The Chromatiaceae

  • Johannes F. Imhoff


The Chromatiaceae are γ-Proteobacteria (Woese et al., 1985) and representatives of the phototrophic purple bacteria. They are also referred to as “purple sulfur bacteria” (together with the Ectothiorhodospiraceae) and typically grow under anoxic conditions in the light using as photosynthetic electron donor, sulfide, which is oxidized to sulfate via intermediate accumulation of elemental sulfur inside the cells. A number of species also can grow under chemotrophic conditions in the dark, either autotrophically or heterotrophically using oxygen as terminal electron acceptor in respiratory processes. Phototrophic growth, photosynthetic pigment synthesis, and internal membrane formation are strictly regulated by oxygen and become derepressed at low oxygen tension.


The family Chromatiaceae comprises physiologically similar species and genera of the γ-Proteobacteria that carry out anoxygenic photosynthesis (Fowler et al., 1984; Guyoneaud et al., 1998; Imhoff et al.,...


Green Sulfur Bacterium Phototrophic Bacterium Purple Sulfur Bacterium Anoxygenic Phototrophic Bacterium Purple Nonsulfur Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Anagnostides, K., and J. Overbeck. 1966 Methanoxydierer und hypolimnische Schwefelbakterien: Studien zur ökologischen Biocönotik der Gewässermikroorganismen Ber. Deutsch. Botanisch. Gesellsch. 79 163–174Google Scholar
  2. Bavendamm, W. 1924 Die farblosen und roten Schwefelbakterien des Süß-und Salzwassers G. Fischer Jena GermanyGoogle Scholar
  3. Biebl, H., and G. Drews. 1969 Das in-vivo Spektrum als taxonomisches Merkmal bei Untersuchungen zur Verbreitung von Athiorhodaceae Zentralbl. Bakteriol. Parasitenkde. Infektionskr. Hyg. Abt. II Orig. 123 425–452Google Scholar
  4. Biebl, H., and N. Pfennig. 1978 Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria Arch. Microbiol. 117 9–16CrossRefGoogle Scholar
  5. Biebl, H., and N. Pfennig. 1979 CO2-fixation by anaerobic phototrophic bacteria in lakes: A review Arch. Hydrobiol. 12 18–58Google Scholar
  6. Blankenship, R. E., M. T. Madigan, and C. E. Bauer (Eds.). 1995 Anoxygenic Photosynthetic Bacteria Kluwer Academic Publishers Dordrecht The NetherlandsGoogle Scholar
  7. Bolliger, R., H. Zürrer, and R. Bachofen. 1985 Photoproduction of molecular hydrogen from waste of a sugar refinery by photosynthetic bacteria Appl. Microbiol. Biotech. 23 147–151CrossRefGoogle Scholar
  8. Bosshard, P. P., Y. Santini, D. Grüter, R. Stettler, and R. Bachofen. 2000 Bacterial diversity and community composition in the chemocline of the meromictic alpine Lake Cadagno as revealed by 16S rDNA analysis FEMS Microbiol. Ecol. 31 173–182PubMedCrossRefGoogle Scholar
  9. Breuker, E. 1964 Die Verwertung von intrazellulärem Schwefel durch Chromatium vinosum im aeroben und anaeroben Licht-und Dunkelstoffwechsel Zentralbl. Bakteriol. Parasitenkd. Hyg. Abt. 2(118) 561–568Google Scholar
  10. Brown, C. M., and R. A. Herbert. 1977 Ammonia assimilation in purple and green sulfur bacteria FEMS Lett. 1 39–42CrossRefGoogle Scholar
  11. Brune, D. C. 1989 Sulfur oxidation by phototrophic bacteria Biochim. Biophys. Acta 975 189–221PubMedGoogle Scholar
  12. Brune, D. C. 1995a Isolation and characterization of sulfur globule proteins from Chromatium vinosum and Thiocapsa roseopersicina Arch. Microbiol. 163 391–399PubMedGoogle Scholar
