Advertisement

The Genus Wolinella

  • Jörg Simon
  • Roland Gross
  • Oliver Klimmek
  • Achim Kröger
Reference work entry

Introduction

The genus Wolinella belongs to the family Helicobacteraceae (epsilon subclass of the Proteobacteria). There is only one species of the genus, W. succinogenes. The species formerly known as W. recta and W. curva have been re-classified as Campylobacter rectus and C. curvus (see [Phylogeny] and [Taxonomy]). W. succinogenes was isolated from bovine rumen fluid (see [Habitat and Isolation]) and can be identified and differentiated from other species by various morphological, biochemical and genetic methods (see [Identification]). The cells grow only by anaerobic respiration and do not ferment carbohydrates (see [Cultivation] and [Physiology]). Fumarate, nitrate, nitrite, nitrous oxide (N2O), polysulfide or dimethyl sulfoxide (DMSO) can serve as terminal electron acceptor with formate as the electron donor. Molecular hydrogen and, at least in fumarate respiration, sulfide are alternative electron donor substrates. The electron transport enzymes and the mechanism for generating...

Keywords

Nitrite Reductase Terminal Electron Acceptor Formate Dehydrogenase Fumarate Reductase Benzyl Viologen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Albanese, E., and D. Kafkewitz. 1978 Effect of medium composition on the growth and asparaginase production of Vibrio succinogenes Appl. Environ. Microbiol. 36 25–30PubMedGoogle Scholar
  2. Birkholz, S., U. Knipp, E. Lemma, A. Kröger, and W. Opferkuch. 1994 Fumarate reductase of Helicobacter pylori—an immunogenic protein J. Med. Microbiol. 41 56–62PubMedCrossRefGoogle Scholar
  3. Bokranz, M., E. Mörschel, and A. Kröger. 1985a Structural and ATP hydrolyzing properties of the ATP synthase isolated from Wolinella succinogenes Biochim. Biophys. Acta 810 84–93CrossRefGoogle Scholar
  4. Bokranz, M., E. Mörschel, and A. Kröger. 1985b Phosphorylation and phosphate-ATP exchange catalyzed by the ATP synthase isolated from Wolinella succinogenes Biochim. Biophys. Acta 810 332–339PubMedCrossRefGoogle Scholar
  5. Bokranz, M., J. Katz, I. Schröder, A.M. Roberton, and A. Kröger. 1983 Energy metabolism and biosynthesis of Vibrio succinogenes growing with nitrate or nitrite as terminal electron acceptor Arch. Microbiol. 135 36–41CrossRefGoogle Scholar
  6. Bokranz, M., M. Gutmann, C. Körtner, E. Kojro, F. Fahrenholz, F. Lauterbach, and A. Kröger. 1991 Cloning and nucleotide sequence of the structural genes encoding the formate dehydrogenase of Wolinella succinogenes Arch. Microbiol. 156 119–128PubMedCrossRefGoogle Scholar
  7. Boyington, J.C., V.N. Gladyshev, S.V. Khangulov, T.C. Stadtman, and P.D. Sun. 1997 Crystal structure of formate dehydrogenase H: catalysis involving Mo, molybdopterin, selenocysteine, and an Fe4S4 cluster Science 275 1305–1308PubMedCrossRefGoogle Scholar
  8. Bronder, M., H. Mell, E. Stupperich, and A. Kröger. 1982 Biosynthetic pathways of Vibrio succinogenes growing with fumarate as terminal electron acceptor and sole carbon source Arch. Microbiol. 131 216–223PubMedCrossRefGoogle Scholar
  9. Brondz, I., and I. Olsen. 1991 Multivariate analyses of cellular fatty acids in Bacteroides, Prevotella, Porphyromonas, Wolinella, and Campylobacter ssp J. Clin. Microbiol. 29 183–189PubMedGoogle Scholar
  10. Brune, A., J. Spillecke, and A. Kröger. 1987 Correlation of the turnover number of the ATP synthase in liposomes with the proton flux and the proton potential across the membrane Biochim. Biophys. Acta 893 499–507PubMedCrossRefGoogle Scholar
