moujie and G. L. Cohen, On perfect totient numbers, J. Integer Seq. 6(2003), Article 03.4.5, 7 pp. (electronic).Google Scholar
  206. [206]
    M. Ismail and M. V. Subbarao, Unitary analogue of Carmichael’s problem, Indian J. Math. 18(1976), 49–55.zbMATHMathSciNetGoogle Scholar
  207. [207]
    H. Iwata, On Bonse’s theorem, Math. Rep. Toyama Univ. 7(1984), 115–117.zbMATHMathSciNetGoogle Scholar
  208. [208]
    H. Iwata, A certain property of the arithmetic functions σϕ and ϕσ (Japanese), Sûgaku 29(1977), 65–67.MathSciNetGoogle Scholar
  209. [209]
    E. Jacobson, Problem 6383, Amer. Math. Monthly 89(1982), 278, Solution in 90(1983), 650 same journal.Google Scholar
  210. [210]
    E. Jacobsthal, Über Sequenzen ganzer Zahlen von denen keine zu n teilerfremd ist I–III, Norske Vid. Selsk. Forh. Trondheim 33(1960), 117–139.MathSciNetGoogle Scholar
  211. [211]
    H. Jager, The unitary analogues of some identities for certain arithmetical functions, Nederl. Akad. Wetensch. Proc. Ser. A 64(1961), 508–515.zbMATHMathSciNetGoogle Scholar
  212. [212]
    W. Janous, Problem 6588, Amer. Math. Monthly 95(1988), 963; solution in the same journal by J. Herzog, K.-W. Lau, and the editors, 98(1991), 446-448.MathSciNetGoogle Scholar
  213. [213]
    K. R. Johnson, Unitary analogs of generalized Ramanujan sums, Pacific J. Math. 103(1982), no. 2, 429–432.zbMATHMathSciNetGoogle Scholar
  214. [214]
    P. Jones, On the equation φ(x)+φ(k)=φ(x+k), Fib. Quart. 28(1990), no. 2, 162–165.zbMATHGoogle Scholar
  215. [215]
    P. Jones, ϕ-partitions, Fib. Quart. 29(1991), no. 4, 347–350.zbMATHGoogle Scholar
  216. [216]
    C. Jordan, Traité des substitutions et des équations algébriques, Gauthier Villars et Cie Ed., Paris, 1957.Google Scholar
  217. [217]
    A. Junod, Congruences par l’analyse p-adique et le calcul symbolique, Thèse, Univ. de Neuchâtel, 2003.Google Scholar
  218. [218]
    M. Kaminski, Cyclotomic polynomials and units in cyclotomic number fields, J. Number Theory 28(1988), no. 3, 283–287.zbMATHMathSciNetGoogle Scholar
  219. [219]
    I. Kátai, On the number of prime factors of ϕ(ϕ(n)), Acta Math. Hungar. 58(1991), 211–225.zbMATHMathSciNetGoogle Scholar
  220. [220]
    I. Kátai, Distribution of ω(σ(p+1)), Ann. Univ. Sci. Budapest Sect. Comput. 34(1991), 217–225.zbMATHGoogle Scholar
  221. [221]
    P. Kesava Menon, Some congruence properties of the φ-function, Proc. Indian Acad. Sci. A 24(1946), 443–447.zbMATHGoogle Scholar
  222. [222]
    P. Kesava Menon, An extension of Euler’s function, Math. Student, 35(1967), 55–59.zbMATHMathSciNetGoogle Scholar
  223. [223]
    R. B. Killgrove, Problem 964*, Crux Math. 10(1984), 217.Google Scholar
  224. [224]
    C. Kimberling, Problem E2581, Amer. Math. Monthly 83(1976), 197, Solution by P. L. Montgomery, 84(1977), 488.MathSciNetGoogle Scholar
  225. [225]
    M. Kishore, On the number of distinct prime factors of n for which φ(n)|n−1, Nieuw Arch. Wiskunde (3)25(1977), 48–53.zbMATHMathSciNetGoogle Scholar
  226. [226]
    D. Klarner, Problem P68, Canad. Math. Bull. 7(1964), 144.Google Scholar
  227. [227]
    V. Klee, Some remarks on Euler’s totient, Amer. Math. Monthly 54(1947), 332.MathSciNetGoogle Scholar
  228. [228]
    V. L. Klee, On a conjecture of Carmichael, Bull. Amer. Math. Soc. 53(1947), 1183–1186.zbMATHMathSciNetGoogle Scholar
  229. [229]
    J. Knopfmacher, Abstract analytic number theory, North Holland, Amsterdam, 1975.zbMATHGoogle Scholar
  230. [230]
    I. Korkee and P. Haukkanen, On meet and joint matrices associated with incidence functions, Linear Algebra Appl. 372(2003), 127–153.zbMATHMathSciNetGoogle Scholar
  231. [231]
    A. Krieg, Counting modular matrices with specified maximum norm, Linear Algebra Appl. 196(1994), 273–278.zbMATHMathSciNetGoogle Scholar
  232. [232]
    L. Kronecker, Mémoire sur les facteurs irreductibles de l’expression x n−1, J. Math. Pures Appl. 19(1854), 177–192 (see also Werke, I(1895), 75–92).Google Scholar
  233. [233]
    L. Kronecker, Vorslesungen über Zahlentheorie, I, 1901.Google Scholar
  234. [234]
    J. C. Lagarias, The set of rational cycles for the 3x+1 problem, Acta Arith. 56(1990), 33–53.zbMATHMathSciNetGoogle Scholar
  235. [235]
    M. Lal, Iterates of the unitary totient function, Math. Comp. 28(1974), no. 125, 301–302.zbMATHMathSciNetGoogle Scholar
  236. [236]
    M. Lal and P. Gillard, On the equation ϕ(n)=ϕ(n+k), Math. Comp. 26(1972), 579–583.zbMATHMathSciNetGoogle Scholar
  237. [237]
    T. Y. Lam and K. H. Leung, On the cyclotomic polynomial Φpq(X), Amer. Math. Monthly 103(1996), 562–564.zbMATHMathSciNetGoogle Scholar
  238. [238]
    E. Landau, Über die Irreduzibilität der Kreisteilungsgleichung, Math. Z. 29(1929), 462.MathSciNetGoogle Scholar
  239. [239]
    E. S. Langford, Solution of Problem E1749. Amer. Math. Monthly 73(1966), 84.MathSciNetGoogle Scholar
  240. [240]
    M. Laššák and S. Porubský, Fermat-Euler theorem in algebraic number fields, J. Number Theory 60(1996), no. 2, 254–290.zbMATHMathSciNetGoogle Scholar
  241. [241]
    K.-W. Lau, Editorial comment on Problem 6588, Amer. Math. Monthly 98(1991), 446–448.MathSciNetGoogle Scholar
  242. [242]
    W. G. Leavitt and A. A. Mullin, Primes differing by a fixed integer, Math. Comp. 37(1981), no. 2, 129–140.MathSciNetGoogle Scholar
  243. [243]