  13. Brune, D. C. 1995b Sulfur compounds as photosynthetic electron donors In: R. E. Blankenship, M. T. Madigan, and C. E. Bauer (Eds.) Anoxygenic Photosynthetic Bacteria Kluwer Academic Publishers Dordrecht The Netherlands 847–870Google Scholar
  14. Bryantseva, I. A., V. M. Gorlenko, E. I. Kompantseva, J. F. Imhoff, J. Süling, and L. Mityushina. 1999 Thiorhodospira sibirica gen.nov., sp. nov., a new alkaliphilic purple sulfur bacterium from a Siberian soda lake Int. J. Syst. Bacteriol. 49 697–703PubMedGoogle Scholar
  15. Bryantseva, I. A., V. M. Gorlenko, E. I. Kompantseva, and J. F. Imhoff. 2000 Thioalkalicoccus limnaeus gen. nov., sp. nov., a new alkaliphilic purple sulfur bacterium with bacteriochlorophyll b Int. J. Syst. Bacteriol. 50 2157–2163Google Scholar
  16. Buder, J. 1915 Chloronium mirabile Ber. Deutsch. Botanisch. Gesellsch. 31 80–97Google Scholar
  17. Caldwell, D. E., and J. M. Tiedje. 1975 A morphological study of anaerobic bacteria from the hypolimnia of two Michigan lakes Can. J. Microbiol. 21 362–376PubMedGoogle Scholar
  18. Caumette, P. 1984 Distribution and characterization of phototrophic bacteria isolated from the water of Bietri Bay (Ebrie Lagoon, Ivory Coast) Can. J. Microbiol. 30 273–284Google Scholar
  19. Caumette, P. 1986 Phototrophic sulfur bacteria and sulfate-reducing bacteria causing red waters in a shallow brackish coastal lagoon Prévost Lagoon France FEMS Microbiol. Ecol. 38 113–124Google Scholar
  20. Caumette, P., R. Baulaigue, and R. Matheron. 1988 Characterization of Chromatium salexigens sp. nov., a halophilic Chromatiaceae isolated from Mediterranean salinas Syst. Appl. Microbiol. 10 284–292Google Scholar
  21. Caumette, P., R. Baulaigue, and R. Matheron. 1991 Thiocapsa halophila sp. nov., a new halophilic phototrophic purple sulfur bacterium Arch. Microbiol. 155 170–176CrossRefGoogle Scholar
  22. Caumette, P. 1993 Ecology and physiology of phototrophic bacteria and sulfate-reducing bacteria in marine salterns Experientia 49 473–481CrossRefGoogle Scholar
  23. Caumette, P., R. Matheron, N. Raymond, and J. C. Relexans. 1994 Microbial mats in the hypersaline ponds of Mediterranean salterns (Salins-de-Giraud, France) FEMS Microbiol. Ecol. 13 273–286CrossRefGoogle Scholar
  24. Caumette, P., J. F. Imhoff, J. Süling, and R. Matheron. 1997 Chromatium glycolicum sp. nov., a moderately halophilic purple sulfur bacterium that uses glycolate as substrate Arch. Microbiol. 167 11–18PubMedCrossRefGoogle Scholar
  25. Cerruti, A. 1938 Le condizioni oceanografiche e biologiche del Mar Piccolo di Taranto durante l’gosto del 1938 Bollettino di Pesca. Piscicoltura ed Idrobiologia, 14 711–751Google Scholar
  26. Clayton, R. K., and W. R. Sistrom (Eds.). 1978 The Photosynthetic Bacteria Plenum Press New York NYGoogle Scholar
  27. Cohen, Y., W. E. Krumbein, and M. Shilo. 1977 Solar lake (Sinai). 2: Distribution of photosynthetic microorganisms and primary production Limnol. Oceanogr. 22 609–620Google Scholar
  28. Cohn, F. 1875 Untersuchungen über Bakterien: II Beitr. Biol. Pflanz. 1 141–207Google Scholar
  29. Cooper, R. C. 1963 Photosynthetic bacteria in waste treatment Devel. Ind. Microbiol. 4 95–103Google Scholar