  11. Cardarelli-Leite, P., K. Blom, C.M. Patton, M.A. Nicholson, A.G. Steigerwalt, S.B. Hunter, D.J. Brenner, T.J. Barrett, and B. Swaminathan. 1996 Rapid identification of Campylobacter species by restriction fragment length polymorphism analysis of a PCR-amplified fragment of the gene coding for 16S rRNA J. Clin. Microbiol. 34 62–67PubMedGoogle Scholar
  12. Collins, M.D., and F. Fernandez. 1984 Menaquinone-6 and thermoplasmaquinone-6 in Wolinella succinogenes FEMS Microbiol. Lett. 22 273–276CrossRefGoogle Scholar
  13. Dross, F., V. Geisler, R. Lenger, F. Theis, T. Krafft, F. Fahrenholz, E. Kojro, A. Duchêne, D. Tripier, K. Juvenal, and A. Kröger. 1992 The quinone-reactive Ni/Fe-hydrogenase of Wolinella succinogenes. [author’s correction: 214:949–950] Eur. J. Biochem. 206 93–102PubMedCrossRefGoogle Scholar
  14. Einsle, O., A. Messerschmidt, P. Stach, G.P. Bourenkov, H.D. Bartunik, R. Huber, and P.M.H. Kroneck. 1999 Structure of cytochrome c nitrite reductase Nature 400 476–480PubMedCrossRefGoogle Scholar
  15. Firoozkoohi, J., H. Zandi, and I. Olsen. 1997 Comparison of lipopolysaccharides from Bacteroides, Porphyromonas, Prevotella, Campylobacter and Wolinella ssp. by tricine-SDS-PAGE Endod. Dent. Traumatol. 13 13–18PubMedCrossRefGoogle Scholar
  16. Geisler, V., Ullmann, R., and A. Kröger. 1994 The direction of the proton exchange associated with the redox reactions of menaquinone during the electron transport in Wolinella succinogenes Biochim. Biophys. Acta 1184 219–226CrossRefGoogle Scholar
  17. Graf, M., M. Bokranz, R. Böcher, P. Friedl, and A. Kröger. 1985 Electron transport driven phosphorylation catalyzed by proteoliposomes containing hydrogenase, fumarate reductase and ATP synthase FEBS Lett. 184 100–103CrossRefGoogle Scholar
  18. Gross, R., J. Simon, C.R.D. Lancaster, and A. Kröger. 1998b Identification of histidine residues in Wolinella succinogenes hydrogenase that are essential for menaquinone reduction by H2 Mol. Microbiol. 30 639–646PubMedCrossRefGoogle Scholar
  19. Gross, R., J. Simon, F. Theis, and A. Kröger. 1998a Two membrane anchors of Wolinella succinogenes hydrogenase and their function in fumarate and polysulfide respiration Arch. Microbiol. 170 50–58PubMedCrossRefGoogle Scholar
  20. Haas, R., A.F. Kahrs, D. Facius, H. Allmeier, R. Schmitt, and T.F. Meyer. 1993 TnMax—a versatile mini-transposon for the analysis of cloned genes and shuttle mutagenesis Gene 130 23–31PubMedCrossRefGoogle Scholar
  21. Hedderich, R., O. Klimmek, A. Kröger, R. Dirmeier, M. Keller, and K.O. Stetter. 1999 Anaerobic respiration with sulfur and with organic disulfides FEMS Microbiol. Rev. 22 353–381CrossRefGoogle Scholar
  22. Higuchi, Y., T. Yagi, and N. Yasuoka. 1997 Unusual ligand structure in Ni-Fe active center and an additional Mg site in hydrogenase revealed by high resolution X-ray structure analysis Structure 5 1671–1680PubMedCrossRefGoogle Scholar
  23. Iverson, T.M., C. Luna-Chavez, G. Cecchini, and D.C. Rees. 1999 Structure of the Escherichia coli fumarate reductase respiratory complex Science 284 1961–1966PubMedCrossRefGoogle Scholar
  24. Jankielewicz, A., R.A. Schmitz, O. Klimmek, and A. Kröger. 1994 Polysulphide reductase and formate dehydrogenase from Wolinella succinogenes contain molybdopterin guanine dinucleotide Arch. Microbiol. 162 238–242CrossRefGoogle Scholar
  25. Kafkewitz, D., and D. Goodman. 1974 L-asparaginase production by the rumen anaerobe Vibrio succinogenes Appl. Environ. Microbiol. 27 206–209Google Scholar