    V. A. Lebesgue, Démonstration de l’irréductibilité de l’équation aux racines primitives de l’unité, J. Math. Pures Appl. (2) 4(1859), 105–110.Google Scholar
  244. [244]
    D. N. Lehmer, On the congruences connected with certain magic squares, Trans. Amer. Math. Soc. 31(1929), no. 3, 529–551.zbMATHMathSciNetGoogle Scholar
  245. [245]
    D. H. Lehmer, The distribution of totatives, Canad. J. Math. 7(1955), 347–357.zbMATHMathSciNetGoogle Scholar
  246. [246]
    D. H. Lehmer, Some properties of the cyclotomic polynomial, J. Math. Anal. Appl. 15(1966), no. 1, 105–117.zbMATHMathSciNetGoogle Scholar
  247. [247]
    D. H. Lehmer, On the converse of Fermat’s theorem II, American Math. Monthly 56(1949), no. 5, 300–309.zbMATHMathSciNetGoogle Scholar
  248. [248]
    D. H. Lehmer, The p-dimensional analogue of Smith’s determinant, Amer. Math. Monthly 37(1930), 294–296.zbMATHMathSciNetGoogle Scholar
  249. [249]
    D. H. Lehmer, On a conjecture of Krishnaswami, Bull. Amer. Math. Soc. 54(1948), 1185–1190.zbMATHMathSciNetGoogle Scholar
  250. [250]
    D. H. Lehmer, On Euler’s totient function, Bull. Amer. Math. Soc. 38(1932), 745–751.MathSciNetGoogle Scholar
  251. [251]
    E. Lehmer, On the magnitude of the coefficients of the cyclotomic polynomial, Bull. Amer. Math. Soc. 44(1936), 389–392.MathSciNetGoogle Scholar
  252. [252]
    H. W. Leopoldt, Lösung einer Aufgabe von Kostrikhin, J. Reine Angew. Math. 221(1966), 160–161.zbMATHMathSciNetGoogle Scholar
  253. [253]
    C. Leudesdorf, Some results in the elementary theory of numbers, Proc. London Math. Soc. 20(1889), 199–212.Google Scholar
  254. [254]
    F. Levi, Über die Irreduzibilität der Kreisteilungsgleichung, Compos. Math. 1(1931), 303–304.Google Scholar
  255. [255]
    Z. Li, The determinants of GCD matrices, Linear Algebra Appl. 134(1990), 137–143.zbMATHMathSciNetGoogle Scholar
  256. [256]
    E. Lieuwens, Do there exist composite numbers M for which kϕ(M)=M−1 holds? Nieuw Arch. Wiskunde (3) 18(1970), 165–169.zbMATHMathSciNetGoogle Scholar
  257. [257]
    S. Ligh and Ch. R. Wall, Functions of nonunitary divisors, Fib. Quart. 25(1987), no. 4, 333–338.zbMATHMathSciNetGoogle Scholar
  258. [258]
    D. Lind, Solution of Problem 601, Math. Mag. 39(1966), no. 3, 190.MathSciNetGoogle Scholar
  259. [259]
    B. Lindström, Determinants on semilattices, Proc. Amer. Math. Soc. 20 (1969), 207–208.zbMATHMathSciNetGoogle Scholar
  260. [260]
    S. Louboutin, Resultants of cyclotomic polynomials, Publ. Math. Debrecen 50(1997), no. 1–2, 75–77.zbMATHMathSciNetGoogle Scholar
  261. [261]
    F. Luca, The solution to OQ130, Octogon Math. Mag. 7(1999), no. 2, 114–115.MathSciNetGoogle Scholar
  262. [262]
    F. Luca, On the equation ϕ(|x my m|)=2n, Math. Bohem. 125(2000), 465–479.zbMATHMathSciNetGoogle Scholar
  263. [263]
    F. Luca, On the equation ϕ(x my m)=x n+y n, Bull. Irish Math. Soc. 40(1998), 46–56.zbMATHMathSciNetGoogle Scholar
  264. [264]
    F. Luca, On the equation ϕ(|x m+y m|)=|x n+y n|, Indian J. Pure Appl. Math. 30(1999), no. 2, 183–197.zbMATHMathSciNetGoogle Scholar
  265. [265]
    F. Luca, Problem 10626, Amer. Math. Monthly 104(1997), no. 9, p. 871.MathSciNetGoogle Scholar
  266. [266]
    F. Luca, Pascal’s triangle and constructible polygons, Util. Math. 58(2000), 209–214.zbMATHMathSciNetGoogle Scholar
  267. [267]
    F. Luca, Arithmetical functions of Fibonacci numbers, manuscript sent to J. Sándor, december 1999.Google Scholar
  268. [268]
    F. Luca, Euler indicators of binary recurrence sequences, Collect. Math. 53(2002), no. 2, 133–156.zbMATHMathSciNetGoogle Scholar
  269. [269]
    F. Luca, Euler indicators of Lucas sequences, Bull. Math. Soc. Sci. Math. Roumanie 40(88), 1997, no. 3–4, 151–163.zbMATHGoogle Scholar
  270. [270]
    F. Luca and M. Križek, On the solutions of the congruence n 2≡1 (mod φ 2(n)), Proc. Amer. Math. Soc. 129(2001), no. 8, 2191–2196.zbMATHMathSciNetGoogle Scholar
  271. [271]
    F. Luca and C. Pomerance, On some conjectures of Makowski-Schinzel and Erdös concerning the arithmetical functions phi and sigma, Colloq. Math. 92(2002), no. 1, 111–130.zbMATHMathSciNetGoogle Scholar
  272. [272]
    E. Lucas, Théorie des nombres, Tome I, Gauthier-Villars, Paris 1891; reprinting, Blanchard, Paris, 1961.zbMATHGoogle Scholar
  273. [273]
    P. A. Mac Mahon, Applications of the theory of permutations in circular procession to the theory of numbers, Proc. London Math. Soc. 23(1891–2), 305–313.Google Scholar
  274. [274]
    H. Maier, The coefficients of cyclotomic polynomials, Analytic Number Theory, Proc. Conf. in Honor of P. T. Bateman, Progr. Math. 85(1990), 349–366.MathSciNetGoogle Scholar
  275. [275]
    H. Maier, Cyclotomic polynomials with large coefficients, Acta Arith. 64(1993), 227–235.zbMATHMathSciNetGoogle Scholar
  276. [276]
    H. Maier, The size of the coefficients of cyclotomic polynomials, Analytic Number Theory, Proc. Conf. in Honor of H. Halberstam, vol. 2, Birkhäuser, 1996, pp. 633–639.MathSciNetGoogle Scholar
  277. [277]
    H. Maier and C. Pomerance, On the number of distinct values of Euler’s ϕ-function, Acta Arith. XLIX(1988), 263–275.MathSciNetGoogle Scholar
  278. [278]
    E. Maillet, L’intermédiaire des Mathématiciens, 7(1900), 254.Google Scholar
  279. [279]
    A. Makowski, On the equation ϕ(n+k)=2ϕ(n), Elem. Math. 29(1974), no. 1, 13.Google Scholar
  280. [280]