  30. Cooper, R. C., W. J. Oswald, and J. C. Bronson. 1965 Treatment of organic industrial wastes by lagooning In: Proceedings of the 20th Industrial Waste Conference, Engineering Bulletin Purdue University Engineering Extension 118 351–363Google Scholar
  31. Cooper, D. E., M. B. Rands, and C.-P. Woo. 1975 Sulfide reduction in fellmongery effluent by red sulphur bacteria J. Water Poll. Control Fed. 47 2088–2100Google Scholar
  32. Cviic, V. 1955 Red water in the lake “Malo Jezero” (island of Mljet) Acta Adriatica 6 1–15Google Scholar
  33. Cviic, V. 1960 Apparition d’eau rouge dans le Veliko Jezero (Ile de Mljet) Rapports et Procès-Verbeaux des Réunions de la Commission Internationale de l’Exploration Scientifique de la Mer Mediterranée 15 79–81Google Scholar
  34. Czeczuga, B. 1968a Primary production of the purple sulphuric bacteria Thiopedia rosea Winogr. (Thiorhodaceae) Photosynthetica 2 161–166Google Scholar
  35. Dahl, C., G. Rákhely, A. S. Pott-Sperling, B. Fodor, M. Takáks, A. S. Tóth, M. Kraeling, K. Gyórfi, A. Kovács, J. Tusz, and K. L. Kovács. 1999 Genes involved in hydrogen and sulfur metabolism in phototrophic sulfur bacteria FEMS Microbiol. Lett. 180 317–324PubMedCrossRefGoogle Scholar
  36. Davidson, M. W., G. O. Gray, and D. B. Knaff. 1985 Interaction of Chromatium vinosum flavocytochrome c-552 with cytochromes c studied by affinity chromatography FEMS Lett. 187 155–159Google Scholar
  37. De Wit, R., and H. Van Gemerden. 1990a Growth and metabolism of the purple sulfur bacterium Thiocapsa roseopersicina under combined light/dark and oxic/anoxic regimens Arch. Microbiol. 154 459–464CrossRefGoogle Scholar
  38. De Wit, R., and H. Van Gemerden. 1990b Growth of the phototrophic sulfur bacterium Thiocapsa roseopersicina under oxic/anoxic regimens in the light FEMS Microbiol. Ecol. 73 69–76CrossRefGoogle Scholar
  39. Dilling, W., W. Liesack, and N. Pfennig. 1995 Rhabdochromatium marinum gen. nom. rev., sp. nov., a purple sulfur bacterium from a salt marsh microbial mat Arch. Microbiol. 164 125–131CrossRefGoogle Scholar
  40. Dolata, M. M., J. J. van Beeumen, R. P. Ambler, T. E. Meyer, and M. A. Cusanovich. 1993 Nucleotide sequence of the heme subunit of flavocytochtome c from the purple phototrophic bacterium, Chromatium vinosum: A 2.6-kilobase pair DNA fragment contains two multiheme cytochromes, a flavoprotein and a homolog of human ankyrin J. Biol. Chem. 268 14426–14431PubMedGoogle Scholar
  41. Drews, G. 1989 Energy transduction in phototrophic bacteria In: H. G. Schlegel and B. Bowien (Eds.) Autotrophic Bacteria Springer-Verlag New York NY 461–480Google Scholar
  42. Drews, G., and J. F. Imhoff. 1991 Phototrophic purple bacteria In: J. M. Shively and L. L. Barton (Eds.) Variations in Autotrophic Life Academic Press London UK 51–97Google Scholar
  43. Düggeli, M. 1924 Hydrobiologische Untersuchungen im Pioragebiet. Bakteriologische Untersuchungen am Ritomsee Schweiz. Zeitschr. Hydrobiol. 2 65–205Google Scholar
  44. Ehrenberg, C. G. 1838 Die Infusionsthierchen als vollkommene Organismen: Ein Blick in das tiefere organische Leben der Natur. L. Voss Leipzig Switzerland i–xvii and 1–547Google Scholar
  45. Ehrenreich, A., and F. Widdel. 1994 Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism Appl. Environ. Microbiol. 60 4517–4526PubMedGoogle Scholar