  26. Kafkewitz, D. 1975 Improved growth media for Vibrio succinogenes Appl. Environ. Microbiol. 29 121–122Google Scholar
  27. Klimmek, O., A. Kröger, R. Steudel, and G. Holdt. 1991 Growth of Wolinella succinogenes with polysulphide as terminal acceptor of phosphorylative electron transport Arch. Microbiol. 155 177–182CrossRefGoogle Scholar
  28. Klimmek, O. 1996 Thesis, J.W. Goethe-Universität Frankfurt am Main, FB BiologieGoogle Scholar
  29. Klimmek, O., T. Stein, R. Pisa, J. Simon, and A. Kröger. 1999 The single cysteine residue of the Sud protein is required for its function as a polysulphide-sulphur transferase in Wolinella succinogenes Eur. J. Biochem. 263 79–84PubMedCrossRefGoogle Scholar
  30. Klimmek, O., V. Kreis, C. Klein, J. Simon, A. Wittershagen, and A. Kröger. 1998 The function of the periplasmic Sud protein in polysulfide respiration of Wolinella succinogenes Eur. J. Biochem. 253 263–269PubMedCrossRefGoogle Scholar
  31. Kokeguchi, S., O. Tsutsui, K. Kato, and T. Matsumura. 1991 Comparative study of lipopolysaccharides from Wolinella recta, W. curva, W. succinogenes and Campylobacter sputorum ssp. sputorum FEMS Microbiol. Lett. 65 291–297PubMedCrossRefGoogle Scholar
  32. Körtner, C., F. Lauterbach, D. Tripier, G. Unden, and A. Kröger. 1990 Wolinella succinogenes fumarate reductase contains a diheme cytochrome b Mol. Microbiol. 4 855–860PubMedCrossRefGoogle Scholar
  33. Krafft, T., M. Bokranz, O. Klimmek, I. Schröder, F. Fahrenholz, E. Kojro, and A. Kröger. 1992 Cloning and nucleotide sequence of the psrA gene of Wolinella succinogenes polysulphide reductase Eur. J. Biochem. 206 503–510PubMedCrossRefGoogle Scholar
  34. Krafft, T., R. Groß, and A. Kröger. 1995 The function of Wolinella succinogenes psr genes in electron transport with polysulphide as the terminal electron acceptor Eur. J. Biochem. 230 601–606PubMedCrossRefGoogle Scholar
  35. Kröger, A., and A. Innerhofer. 1976 The function of the b cytochromes in the electron transport from formate to fumarate of Vibrio succinogenes Eur. J. Biochem. 69 497–506CrossRefGoogle Scholar
  36. Kröger, A., E. Dorrer, and E. Winkler. 1980 The orientation of the substrate sites of formate dehydrogenase and fumarate reductase in the membrane of Vibrio succinogenes Biochim. Biophys. Acta 589 118–136PubMedCrossRefGoogle Scholar
  37. Kröger, A., V. Geisler, E. Lemma, F. Theis, and R. Lenger. 1992 Bacterial fumarate respiration Arch. Microbiol. 158 311–314CrossRefGoogle Scholar
  38. Kröger, A. 1978 Fumarate as terminal acceptor of phosphorylative electron transport Biochim. Biophys. Acta 505 129–145PubMedCrossRefGoogle Scholar
  39. Lancaster, C.R.D., A. Kröger, M. Auer, and H. Michel. 1999 Structure at 2.2 â resolution of the compolex II-like fumarate reductase from Wolinella succinogenes Nature 402 377–385PubMedCrossRefGoogle Scholar
  40. Lauterbach, F., C. Körtner, S.P.J. Albracht, G. Unden, and A. Kröger. 1990 The fumarate reductase operon of Wolinella succinogenes: sequence and expression of the frdA and frdB genes Arch. Microbiol. 154 386–393PubMedCrossRefGoogle Scholar
  41. Lenger, R., U. Herrmann, R. Groß, J. Simon, and A. Kröger. 1997 Structure and function of a second gene cluster encoding the formate dehydrogenase of Wolinella succinogenes Eur. J. Biochem. 246 646–651PubMedCrossRefGoogle Scholar
  42. Liu, M.-C., M.-Y. Liu, W.J. Payne, H.D. Peck Jr., and J. LeGall. 1983 Wolinella succinogenes nitrite reductase: purification and properties FEMS Microbiol. Lett. 19 201–206CrossRefGoogle Scholar