    A. Makowski, Remark on the Euler totient function, Math. Student 31(1963), 5–6.MathSciNetGoogle Scholar
  281. [281]
    A. Makowski, On the equation ϕ(x+m)=ϕ(x)+m, Mat. Vesnik 16(1964), no. 1, 247.Google Scholar
  282. [282]
    A. Makowski, On some equations involving functions ϕ(n) and σ(n), Amer. Math. Monthly 67(1960), 668–670.zbMATHMathSciNetGoogle Scholar
  283. [283]
    A. Makowski and A. Schinzel, On the function ϕ(n) and σ(n), Colloq. Math. 13(1964), no. 1, 95–99.zbMATHMathSciNetGoogle Scholar
  284. [284]
    D. Marcu, An arithmetic equation, J. Number Theory 31(1989), 363–366.zbMATHMathSciNetGoogle Scholar
  285. [285]
    P. Masai and A. Valette, A lower bound for a counterexample to Carmichael’s conjecture, Boll. Un. Mat. Ital. A(6), 1(1982), 313–316.zbMATHMathSciNetGoogle Scholar
  286. [286]
    I. Gy. Maurer and M. Veégh, Two demonstrations of a theorem by B. Gyires (Romanian), Studia Univ. Babeş-Bolyai Ser. Math.-Phys. 10(1965), 7–11.Google Scholar
  287. [287]
    T. Maxsein, A note on a generalization of Euler’s phi-function, Indian J. Pure Appl. Math. 21(1990), no. 8, 691–694.zbMATHMathSciNetGoogle Scholar
  288. [288]
    N. S. Mendelson, The equation ϕ(x)=k, Math. Mag. 49(1976), no. 1, 37–39.MathSciNetGoogle Scholar
  289. [289]
    A. Mercier, Solution of Problem E2985, Amer. Math. Monthly 93(1986), p. 570.MathSciNetGoogle Scholar
  290. [290]
    A. Migotti, Zur Theorie der Kreisteilungsgleichung, S.-B. der Math.-Naturmiss. Classe der Kaiserlichen Akad. Wiss., Wien (2) 87(1883), 7–14.Google Scholar
  291. [291]
    D. S. Mitrinović, J. Sándor (in coop. with B. Crstici), Handbook of number theory, Kluwer Acad. Publ., vol. 351, 1996, XXV + 622 pp.Google Scholar
  292. [292]
    A. L. Mohan and D. Suryanarayana, Perfect totient numbers, in: Number Theory (Proc. Third Matscience Conf., Mysore, 1981), Lect. Notes in Math. 938, Springer, New York, 1982, pp. 101–105.Google Scholar
  293. [293]
    H. Möller, Über die Koeffizienten des n-ten Kreisteilungspolynoms, Math. Z. 119(1971), 33–40.zbMATHMathSciNetGoogle Scholar
  294. [294]
    H. L. Montgomery and R. C. Vaughan, On the large sieve, Mathematica 20(1973), 119–134.zbMATHMathSciNetGoogle Scholar
  295. [295]
    H. L. Montgomery and R. C. Vaughan, On the distribution of reduced residues, Ann. of Math. (2) 123(1986), 311–333.MathSciNetGoogle Scholar
  296. [296]
    H. L. Montgomery and R. C. Vaughan, The order of magnitude of the mth coefficients of cyclotomic polynomials, Glasgow Math. J. 27(1985), 143–159.zbMATHMathSciNetGoogle Scholar
  297. [297]
    P. Moree and H. Roskam, On an arithmetical function related to Euler’s totient and the discriminator, Fib. Quart. 33(1995), 332–340.zbMATHMathSciNetGoogle Scholar
  298. [298]
    J. Morgado, Some remarks on two generalizations of Euler’s theorem, Portugaliae Math. 36(1977), 153–158.zbMATHMathSciNetGoogle Scholar
  299. [299]
    J. Morgado, Unitary analogue of the Nagell totient function, Portug. Math. 21(1962), 221–232; Errata: 22(1963), 119.MathSciNetGoogle Scholar
  300. [300]
    J. Morgado, Some remarks on the unitary analogue of the Nagell totient function, Portug. Math. 22(1963), Fasc. 3, 127–135.zbMATHMathSciNetGoogle Scholar
  301. [301]
    J. Morgado, Unitary analogue of a Schemmel’s function, Portug. Math. 22(1963), Fasc. 4, 215–233.zbMATHMathSciNetGoogle Scholar
  302. [302]
    L. Moser, Some equations involving Euler’s totient function, Amer. Math. Monthly 56(1949), 22–23.zbMATHMathSciNetGoogle Scholar
  303. [303]
    L. Moser, Solution to Problem P42 by L. Moser, Canad. Math. Bull. 5(1962), 312–313.Google Scholar
  304. [304]
    K. Motose, On values of cyclotomic polynomials, Math. J. Okayama Univ. 35(1993), 35–40.zbMATHMathSciNetGoogle Scholar
  305. [305]
    A. Murányi, On a number theoretic function obtained by the iteration of Euler’s ϕ-function (Hungarian), Mat. Lapok, Budapest, 11(1960), 46–67.Google Scholar
  306. [306]
    T. Nagell, Introduction to number theory, Chelsea Publ. Comp. 1964.Google Scholar
  307. [307]
    T. Nagell, Verallgemeinerung eines Satzes von Schemmel, Skr. Norske Vod.-Akad. Oslo, Math. Class, I, No. 13(1923), 23–25.Google Scholar
  308. [308]
    K. Nageswara Rao, A generalization of Smith’s determinant, Math. Stud. 43(1975), 354–356.Google Scholar
  309. [309]
    K. Nageswara Rao, On extensions of Euler’s ϕ function, Math. Student 29(1961), no. 3, 4, 121–126.MathSciNetGoogle Scholar
  310. [310]
    K. Nageswara Rao, A note on an extension of Euler’s function, Math. Student 29(1961), no. 1,2 33–35.MathSciNetGoogle Scholar
  311. [311]
    A. Nalli, An inequality for the determinant of the GCD-reciprocal LCM matrix and the GCUD-reciprocal LCUM matrix, Int. Math. J. 4(2003), no. 1, 1–6.zbMATHMathSciNetGoogle Scholar
  312. [312]
    V. C. Nanda, Generalizations of Ramanujan’s sum to matrices, J. Indian Math. Soc. (N.S.) 48(1984), no. 1–4, 177–187 (1986).MathSciNetGoogle Scholar
  313. [313]
    V. C. Nanda, On arithmetical functions of integer matrices, J. Indian Math. Soc. 55(1990), 175–188.zbMATHMathSciNetGoogle Scholar
  314. [314]
    W. Narkiewicz, Elementary and analytic theory of algebraic numbers, PWN, Warsawa, 1974.zbMATHGoogle Scholar
  315. [315]
    W. Narkiewicz, On distribution of values of multiplicative functions in residue classes, Acta Arith. 12(1966/67), 269–279.MathSciNetGoogle Scholar
  316. [316]