  46. Eichler, B., and N. Pfennig. 1986 Characterization of a new platelet-forming purple sulfur bacterium, Amoebobacter pedioformis sp. nov Arch. Microbiol. 146 295–300CrossRefGoogle Scholar
  47. Eichler, B., and N. Pfennig. 1988 A new green sulphur bacterium from a freshwater pond In: J. M. Olson, J. G. Ormerod, J. Amesz, E. Stackebrandt, and H. G. Trüper (Eds.) Green Photosynthetic Bacteria Plenum Publishing New York NY 233–235Google Scholar
  48. Eimhjellen, K. E., H. Steensland, and J. Traetteberg. 1967 A Thiococcus sp. nov. gen., its pigments and internal membrane system Arch. Microbiol. 59 82–92Google Scholar
  49. Eimhjellen, K. E. 1970 Thiocapsa pfennigii sp. nov.: A new species of the phototrophic sulfur bacteria Arch. Microbiol. 73 193–194Google Scholar
  50. Filippi, G. M., and J. W. Vennes. 1971 Biotin production and utilization in a sewage treatment lagoon Appl. Microbiol. 22 49–54Google Scholar
  51. Folt, C. L., M. J. Wevers, M. P. Yoder-Williams, and R. P. Howmiller. 1989 Field studies comparing growth and viability of a population of phototrophic bacteria Appl. Environ. Microbiol. 55 78–85PubMedGoogle Scholar
  52. Fowler, V. J., N. Pfennig, W. Schubert, and E. Stackebrandt. 1984 Towards a phylogeny of phototrophic purple sulfur bacteria: 16S rRNA oligonucleotide cataloguing of 11 species of Chromatiaceae Arch. Microbiol. 139 382–387CrossRefGoogle Scholar
  53. Fuller, R. C., R. M. Smillie, E. C. Sisler, and H. L. Kornberg. 1961 Carbon metabolism in Chromatium J. Biol. Chem. 236 2140–2149PubMedGoogle Scholar
  54. Gaffron, H. 1935 über die Kohlensäureassimilation der roten Schwefelbakterien: II Biochem. Zeitschr. 279 1–33Google Scholar
  55. Gasol, J. M., R. Guerrero, and C. Pedros-Alio. 1991 Seasonal variations in size structure and prokaryotic dominance in sulfurous Lake Ciso Limnol. Oceanogr. 36 860–872Google Scholar
  56. Genovese, S. 1963 The distribution of the H2S in the lake of Faro (Messina) with particular regard to the presence of “red water” In: C. H. Oppenheimer (Ed.) Symposium on Marine Microorganisms Charles C. Thomas Springfield IL 194–204Google Scholar
  57. Giesberger, G. 1947 Some observations on the culture, physiology and morphology of some brown-red Rhodospirillum-species Ant. v. Leeuwenhoek 13 135–148CrossRefGoogle Scholar
  58. Glaeser, J., and J. Overmann. 1999 Selective enrichment and characterisation of Roseospirillum parvum, gen. nov. and sp. nov., a new purple nonsulfur bacterium with unusual light absorption properties Arch. Microbiol. 171 405–416PubMedCrossRefGoogle Scholar
  59. Gloyna, E. F. 1971 Waste stabilization ponds World Health Organization Monograph Series No. 60 World Health Organization Geneva SwitzerlandGoogle Scholar
  60. Gogotov, I. N. 1978 Relationships in hydrogen metabolism between hydrogenase and nitrogenase in phototrophic bacteria Biochimie 60 267–275PubMedGoogle Scholar
  61. Gogotov, I. N. 1984 Hydrogenase of purple bacteria: properties and regulation of synthesis Arch. Microbiol. 140 86–90CrossRefGoogle Scholar
  62. Gogotov, I. N. 1986 Hydrogenases of phototrophic microorganisms Biochimie 68 181–187PubMedCrossRefGoogle Scholar
  63. Gorlenko, V. M. 1974 Oxidation of thiosulfate by Amoebobacter roseus in the darkness under microaerobic conditions Microbiologiya 43 729–731Google Scholar