  43. Lorenzen, J.P., A. Kröger, and G. Unden. 1993 Regulation of anaerobic pathways in Wolinella succinogenes by the presence of electron acceptors Arch. Microbiol. 159 477–483CrossRefGoogle Scholar
  44. Lorenzen, J.P., S. Steinwachs, and G. Unden. 1994 DMSO respiration by the anaerobic rumen bacterium Wolinella succinogenes Arch. Microbiol. 162 277–281PubMedCrossRefGoogle Scholar
  45. Lubkowski, J., G.J. Palm, G.L. Gilliland, C. Derst, K.H. Röhm, and A. Wlodawer. 1996 Crystal structure and amino acid sequence of Wolinella succinogenes L-asparaginase Eur. J. Biochem. 241 201–207PubMedCrossRefGoogle Scholar
  46. Macy, J.M., I. Schröder, R.K. Thauer, and A. Kröger. 1986 Growth of Wolinella succinogenes on H2S plus fumarate and on formate plus sulfur as energy sources Arch. Microbiol. 144 147–150CrossRefGoogle Scholar
  47. Mell, H., C. Wellnitz, and A. Kröger. 1986 The electrochemical proton potential and the proton/electron ratio of the electron transport with fumarate in Wolinella succinogenes Biochim. Biophys. Acta 852 212–221CrossRefGoogle Scholar
  48. Mell, H., M. Bronder, and A. Kröger. 1982 Cell yields of Vibrio succinogenes growing with formate and fumarate as sole carbon and energy sources in chemostat culture Arch. Microbiol. 131 224–228PubMedCrossRefGoogle Scholar
  49. Niederman, R.A., and M.J. Wolin. 1972 Requirement of succinate for the growth of Vibrio succinogenes J. Bacteriol. 109 546–549PubMedGoogle Scholar
  50. Oka, A., H. Sugisaki, and M. Takanami. 1981 Nucleotide sequence of the kanamycin resistance transposon Tn903 J. Mol. Biol. 147 217–226PubMedCrossRefGoogle Scholar
  51. Paster, B.J., and F.E. Dewhirst. 1988 Phylogeny of campylobacters, Wolinella, Bacteroides gracilis and Bacteroides ureolyticus by 16S ribosomal ribonucleic acid sequencing Int. J. Syst. Bacteriol. 38 56–62CrossRefGoogle Scholar
  52. Radcliffe, C.W., D. Kafkewitz, and S. Abouchowski. 1979 Asparaginase production by human clinical isolates of Vibrio succinogenes Appl. Environ. Microbiol. 38 761–762PubMedGoogle Scholar
  53. Roldán, M.D., H.J. Sears, M.R. Cheesman, S.J. Ferguson, A.J. Thomason, B.C. Berks, and D.J. Richardson. 1998 Spectroscopic characterization of a novel multiheme c-type cytochrome widely implicated in bacterial electron transport J. Biol. Chem. 273 28785–28790PubMedCrossRefGoogle Scholar
  54. Schröder, I., A.M. Roberton, M. Bokranz, G. Unden, R. Böcher, and A. Kröger. 1985 The membraneous nitrite reductase involve in the electron transport of Wolinella succinogenes Arch. Microbiol. 140 380–386CrossRefGoogle Scholar
  55. Schumacher, W., U. Hole, and P.M.H. Kroneck. 1994 Ammonia-forming cytochrome c nitrite reductase from Sulfurospirillum deleyianum is a tetraheme protein: New aspects of the molecular composition and spectroscopic properties Biochem. Biophys. Res. 205 911–916CrossRefGoogle Scholar
  56. Simon, J., and A. Kröger. 1998a Identification and characterization of IS1302, a novel insertion element from Wolinella succinogenes belonging to the IS3 family Arch. Microbiol. 170 43–49PubMedCrossRefGoogle Scholar
  57. Simon, J., R. Gross, M. Ringel, E. Schmidt, and A. Kröger. 1998b Deletion and site-directed mutagenesis of the Wolinella succinogenes fumarate reductase operon Eur. J. Biochem. 251 418–426PubMedCrossRefGoogle Scholar
  58. Simon, J., R. Gross, O. Einsle, P.M.H. Kroneck, A. Kröger, and O. Klimmek. 2000 A NapC/NirT-type cytochrome c (NrfH) is the mediator between the quinone pool and the cytochrome c nitrite reductase of Wolinella succinogenes Mol. Microbiol. 35 686–696PubMedCrossRefGoogle Scholar