    W. Narkiewicz, Uniform distribution of sequences of integers in residue classes, Lecture Notes Math. 1087, Springer, Berlin, 1984.zbMATHGoogle Scholar
  317. [317]
    D. J. Newman, Euler’s ϕ function on arithmetic progressions, Amer. Math. Monthly 104(1997), no. 3, 256–257.zbMATHMathSciNetGoogle Scholar
  318. [318]
    C. A. Nicol, Problem E2611, Amer. Math. Monthly 83(1976), 656, Solution by P. Vojta, 85(1978), 199, same journal.MathSciNetGoogle Scholar
  319. [319]
    C. A. Nicol, Some diophantine equations involving arithmetic functions, J. Math. Anal. Appl. 15(1966), 154–161.zbMATHMathSciNetGoogle Scholar
  320. [320]
    C. A. Nicol, Problem E2590, Amer. Math. Monthly 83(1976), 284, solution by L. L. Foster, same journal 84(1977), 654.MathSciNetGoogle Scholar
  321. [321]
    N. Nielsen, Note sur les polynomes parfaits, Nieuw Arch.Wiskunde 10(1913), 100–106.Google Scholar
  322. [322]
    I. Niven, The iteration of certain arithmetic functions, Canad J. Math. 2(1950), no. 4, 406–408.zbMATHMathSciNetGoogle Scholar
  323. [323]
    I. Niven and H. S. Zuckerman, An introduction to the theory of numbers (third ed.), John Wiley and Sons Inc., New York (Hungarian translation Budapest, 1978).Google Scholar
  324. [324]
    W. G. Nowak, On Euler’s ϕ-function in quadratic number fields, Théorie des nombres, J.-M. de Koninck and C. Levesque (ed.), Walter de Gruyter 1989, pp. 755–771.Google Scholar
  325. [325]
    Gy. Oláh, Generalizations of the determinant of Smith (Hungarian), Mat. Lapok (Budapest) 12(1961), 174–189.zbMATHGoogle Scholar
  326. [326]
    A. Oppenheim, Problem 5591, Amer. Math. Monthly 75(1968), 552.Google Scholar
  327. [327]
    L. Panaitopol, On some properties concerning the function a(n)=nϕ(n), Bull. Greek Math. Soc. 45(2001), 71–77.MathSciNetGoogle Scholar
  328. [328]
    L. Panaitopol, Asymptotical formula for a(n)=nϕ(n), Bull. Math. Soc. Sci. Math. Roumanie 42(90)(1999), no. 3, 271–277.zbMATHMathSciNetGoogle Scholar
  329. [329]
    H. Petersson, Über eine Zerlegung des Kresteilungspolynom, Math. Nachr. 14(1955), 361–375.MathSciNetGoogle Scholar
  330. [330]
    S. S. Pillai, On an arithmetic function, J. Annamalai Univ. 2(1933), 243–248.Google Scholar
  331. [331]
    S. S. Pillai, On some functions connected with ϕ(n), Bull. Amer. Math. Soc. 35(1929), 832–836.zbMATHMathSciNetGoogle Scholar
  332. [332]
    G. Pólya and G. Szegö, Problems and theorems in analysis, II, Springer Verlag, Berlin, 1976.Google Scholar
  333. [333]
    C. Pomerance, On composite n for which ϕ(n)|n−1, Acta Arithm. 28(1976), 387–389.zbMATHMathSciNetGoogle Scholar
  334. [334]
    C. Pomerance, On composite n for which ϕ(n)|n−1, II, Pacific J. Math. 69(1977), no. 1, 177–186.MathSciNetGoogle Scholar
  335. [335]
    C. Pomerance, On the congruences σ(n)≡a (mod n) and na (mod ϕ(n)), Acta Arith. 26(1975), 265–272.zbMATHMathSciNetGoogle Scholar
  336. [336]
    C. Pomerance, Popular values of Euler’s function, Mathematica 27 (1980), 84–89.zbMATHMathSciNetGoogle Scholar
  337. [337]
    C. Pomerance, On the composition of the arithmetic functions σ and ϕ, Colloq. Math. 58(1989), 11–15.zbMATHMathSciNetGoogle Scholar
  338. [338]
    S. Porubský, On Smarandache’s form of the individual Fermat Euler theorem, Smarandache Notions J. 8(1997), no. 1–2–3, pp. 5–20.zbMATHMathSciNetGoogle Scholar
  339. [339]
    S. Porubský, On the probability that k generalized integers are relatively H-prime, Colloq. Math. 45(1981), no. 1, 91–99.zbMATHMathSciNetGoogle Scholar
  340. [340]
    C. Powell, On the uniqueness of reduced phi-partitions, Fib. Quart. 34(1996), no. 3, 194–199.zbMATHGoogle Scholar
  341. [341]
    D. Pumplün, Über Zerlegungen des Kresitelungspolynoms, J. Reine Angew. Math. 213(1963), 200–220.MathSciNetGoogle Scholar
  342. [342]
    B. V. Rajarama Bhat, On greatest common divisor matrices and their applications, Linear Algebra Appl. 158(1991), 77–97.zbMATHMathSciNetGoogle Scholar
  343. [343]
    W. A. Ramadan-Jradi, Carmichael’s conjecture and a minimal unique solution, Notes Number Th. Discrete Math. 5(1999), no. 2, 55–70.MathSciNetGoogle Scholar
  344. [344]
    K. G. Ramanathan, Some applications of Ramanujan’s trigonometric sum c M(N), Proc. Ind. Acad. Sci. 20(1944), Section A, pp. 62–69.zbMATHMathSciNetGoogle Scholar
  345. [345]
    M. Rama Rao, An extension of Leudesdorf theorem, J. London Math. Soc. 12(1937), 247–250.zbMATHGoogle Scholar
  346. [346]
    M. Ram Murthy and V. Kumar Murthy, Analogue of the Erdös-Kac theorem for Fourier coefficients of modular forms, Indian J. Pure Appl. Math. 15(1984), 1090–1101.MathSciNetGoogle Scholar
  347. [347]
    R. M. Redheffer, Problem 6086, Amer. Math. Monthly 83(1976), 292; solution by G. Kennedy, same journal 85(1978), p. 54.MathSciNetGoogle Scholar
  348. [348]
    D. Redmond, Infinite products and Fibonacci numbers, Fib. Quart. 32(1994), no. 3, 234–239.zbMATHMathSciNetGoogle Scholar
  349. [349]
    P. Ribenboim, The new book of prime number records, Springer Verlag, New York, 1995.Google Scholar
  350. [350]
    P. Ribenboim, Existe-t-il des fonctions qui engendrent les nombres premiers?, S. T. N. T. 39/47, pp. 9–20, Queen’s University, Kingston, Ontario, Canada.Google Scholar
  351. [351]
    B. Richter, Eine Abschätzung der Werte der Kreisteilungspolynome für reelles Argument I, J. Reine Angew. Math. 267(1974), 74–76.zbMATHMathSciNetGoogle Scholar