  64. Gorlenko, V. M., M. B. Vainstein, and V. I. Kachalkin. 1978 Microbiological characteristic of Lake Mogilnoye Arch. Hydrobiol. 81 475Google Scholar
  65. Gorlenko, V. M., G. A. Dubinina, and S. I. Kusnetsov. 1983 The ecology of aquatic microorganisms [monograph] In: W. Ohle (Ed.) Binnengewässer Schweizerbartsche Verlagsbuchhandlung Stuttgart Germany 254.Google Scholar
  66. Guerrero, R., C. Pedros-Alío, I. Esteve, and J. Mas. 1987 Communities of phototrophic sulfur bacteria in lakes of the Spanish Mediterranean region Acta Academiae Abonensis 47 125–151Google Scholar
  67. Guyoneaud, R., R. Matheron, W. Liesack, J. F. Imhoff, and P. Caumette. 1997 Thiorhodococcus minus, gen. nov., sp. nov. a new purple sulfur bacterium isolated from coastal lagoon sediments Arch. Microbiol. 168 16–23PubMedCrossRefGoogle Scholar
  68. Guyoneaud, R., J. Süling, R. Petri, R. Matheron, P. Caumette, N. Pfennig, and J. F. Imhoff. 1998 Taxonomic rearrangements of the genera Thiocapsa and Amoebobacter on the basis of 16S rDNA sequence analyses and description of Thiolamprovum gen. nov Int. J. Syst. Bacteriol 48 957–964PubMedGoogle Scholar
  69. Hallenbeck, P. C. 1987 Molecular aspects of nitrogen fixation by photosynthetic prokaryotes Crit. Rev. Microbiol. 14 1–48PubMedCrossRefGoogle Scholar
  70. Haselkorn, R. 1986 Organization of the genes for nitrogen fixation in photosynthetic bacteria and cyanobacteria Ann. Rev. Microbiol. 40 525–547CrossRefGoogle Scholar
  71. Hashwa, F. A., and H. G. Trüper. 1978 Viable phototrophic sulfur bacteria from the Black-Sea bottom Helgol. Wiss. Meeresunters. 31 249–253CrossRefGoogle Scholar
  72. Hatzikakidis, A. D. 1952 Periodike erythrotes ton ydaton tes limnothalasses tou Aitolikou Anatypon ek ton praktikon tou Ellenikou Ydrobiologikou Institoutou Akademias Athenon 6 21–52Google Scholar
  73. Hatzikakidis, A. D. 1953 Epochiakai ydrologikai ereynai eis tas limnothalassas Mesologgiou kai Aitolikou Anatypon ek ton praktikon tou Ellenikou Ydrobiologikou Institoutou Akademias Athenon 6 85–143Google Scholar
  74. Hauser, B., and H. Michaelis. 1975 Die Makrofauna der Watten. Strände, Riffe und Wracks um den Hohen Knechtsand in der Wesermündung In: Jahresbericht Forschungsstelle für Insel-und Küstenschutz 1974 Norderney Germany 26 85–119Google Scholar
  75. Heldt, H. J. 1952 Eaux rouges Bull. Soc. Sci. Nat. Tunisie 5 103–106Google Scholar
  76. Hendley, D. D. 1955 Endogenous fermentation in Thiorhodaceae J. Bacteriol. 70 625–634PubMedGoogle Scholar
  77. Hiraishi, A., Y. Hoshino, and H. Kitamura. 1984 Isoprenoid quinone composition in the classification of Rhodospirillaceae J. Gen. Appl. Microbiol. 30 197–210Google Scholar
  78. Hoffmann, C. 1942 Beiträge zur Vegetation des Farbstreifen-Sandwattes Kieler Meeresforsch. 4 85–108Google Scholar
  79. Hoffmann, C. 1949 über die Durchlässigkeit dünner Sandschichten für Licht Planta 37 48–56CrossRefGoogle Scholar
  80. Holm, H. W., and J. W. Vennes. 1971 Occurrence of purple sulfur bacteria in a sewage treatment lagoon Appl. Microbiol. 19 988–996Google Scholar
  81. Imhoff, J. F., and H. G. Trüper. 1976 Marine sponges as habitats of anaerobic phototrophic bacteria Microb. Ecol. 3 1–9CrossRefGoogle Scholar
  82. Imhoff, J. F., and H. G. Trüper. 1977 Ectothiorhodospira halochloris sp. nov., a new extremely halophilic phototrophic bacterium containing bacteriochlorophyll b Arch. Microbiol. 114 115–121CrossRefGoogle Scholar