  59. Six, S., S.C. Andrews, G. Unden, and J.R. Guest. 1994 Escherichia coli possesses two homologous anaerobic C4-dicarboxylate membrane transporters (DcuA and DcuB) distinct from the aerobic dicarboxylate transport system (Dct) J. Bacteriol. 176 6470–6478PubMedGoogle Scholar
  60. Tanner, A.C.R., M.A. Listgarten, and J.L. Ebersole. 1984 Wolinella curva sp. nov.: Vibrio succinogenes of human origin Int. J. Syst. Bacteriol. 34 275–282CrossRefGoogle Scholar
  61. Tanner, A.C.R., M.N. Strzempko, C.A. Belsky, and G.A. McKinley. 1985 API ZYM and API An-Ident reactions of fastidious oral Gram-negative species J. Clin. Microbiol. 22 333–335PubMedGoogle Scholar
  62. Tanner, A.C.R., S. Badger, C.-H. Lai, M.A. Listgarten, R.A. Visconti, and S.S. Socransky. 1981 Wolinella gen. nov., Wolinella succinogenes (Vibrio succinogenes Wolin et al.) comb. nov., and description of Bacteroides gracilis sp. nov., Wolinella recta sp. nov., Campylobacter concisus sp. nov., and Eikenella corrodens from with periodontal disease Int. J. Syst. Bacteriol. 31 432–445CrossRefGoogle Scholar
  63. Tanner, A.C.R. 1986 Characterization of Wolinella species, Campylobacter concisus, Bacteroides gracilis and Eikenella corrodens using polyacrylamide gel electrophoresis J. Clin. Microbiol. 24 562–565PubMedGoogle Scholar
  64. Terguchi, S., and T.C. Hollocher. 1989 Purification and some characteristics of a cytochrome C-containing nitrous oxide reductase from Wolinella succinogenes J. Biol. Chem. 264 1972–1979Google Scholar
  65. Ullmann, R., R. Gross, J. Simon, G. Unden, and A. Kröger. 2000 Transport of C4-dicarboxylates in Wolinella succinogenes J. Bacteriol. 182 5757–5764PubMedCrossRefGoogle Scholar
  66. Unden, G., and A. Kröger. 1982 Reconstitution in liposomes of the electron transport chain catalyzing fumarate reduction by formate Biochim. Biophys. Acta 682 258–263CrossRefGoogle Scholar
  67. Unden, G., H. Hackenberg, and A. Kröger. 1980 Isolation and functional aspects of the fumarate reductase involved in the phosphorylative electron transport of Vibrio succinogenes Biochim. Biophys. Acta 591 275–288PubMedCrossRefGoogle Scholar
  68. Vandamme, P., E. Falsen, R. Rossau, B. Hoste, P. Segers, R. Tytgat, and J. De Ley. 1991 Revision of Campylobacter, Helicobacter, and Wolinella taxonomy: emendation of generic descriptions and proposal of Arcobacter gen. nov Int. J. Syst. Bacteriol. 41 88–103PubMedCrossRefGoogle Scholar
  69. Vieira, J., and J. Messing. 1982 The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers Gene 19 259–268PubMedCrossRefGoogle Scholar
  70. Volbeda, A., M.-H. Charon, C. Piras, E.C. Hatchikian, M. Frey, and J.C. Fontecilla-Camps. 1995 Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas Nature 373 580–587PubMedCrossRefGoogle Scholar
  71. Wloczyk, C., A. Kröger, T. Göbel, G. Holdt, and R. Steudel. 1989 The electrochemical proton potential generated by the sulphur respiration of Wolinella succinogenes Arch. Microbiol. 152 600–605CrossRefGoogle Scholar
  72. Wolin, M.J., E.A. Wolin, and N.J. Jacobs. 1961 Cytochrome-producing anaerobic vibrio, Vibrio succinogenes sp. n J. Bacteriol. 81 911–917PubMedGoogle Scholar
  73. Wu, M.-C., G.K. Arimura, and A.A. Yunis. 1978 Mechanism of sensitivity of cultured pancreatic carcinoma to asparaginase Int. J. Cancer 22 728–733PubMedCrossRefGoogle Scholar
  74. Yoshinari, T. 1980 N2O reduction by Vibrio succinogenes Appl. Environ. Microbiol. 39 81–84PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Jörg Simon
  • Roland Gross
  • Oliver Klimmek
  • Achim Kröger

There are no affiliations available

Personalised recommendations