  352. [352]
    R. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures and public-key crystosystems, Comm. ACM 21(1978), 120–126.zbMATHMathSciNetGoogle Scholar
  353. [353]
    B. Rizzi, On some functional properties of the Stevens totient (Italian), Rend. Mat. Ser. VII, 12(1992), 273–284.zbMATHMathSciNetGoogle Scholar
  354. [354]
    G. Robin, Sur l’ordre maximal de la fonction somme des diviseurs, Seminar on Number Theory, Paris, 1981–1982, 233–244 (1983).Google Scholar
  355. [355]
    G. de Rocquigny, L’intermédiaire des Mathématiciens, 6(1899), 243, Question No. 1656.Google Scholar
  356. [356]
    A. Rotkiewicz, On the numbers ϕ(a n±b n), Proc. Amer. Math. Soc. 12(1961), 419–421.zbMATHMathSciNetGoogle Scholar
  357. [357]
  358. [358]
    M. Ruthinger, Die Irreduzibilitätsbeweise der Kreisteilungsgleichung, Diss. Strassburg, 1907.Google Scholar
  359. [359]
    I. Z. Ruzsa, Arithmetical functions I (Hungarian), Mat. Lapok, Budapest, 27(1976–1979), no. 1–2, 95–145.zbMATHMathSciNetGoogle Scholar
  360. [360]
    I. Z. Ruzsa and A. Schinzel, An application of Kloosterman sums, Compos. Math. 96(1995), no. 3, 323–330.zbMATHMathSciNetGoogle Scholar
  361. [361]
    T. Šalát and O. Strauch, Problem 6090, Amer. Math. Monthly 83(1976), 385, Solution by P. Erdös, in 85(1978), 122-123.MathSciNetGoogle Scholar
  362. [362]
    J. Sándor, Über die Folge der Primzahlen, Mathematica, Cluj, 30(53) (1988), no. 1, 67–74.MathSciNetGoogle Scholar
  363. [363]
    J. Sándor, Geometric theorems, diophantine equations, and arithmetic functions, American Research Press, Rehoboth 2002, IV + 298 pp.zbMATHGoogle Scholar
  364. [364]
    J. Sándor, On a divisibility problem (Hungarian), Mat. Lapok, Cluj, 1/1981, pp. 4–5.Google Scholar
  365. [365]
    J. Sándor, On certain generalizations of the Smarandache function, Smarandache Notions J. 11(2000), no. 1–3, 202–212.MathSciNetGoogle Scholar
  366. [366]
    J. Sándor, On the Euler minimum and maximum functions (to appear).Google Scholar
  367. [367]
    J. Sándor, On a diophantine equation involving Euler’s totient function, Octogon Math. Mag. 6(1998), no. 2, 154–157.MathSciNetGoogle Scholar
  368. [368]
    J. Sándor, On the equation ϕ(x+k)=3ϕ(x), unpublished notes, 1986.Google Scholar
  369. [369]
    J. Sándor, On Dedekind’s arithmetical function, Seminarul de teoria structurilor, no. 51, 1988, pp. 1–15, Univ. of Timişoara.Google Scholar
  370. [370]
    J. Sándor, An application of the Jensen-Hadamard inequality, Nieuw Arch. Wiskunde, Serie 4, 8(1990), no. 1, 63–66.zbMATHGoogle Scholar
  371. [371]
    J. Sándor, On the equation σ(n)=ϕ(n)d(n) (to appear).Google Scholar
  372. [372]
    J. Sándor, On certain inequalities for arithmetic functions, Notes Number Th. Discr. Math. 1(1995), 27–32.zbMATHGoogle Scholar
  373. [373]
    J. Sándor, An inequality of Klamkin with arithmetical applications, Intern. J. Math. Ed. Sci. Techn., 25(1994), 157–158.zbMATHGoogle Scholar
  374. [374]
    J. Sándor, On Euler’s arithmetical function, Proc. Alg. Conf. Braşov 1988, 121–125.Google Scholar
  375. [375]
    J. Sándor, Remarks on the functions ϕ(n) and σ(n), Babeş-Bolyai Univ., Seminar on Math. Anal., Preprint 7, 1989, 7–12.Google Scholar
  376. [376]
    J. Sándor, A note on the functions σ k(n) and ϕ k(n), Studia Univ. Babeş-Bolyai, Math. 35(1990), no. 2, 3–6.zbMATHGoogle Scholar
  377. [377]
    J. Sándor, On the composition of some arithmetic functions, Studia Univ. Babeş-Bolyai 34(1989), 7–14.zbMATHGoogle Scholar
  378. [378]
    J. Sándor, On the difference of alternate compositions of arithmetic functions, Octogon Math. Mag. 8(2000), no. 2, 519–522.Google Scholar
  379. [379]
    J. Sándor, Some arithmetic inequalities, Bull. Number Th. Rel. Topics 11(1987), 149–161.zbMATHGoogle Scholar
  380. [380]
    J. Sándor, On an exponential totient function, Studia Univ. Babeş-Bolyai Math. 41(1996), 91–94.zbMATHGoogle Scholar
  381. [381]
    J. Sándor and L. Kovács, On certain arithmetical problems and conjectures (to appear).Google Scholar
  382. [382]
    J. Sándor and A.-V. Krámer, Über eine Zahlentheoretische Funktion, Math. Moravica 3(1999), 53–62.zbMATHGoogle Scholar
  383. [383]
    J. Sándor and R. Sivaramakrishnan, The many facets of Euler’s totient, III: An assortment of miscellaneous topics, Nieuw Arch.Wiskunde 11(1993), 97–130.zbMATHGoogle Scholar
  384. [384]
    J. Sándor and L. Tóth, On some arithmetical products, Publ. Centre Rech. Math. Pures, Neuchâtel, Série I, 20, 1990, pp. 5–8 (see also by the same authors: A remark on the gamma function, Elem. Math. 44(1989), 73–76).zbMATHGoogle Scholar
  385. [385]
    J. Sándor and L. Tóth, On certain number-theoretic inequalities, Fib. Quart. 28(1990), 255–258.zbMATHGoogle Scholar
  386. [386]
    J. Sándor and L. Tóth, On some arithmetical products, Publ. Centre Rech. Math. Pures (Neuchâtel), Sér. I, 20, 1990, pp. 5–8.zbMATHGoogle Scholar
  387. [387]
    Y. Sankaran, On the average order of an arithmetical function L(n), Math. Student 35(1967), 61–63 (1969).zbMATHMathSciNetGoogle Scholar
  388. [388]
    B. R. Santos, Twelve and its totitives, Math. Mag. 49(1976), 239–240.zbMATHMathSciNetGoogle Scholar
  389. [389]
    A. Sato, Rational points on quadratic twists of an elliptic curve,∼atsushi/Article/cong.pdf
  390. [390]
