The Prokaryotes pp 1156-1163 | Cite as

The Genus Thiomargarita

  • Heide N. Schulz


Thiomargarita namibiensis is by far the largest member in the group of “morphologically conspicuous sulfur bacteria” (La Riviere and Schmidt, 1992). This group harbors sulfur storing, colorless bacteria, which gain energy by the oxidation of sulfide and can be readily recognized by their very particular morphology. The spherical cells of Thiomargarita are typically 100–300 µm wide, but with some regularity, very large cells with diameters of up to 750 µm occur (Schulz et al., 1999). Therefore, Thiomargarita namibiensis is, at least in terms of volume, the largest bacterium known so far. Nevertheless, it was one of the last sulfur bacteria to be discovered (Schulz et al., 1999). This may be because this organism seems to occur only in shelf sediments off the coast of Namibia, where it inhabits a sulfidic loose sediment composed of mainly dead diatoms, which is regularly suspended (Weeks et al., 2004) by methane eruptions (Emeis et al., 2004). In contrast to their close...


Overlie Water Sulfide Concentration Sulfate Reduction Rate Sulfur Globule Sulfidic Sediment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Brüchert, V., B. B. Jørgensen, K. Neumann, D. Riechmann, M. Schlosser, and H. Schulz. 2003 Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone Geochim. Cosmochim. Acta 67 4505–4518CrossRefGoogle Scholar
  2. Emeis, K. C., V. Brüchert, B. Currie, R. Endler, T. Ferdelman, A. Kiessling, T. Leipe, K. Noli-Peard, U. Struck, and T. Vogt. 2004 Shallow gas in shelf sediments of the Namibian coastal upwelling ecosystem Cont. Shelf Res. 24 627–642CrossRefGoogle Scholar
  3. Fossing, H., V. A. Gallardo, B. B. Jørgensen, M. Hüttel, L. P. Nielsen, H. Schulz, D. E. Canfield, S. Forster, R. N. Glud, J. K. Gundersen, J. Küver, N. B. Ramsing, A. Teske, B. Thamdrup, and O. Ulloa. 1995 Concentration and transport of nitrate by the matforming sulphur bacterium Thioploca Nature 374 713–715CrossRefGoogle Scholar
  4. Fukui, M., A. Teske, B. Aßmus, G. Muyzer, and F. Widdel. 1999 Physiology, phylogenetic relationship, and ecology of filamentous sulfate-reducing bacteria (genus Desulfonema) Arch. Microbiol. 172 193–203PubMedCrossRefGoogle Scholar
  5. Gallardo, V. A., E. Klingelhoeffer, W. Arntz, and M. Graco. 1998 First report of the bacterium Thioploca in the Benguela Ecosystem off Namibia J. Mar. Biol. Assoc. UK 87 1007–1010Google Scholar
  6. Kalanetra, K. M., S. B. Joye, N. R. Sunseri, and D. C. Nelson. 2005 Novel, attached, sulfur-oxidizing bacteria at shallow hydrothermal vents possess vacuoles not involved in respiratory nitrate accumulation Appl. Environ. Microbiol. 70(12) 7487–7496CrossRefGoogle Scholar
  7. La Riviere, J. W. M., and K. Schmidt. 1992 Morphologically conspicuous sulfur-oxidizing eubacteria In: A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer (Eds.) The Prokaryotes, 2nd ed Springer-Verlag, New York, NY 3934–3947Google Scholar
  8. Pasteris, J. D., J. J. Freeman, S. K. Goffredi, and K. R. Buck. 2001 Raman spectroscopic and laser scanning confocal microscopic analysis of sulfur in living sulfur-precipitating marine bacteria Chem. Geol. 180 3–18CrossRefGoogle Scholar
  9. Prange, A., R. Chauvistre, H. Modrow, J. Hormes, H. G. Truper, and C. Dahl. 2002 Quantitative speciation of sulfur in bacterial sulfur globules: X-ray absorption spectroscopy reveals at least three different species of sulfur Microbiol.-SGM 148 267–276Google Scholar
  10. Robinow, C., and E. R. Angert. 1998 Nucleoids and coated vesicles of “Epulipiscium” spp Arch. Microbiol. 170 227–235PubMedCrossRefGoogle Scholar
  11. Schulz, H. N., T. Brinkhoff, T. G. Ferdelman, M. H. Marine, A. Teske, and B. B. Jørgensen. 1999 Dense populations of a giant sulfur bacterium in Namibian shelf sediments Science 284 493–495PubMedCrossRefGoogle Scholar
  12. Schulz, H. N., B. Strotmann, V. A. Gallardo, and B. B. Jørgensen. 2000 Population study of the filamentous sulfur bacteria Thioploca spp. off the Bay of Concepción Chile Mar. Ecol. Prog. Ser. 200 117–126Google Scholar
  13. Schulz, H. N., and D. de Beer. 2002 Uptake rates of oxygen and sulfide measured with individual Thiomargarita namibiensis cells by using microelectrodes Appl. Environ. Microbiol. 68 5746–5749PubMedCrossRefGoogle Scholar
  14. Schulz, H. N., and H. D. Schulz. 2005 Large sulfur bacteria and the formation of phosphorite Science 307 416–418PubMedCrossRefGoogle Scholar
  15. Teske, A., N. B. Ramsing, J. Kuever, and H. Fossing. 1995 Phylogeny of Thioploca and related filamentous sulfide-oxidizing bacteria Syst. Appl. Microbiol. 18 517–526Google Scholar
  16. Vogt, T. 2002 Akustische Fazies auf dem Schelf und oberen Kontinentalrand vor Namibia—Auswertung von PARASOUND-Ergebnissen der Reise Meteor 48-2 [MSc thesis] Ernst-Moritz-Arndt Univerisity, Greifswald, GermanyGoogle Scholar
  17. Weeks, S. J., B. Currie, and A. Bakun. 2002 Massive emissions of toxic gas in the Atlantic Nature 415 493–494PubMedCrossRefGoogle Scholar
  18. Weeks, S. J., B. Currie, A. Bakun, and K. R. Peard. 2004 Hydrogen sulphide eruptions in the Atlantic Ocean off southern Africa: implications of a new view based on SeaWiFS satellite imagery Deep-Sea Res., Part I 51 153–172CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Heide N. Schulz

There are no affiliations available

Personalised recommendations