  83. Imhoff, J. F., H. G. Sahl, G. S. H. Soliman, and H. G. Trüper. 1979 The Wadi Natrun: Chemical composition and microbial mass developments in alkaline brines of eutrophic desert lakes Geomicrobiology 1 219–234CrossRefGoogle Scholar
  84. Imhoff, J. F., and H. G. Trüper. 1980 Chromatium purpuratum sp. nov., a new species of the Chromatiaceae Zbl. Bakt., I. Abt. Orig. C1 61–69Google Scholar
  85. Imhoff, J. F., and H. G. Trüper. 1981 Ectothiorhodospira abdelmalekii sp. nov., a new halophilic and alkaliphilic phototrophic bacterium Zbl. Bakt., I. Abt. Orig. C2 228–234Google Scholar
  86. Imhoff, J. F., D. J. Kushner, S. C. Kushawa, and M. Kates. 1982 Polar lipids in phototrophic bacteria of the Rhodospirillaceae and Chromatiaceae families J. Bacteriol. 150 1192–1201PubMedGoogle Scholar
  87. Imhoff, J. F. 1983 Rhodopseudomonas marina sp. nov., a new marine phototrophic purple bacterium Syst. Appl. Microbiol. 4 512–521Google Scholar
  88. Imhoff, J. F. 1984a Quinones of phototrophic purple bacteria FEMS Microbiol. Lett. 25 85–89CrossRefGoogle Scholar
  89. Imhoff, J. F. 1984b Reassignment of the genus Ectothiorhodospira Pelsh 1936 to a new family, Ectothiorhodospiraceae fem. nov., and emended description of the Chromatiaceae Bavendamm 1924 Int. J. Syst. Bacteriol. 134 338–339Google Scholar
  90. Imhoff, J. F. 1988a Anoxygenic phototrophic bacteria In: B. Austin (Ed.) Methods in Aquatic Bacteriology John Wiley Chichester UK 207–240Google Scholar
  91. Imhoff, J. F. 1988b Halophilic phototrophic bacteria In: F. Rodriguez-Valera (Ed.) Halophilic Bacteria CRC Press Boca Raton FL 85–108Google Scholar
  92. Imhoff, J. F. 1992 Taxonomy, phylogeny and general ecology of anoxygenic phototrophic bacteria In: N. G. Carr and N. H. Mann (Eds.) Biotechnology Handbook Photosynthetic Prokaryotes Plenum Press London UK 53–92Google Scholar
  93. Imhoff, J. F., and U. Bias-Imhoff. 1995 Lipids, quinones and fatty acids of anoxygenic phototrophic bacteria In: R. E. Blankenship, M. T. Madigan, and C. E. Bauer (Eds.) Anoxygenic Photosynthetic Bacteria Kluwer Academic Publishers Dordrecht The Netherlands 179–205Google Scholar
  94. Imhoff, J. F., and J. Süling. 1996 The phylogenetic relationship among Ectothiorhodospiraceae: A reevaluation of their taxonomy on the basis of rDNA analyses Arch. Microbiol. 165 106–113PubMedCrossRefGoogle Scholar
  95. Imhoff, J. F., J. Süling, and R. Petri. 1998 Phylogenetic relationships among the Chromatiaceae, their taxonomic reclassification and description of the new genera Allochromatium, Halochromatium, Isochromatium, Marichromatium, Thiococcus, Thiohalocapsa, and Thermochromatium Int. J. Syst. Bacteriol. 48 1129–1143PubMedGoogle Scholar
  96. Imhoff, J. F. 2001a True marine and halophilic anoxygenic phototrophic bacteria Arch. Microbiol. 176 243–254PubMedCrossRefGoogle Scholar
  97. Imhoff, J. F., and N. Pfennig. 2001b Thioflavicoccus mobilis gen. nov., sp. nov., a novel purple sulfur bacterium with bacteriochlorophyll b Int. J. Syst. Evol. Microbiol. 51 105–110PubMedGoogle Scholar
  98. Irgens, R. L. 1983 Thioacetamide as a source of hydrogen sulfide for colony growth of purple sulfur baceria Curr. Microbiol. 8 183–186CrossRefGoogle Scholar