    U. V. Satyanarayana and K. Pattabhiramasastry, A note on the generalized ϕ-functions, Math. Student 33(1965), no. 2,3 81–83.zbMATHMathSciNetGoogle Scholar
  391. [391]
    V. Schemmel, Über relative Primzahlen, J. Reine Angew. Math. 70 (1869), 191–192.Google Scholar
  392. [392]
    A. Schinzel, Sur l’équation ϕ(x)=m, Elem. Math. 11(1956), 75–78.zbMATHMathSciNetGoogle Scholar
  393. [393]
    A. Schinzel, Sur une problème concernant la fonction ϕ, Czechoslovak Math. J. 6(1956), 164–165.MathSciNetGoogle Scholar
  394. [394]
    A. Schinzel, Sur l’équation ϕ(x+k)=ϕ(x), Acta Arith. 4(1958), 181–184.zbMATHMathSciNetGoogle Scholar
  395. [395]
    A. Schinzel and W. Sierpinski, Sur certaines hypothèses concernant les nombres premiers, Acta Arith. 4(1958), 185–208; erratum 5(1959), 259.zbMATHMathSciNetGoogle Scholar
  396. [396]
    A. Schinzel and A. Wakulicz, Sur l’équation φ(x+k)=φ(x), II, Acta Arith. 5(1959), 425–426.zbMATHMathSciNetGoogle Scholar
  397. [397]
    A. Schlafly and S. Wagon, Carmichael’s conjecture on the Euler function is valid below 1010000000, Math. Comp. 63(1994), no. 207, 415–419.zbMATHMathSciNetGoogle Scholar
  398. [398]
    I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66(1959), 361–375.MathSciNetGoogle Scholar
  399. [399]
    F. Schuh, Do there exist composite numbers m for which φ(m)vbm−1? (Dutch), Mathematica Zutpen B13(1944), 102–107.Google Scholar
  400. [400]
    J. Schulte, Über die Jordansche Verallgemeinerung der Eulerschen Funktion,
  401. [401]
    I. Schur, Über die Irreduzibilität der Kreisteilungsgleichung, Math. Z. 29(1929), 463.MathSciNetGoogle Scholar
  402. [402]
    E. D. Schwab, On the summation function of an arithmetic function (Romanian), Gazeta Mat., Bucureşti, 94(1989), 321–325.zbMATHGoogle Scholar
  403. [403]
    S. Schwarz, The role of semigroups in the elementary theory of numbers, Math. Slovaca 31(1981), 369–395.zbMATHMathSciNetGoogle Scholar
  404. [404]
    S. Schwarz, An elementary semigroup theorem and a congruence relation of Rédei, Acta Sci. Math. Szeged 19(1958), 1–4.zbMATHMathSciNetGoogle Scholar
  405. [405]
    W. Schwarz, Ramanujan expansions of arithmetic functions, Ramanujan revisited (Urbana-Champaign, Ill. 1987), 187–214, Academic Press, 1988.Google Scholar
  406. [406]
    J. L. Selfridge, Solution to a problem by Ore, Amer. Math. Monthly 70(1963), 101.MathSciNetGoogle Scholar
  407. [407]
    I. Seres, On the irreducibility of certain polynomials in cyclotomic fields (Hungarian), Magyar Tud. Akad. Mat. Fiz. Ont. Közl. 10(1960), 341–351.zbMATHMathSciNetGoogle Scholar
  408. [408]
    S. A. Sergusov, On the problem of prime-twins (Russian), Jaroslav. Gos. Ped. Inst. Učen. Zap. Vyp, 82, Anal. i Algebra, 1971, pp. 85–86.MathSciNetGoogle Scholar
  409. [409]
    R. E. Shafer, Problem 6160, Amer. Math. Monthly 84(1977), 491; Solution by A. Makowski, 86(1979), 598, same journal.MathSciNetGoogle Scholar
  410. [410]
    Shan Zun, On composite n for which ϕ(n)|(n−1), J. China Univ. Sci. Tech. 15(1985), 109–112.zbMATHMathSciNetGoogle Scholar
  411. [411]
    H. N. Shapiro, On the iterates of certain class of arithmetic functions, Comm. Pure Applied Math. 3(1950), 259–272.zbMATHGoogle Scholar
  412. [412]
    T. Shonhiwa, A generalization of the Euler and Jordan totient functions, Fib. Quart. 37(1999), 67–76.zbMATHMathSciNetGoogle Scholar
  413. [413]
    T. N. Shorey and C. L. Stewart, On divisors of Fermat, Fibonacci, Lucas and Lehmer numbers, II, J. London Math. Soc. (2) 23(1981), no. 1, 17–23.zbMATHMathSciNetGoogle Scholar
  414. [414]
    W. Sierpinski, Elementary theory of numbers, Warszawa, 1964.Google Scholar
  415. [415]
    W. Sierpinski, Sur une propriété de la fonction φ(n), Publ. Math. Debrecen 4(1956), 184–185.MathSciNetGoogle Scholar
  416. [416]
    D. L. Silverman, Problem 1040, J. Recr. Math. 14(1982), Solution 15(1983) by R. I. Hess.Google Scholar
  417. [417]
    J. H. Silverman, Exceptional units and numbers of small Mahler measure, Expo. Math. 4(1995), no. 1, 69–83.zbMATHGoogle Scholar
  418. [418]
    S. Singh, On a Hogatt-Bergum paper with totient function approach for divisibility and congruence relations, Fib. Quart. 28(1990), no. 3, 273–276.zbMATHGoogle Scholar
  419. [419]
    D. Singmaster, A maximal generalization of Fermat’s theorem, Math. Mag. 39(1966), no. 2, 103–107.zbMATHMathSciNetGoogle Scholar
  420. [420]
    R. Sivaramakrishnan, On three extensions of Pillai’s arithmetic function β(n), Math. Student 39(1971), 187–190.MathSciNetGoogle Scholar
  421. [421]
    R. Sivaramakrishnan, The many facets of Euler’s totient II: Generalizations and analogues, Nieuw Arch. Wiskunde 8(1990), 169–187.zbMATHMathSciNetGoogle Scholar
  422. [422]
    R. Sivaramakrishnan, Square-reduced residue systems (mod n) and related arithmetical functions, Canad. Math. Bull. 22(1979), 207–220.zbMATHMathSciNetGoogle Scholar
  423. [423]
    V. Siva Rama Prasad and Ph. Fonseca, The solutions of a class of arithmetic equations, Math. Student 56(1988), no. 1–4, pp. 149–157.MathSciNetGoogle Scholar
  424. [424]
    V. Siva Rama Prasad and M. Rangamma, On the forms of n for which ϕ(n)|n−1, Indian J. Pure Appl. Math. 20(1989), no. 9, 871–873.zbMATHMathSciNetGoogle Scholar
  425. [425]
    A. Sivaramasarma, On Δ(x, n)=ϕ(x, n)−ϕ(n)/n, Math. Stud. 46(1978), 160–164.MathSciNetGoogle Scholar
  426. [426]
    T. Skolem, A proof of the irreducibility of the cyclotomic equation, Norsk. Mat. Tidsskr. 31(1949), 116–120.zbMATHMathSciNetGoogle Scholar
  427. [427]
    I. Sh. Slavutskii, Leudesdorf’s theorem and Bernoulli numbers, Arch. Math. (Brno) 35(1999), 299–303.zbMATHMathSciNetGoogle Scholar
  428. [428]
    I. Sh. Slavutskii, Partial sums of the harmonic series, p-adic L-functions and Bernoulli numbers, Tatra Mt. Math. Publ. 20(2000), 11–17.zbMATHMathSciNetGoogle Scholar
  429. [429]
    N. J. A. Sloane, On-line encyclopedia of integer sequences, http://www.research/∼njas/sequences/seis.html
  430. [430]
    F. Smarandache, Une généralisation du théorème d’Euler, Bul. Univ. Braşov, Ser. C23(1981), 7–12 (see also: Collected papers, vol. I, Ed. Soc. Tempus, Bucureşti, 1996, pp. 184–191).MathSciNetGoogle Scholar
  431. [431]
    F. Smarandache, Problem 324, College Math. J., 17(1986), Solution by B. Spearman, 19(1988), 187.Google Scholar
  432. [432]
    H. J. S. Smith, On the value of a certain arithmetical determinant, Proc. London Math. Soc. 7(1875/76), 208–212.Google Scholar
  433. [433]
    N. P. Sokolov, On some multidimensional determinants with integral elements (Russian), Ukrain Mat. Zh. 16(1964), 126–132.zbMATHGoogle Scholar
  434. [434]
    V. N. Sorokin, Linear independence of logarithms of some rational numbers (Russian), Mat. Zametki 46(1989), no. 3, 74–79, 127; translation in Math. Notes 46(1989), no. 3–4, 727–730.MathSciNetGoogle Scholar
  435. [435]
    H. Späth, Über die Irreduzibilität der Kreisteilungsgleichung, Math. Z. 26 (1927), 442–444.zbMATHMathSciNetGoogle Scholar
  436. [436]
    K. Spyropoulos, Euler’s equation ϕ(x)=k with no solution, J. Number Theory 32(1989), 254–256.zbMATHMathSciNetGoogle Scholar
  437. [437]
    B. R. Srinivasan, An arithmetical function and an associated formula for the nth prime, II, Norske Vid. Selsk. Forh., Trondheim, 35(1962), 72–75.MathSciNetGoogle Scholar
  438. [438]
    A. H. Stein, Problem E3398, Amer. Math. Monthly 99(1990), p. 611; solution by T. Honold and H. Kiechle, same journal 101(1992), pp. 71–72.Google Scholar
  439. [439]
    W. Steindl, Bemerkungen zur iterierten Euler’schen Phi-Funktion, Dissertation, Graz, 1978.Google Scholar
  440. [440]
    H. Stevens, Generalizations of the Euler ϕ-function, Duke Math. J. 38(1971), 181–186.zbMATHMathSciNetGoogle Scholar
  441. [441]
    K. B. Stolarsky and S. Greenbaum, A ratio associated with ϕ(x)=n, Fib. Quart. 23(1985), 265–269.zbMATHMathSciNetGoogle Scholar
  442. [442]
    S. P. Strunkov, A generalization of Fermat’s little theorem (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 55(1991), no. 1, 203–205; translation in Math. USSR — Izv. 38(1992), no. 1, 199–201.Google Scholar
  443. [443]
    M. V. Subbarao, On two congruences for primality, Pacific J. Math. 52(1974), no. 1, 261–268.zbMATHMathSciNetGoogle Scholar
  444. [444]
    M. V. Subbarao and R. Sitaramachandrarao, The distribution of values of a class of arithmetic functions, Studia Sci. Math. Hungar. 20(1985), 77–87.zbMATHMathSciNetGoogle Scholar
  445. [445]
    M. V. Subbarao and V. Siva Rama Prasad, Some analogues of a Lehmer problem on the totient function, Rocky Mountain J. Math. 15(1985), no. 2, 609–620.zbMATHMathSciNetGoogle Scholar
  446. [446]
    M. V. Subbarao and V. V. Subrahmanya Sastri, On an extension of Nagell’s totient function and some applications, Ars. Combin. 62(2002), 79–96.zbMATHMathSciNetGoogle Scholar
  447. [447]
    M. V. Subbarao and L.-W. Yip, On Sierpinski’s conjecture concerning the Euler totient, Canad. Math. Bull. 34(1991), no. 3, 401–404.zbMATHMathSciNetGoogle Scholar
  448. [448]
    D. Suryanarayana, On Δ(x, n)=ϕ(x, n)−(n)/n, Proc. Amer. Math. Soc. 44(1974), no. 1, 17–21.zbMATHMathSciNetGoogle Scholar
  449. [449]
    D. Suryanarayana, A generalization of Dedekind’s ψ-function, Math. Student 37(1969), no. 1,2,3,4; 81–86.zbMATHMathSciNetGoogle Scholar
  450. [450]
    J. Suzuki, On coefficients of cyclotomic polynomials, Proc. Japan Acad. Ser. A Math. Sci. 63(1987), no. 7, 279–280.zbMATHMathSciNetGoogle Scholar
  451. [451]
    T. Szele, Une généralization de la congruence de Fermat, Mat. Tidsskrift B., 1948, 57–59.Google Scholar
  452. [452]
    A. Takashi, K. Dilcher and L. Skula, Fermat’s quotients for composite moduli, J. Number Theory 66(1997), no. 1, 29–50.zbMATHMathSciNetGoogle Scholar
  453. [453]
    R. Tijdeman, On integers with many small prime factors, Compositio Math. 26(1973), 319–330.zbMATHMathSciNetGoogle Scholar
  454. [454]
    L. Tóth, On a property of Euler’s arithmetical function (Hungarian), Mat. Lapok, Cluj, 4/1988, pp. 147–150.Google Scholar
  455. [455]
    L. Tóth, A generalization of Pillai’s arithmetical function involving regular convolutions, Acta Math. Inf. Univ. Ostraviensis 6(1998), 203–217.zbMATHGoogle Scholar
  456. [456]
    L. Tóth, The unitary analogue of Pillai’s arithmetical function, Collect. Math. 40(1989), 19–30; part II in Notes Number Th. Discr. Math. 2(1996), 40–46.zbMATHMathSciNetGoogle Scholar
  457. [457]
    L. Tóth, A note on a generalization of Euler’s totient, Fib. Quart. 25(1987), 241–244.zbMATHGoogle Scholar
  458. [458]
    L. Tóth and P. Haukkanen, A generalization of Euler’s ϕ-function with respect to a set of polynomials, Ann. Univ. Sci. Budapest 39(1996), 69–83.zbMATHGoogle Scholar
  459. [459]
    L. Tóth and P. Haukkanen, On an operator involving regular convolutions, Mathematica (Cluj), 42(65)(2000), no. 2, 199–209.Google Scholar
  460. [460]
    L. Tóth and J. Sándor, An asymptotic formula concerning a generalized Euler function, Fib. Quart. 27(1989), 176–180.zbMATHGoogle Scholar
  461. [461]
    D. B. Tyler, Editorial comment to Problem E3215, Amer. Math. Monthly 95(1989), 64.Google Scholar
  462. [462]
    R. Vaidyanathaswamy, The theory of multiplicative arithmetical functions, Trans. Amer. Math. Soc. 33(1931), 579–662.MathSciNetGoogle Scholar
  463. [463]
    E. Vantieghem, On a congruence only holding for primes, Indag. Math. N.S. 2(1991), no. 2, 253–255.zbMATHMathSciNetGoogle Scholar
  464. [464]
    M. Vassilev, Three formulae for n-th prime and six for n-th term of twin primes, Notes Numb. Theory Discr. Math. 7(2001), no. 1, 15–20.Google Scholar
  465. [465]
    R. C. Vaughan, Some applications of Montgomery’s sieve, J. Number Theory 5(1973), 64–79.zbMATHMathSciNetGoogle Scholar
  466. [466]
    R. C. Vaughan, Bounds for the coefficients of cyclotomic polynomials, Michigan Math. J. 21(1975), 289–295.zbMATHMathSciNetGoogle Scholar
  467. [467]
    A. C. Vasu, A note on an extension of Klee’s ψ-functions, Math. Student 40(1972), 36–39.MathSciNetGoogle Scholar
  468. [468]
    C. S. Venkataraman, Math. Student 19(1951), 127–128.Google Scholar
  469. [469]
    T. Venkataraman, Perfect totient number, Math. Student 63(1975), 178.MathSciNetGoogle Scholar
  470. [470]
    A. Verjovsky, Discrete measures and the Riemann hypothesis, Kodai Math. J. 17(1994), no. 3, 596–608.zbMATHMathSciNetGoogle Scholar
  471. [471]
    C. R. Wall, Analogs of Smith’s determinant, Fib. Quart. 25(1987), 343–345.zbMATHGoogle Scholar
  472. [472]
    D. W. Wall, Conditions for ϕ(N) to properly divide N−1, in: A collection of manuscripts related to the Fibonacci sequence (Ed. V. E. Hogatt and M. V. E. Bicknell-Johnson), San Jose, CA, Fib. Association, pp. 205–208, 1980.Google Scholar
  473. [473]
    R. Wang, Congruence properties of Euler’s function ϕ(n) (Chinese), J. Math. Res. Exposition 22(2002), no. 3, 476–480.zbMATHMathSciNetGoogle Scholar
  474. [474]
    H.Wang, Z. Hu and L. Gao, On the distribution of D. H. Lehmer number in the primitive roots modulo q (Chinese), Pure Appl. Math. 12(1996), no. 2, 84–88.MathSciNetGoogle Scholar
  475. [475]
    L.Weisner, Quadratic fields over which cyclotomic polynomials are reducible, Ann. Math. 29(1928), 377–381.Google Scholar
  476. [476]
    L. Weisner, Polynomials f(ϕ(x)) reducible in fields in which f(x) is reducible, Bull. Amer. Math. Soc. 34(1928).Google Scholar
  477. [477]
    L. Weisner, Some properties of prime-power groups, Trans. Amer. Math. Soc. 38(1935), 485–492.MathSciNetGoogle Scholar
  478. [478]
  479. [479]
    H. Wegman, Beiträge zur Zahlentheorie auf freien Halbgruppen, I, J. Reine Angew. Math. 221(1966), 20–43.MathSciNetGoogle Scholar
  480. [480]
    D. Wells, Dictionnaire Penguin des Nombres Curieux, Éd. Eyrolles, 1998, Paris (The French ed. of “The Penguin Dictionary of Curios and Interesting Numbers”, Penguin Books, 1997).Google Scholar
  481. [481]
    J. Westlund, Proc. Indiana Acad. Sci. 1902, 78–79, see also [103].Google Scholar
  482. [482]
    H. S. Wilf, Hadamard determinants, Möbius functions, and the chromatic number of a graph, Bull. Amer. Math. Soc. 74(1968), 960–964.zbMATHMathSciNetGoogle Scholar
  483. [483]
    J. Wolstenholme, On certain properties of prime numbers, Quart. J. Math. 5(1862), 35–39.Google Scholar
  484. [484]
    K. R. Wooldridge, Values taken many times by Euler’s phi-function, Proc. Amer. Math. Soc. 76(1979), 229–234.zbMATHMathSciNetGoogle Scholar
  485. [485]
    M. Yorinaga, Numerical investigation of some equations involving Euler’s φ-function, Math. J. Okayama Univ. 20(1978), no. 1, 51–58.zbMATHMathSciNetGoogle Scholar
  486. [486]
    M. Zhang, On a divisibility problem (Chinese) (English summary), J. Sichuan Univ., Nat. Sci. Ed. 32(1995), no. 3, 240–242.zbMATHGoogle Scholar
  487. [487]
    M. Zhang, On the equation ϕ(x)=ϕ(y) (Chinese), J. Sichuan Univ., Nat. Sci. Ed. 32(1995), no. 6, 628–631.zbMATHGoogle Scholar
  488. [488]
    M. Zhang, On a nontotients, J. Number Theory 43(1993), 168–172.zbMATHMathSciNetGoogle Scholar
  489. [489]
    W. Zhang, On a problem of D. H. Lehmer and its generalization, Compos. Math. 86(1993), no. 3, 307–316.zbMATHGoogle Scholar
  490. [490]
    W. Zhang, On a problem of D. H. Lehmer and its generalization (Chinese), J. Northwest Univ., Nat. Sci. 23(1993), no. 2, 103–108.zbMATHGoogle Scholar
  491. [491]
    W. Zhang, On the distribution of inverses modulo n, J. Number Theory 61(1996), no. 2, 301–310.zbMATHMathSciNetGoogle Scholar
  492. [492]
    W. Zhang, On the difference between an integer and its inverse modulo n, J. Number Theory 52(1995), no. 1, 1–6.zbMATHMathSciNetGoogle Scholar
  493. [493]
    Z. Zheng, On generalized D. H. Lehmer’s problem, Adv. Math., Beijing 22(1993), no. 2, 164–165.zbMATHGoogle Scholar
  494. [494]
    Z. Zheng, On generalized D. H. Lehmer’s problem, Chin. Sci. Bull. 38(1993), no. 16, 1340–1345.zbMATHGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • J. Sándor
    • 1
  • B. Crstici
    • 2
  1. 1.Department of Mathematics and Computer ScienceBabeş-Bolyai University of ClujCluj-NapocaRomania
  2. 2.formerly the Technical University of TimişoaraTimişoaraRomania

Personalised recommendations