  99. Jannasch, H. W. 1957 Die bakterielle Rotfärbung der Salzseen des Wadi Natrun Arch. Hydrobiol. 53 425–433Google Scholar
  100. Jørgensen, B. B., H. Fossing, C. O. Wirsen, and H. W. Jannasch. 1991 Sulfide oxidation in the anoxic Black Sea chemocline Deep-Sea Res. 38 (Suppl. 2) 1083–1103Google Scholar
  101. Kämpf, C., and N. Pfennig. 1980 Capacity of Chromatiaceae for chemotrophic growth. Specific respiration rates of Thiocystis violacea and Chromatium vinosum Arch. Microbiol. 127 125–135CrossRefGoogle Scholar
  102. Kämpf, C., and N. Pfennig. 1986 Isolation and characterization of some chemoautotrophic Chromatiaceae J. Basic Microbiol. 9 507–515Google Scholar
  103. Kobayashi, M., M. Kobayashi, and H. Nakanishi. 1971 Construction of a purification plant for polluted water using photosynthetic bacteria J. Ferment. Technol. 49 817–825Google Scholar
  104. Kobayashi, M., and Y. T. Tchan. 1973 Treatment of industrial waste solutions and production of useful byproducts using photosynthetic bacterial method Water Res. 7 1219–1224CrossRefGoogle Scholar
  105. Kobayashi, M. 1977 Utilization and disposal of wastes by photosynthetic bacteria In: H. G. Schlegel and J. Barnea (Eds.) Microbial Energy Conversion Pergamon Press Oxford UK 443–453Google Scholar
  106. Kobayashi, M., and Y. T. Tchan. 1978 Formation of dimethylnitrosamine in polluted environment and the role of photosynthetic bacteria Water Res. 12 199–201CrossRefGoogle Scholar
  107. Kobayashi, M., and M. Kobayashi. 1995 Waste remediation and treatment using anoxygenic phototrophic bacteria In: Anoxygenic Photosynthetic Bacteria R. E. Blankenship, M. T. Madigan, and C. E. Bauer (Eds.) Kluwer Academic Publishers Dordrecht The Netherlands 1269–1282Google Scholar
  108. Kondratieva, E. N. 1965 Photosynthetic Bacteria Program for Scientific Translations Jerusalem IsraelGoogle Scholar
  109. Kondratieva, E. N., Y. P. Petushkova, and V. G. Zhukov. 1975 Growth and oxidation of sulphur compounds by Thiocapsa roseopersicina in the darkness [in Russian, with English summary] Mikrobiologiya 44 389–394Google Scholar
  110. Kondratieva, E. N., V. G. Zhukov, R. N. Ivanowsky, Y. P. Petruskova, and E. Z. Monosov. 1976 The capacity of the phototrophic sulfur bacterium Thiocapsa roseopersicina for chemosynthesis Arch. Microbiol. 108 287–292PubMedCrossRefGoogle Scholar
  111. Kondratieva, E. N. 1979 Interrelation between modes of carbon assimilation and energy production in phototrophic purple and green bacteria In: J. R. Quale (Ed.) Microbial Biochemistry: International Review of Biochemistry University Park Press Baltimore MD 21 117–175Google Scholar
  112. Kondratieva, E. N., and I. N. Gogotov. 1983 Production of molecular hydrogen in microorganism Adv. Biochem. Eng. Biotechnol. 28 139–191Google Scholar
  113. Koppenhagen, V. 1981a Metal-free corrinoids and metal-insertion In: D. Dolphin (Ed.) Vitamin B12 John Wiley New York NY 2 105–149Google Scholar
  114. Koppenhagen, V., G. Schlingmann, W. Scher, and B. Dresow. 1981b Extracellular metabolites from phototrophic bacteria as possible intermediates in the biosynthesis of vitamin B12 In: M. Moo-Young (Ed.) Advances in Biotechnology Pergamon Press New York NY 247–252Google Scholar
  115. Krasilnikova, E. N., Y. P. Petushkova, and E. N. Kondratieva. 1975 Growth of purple sulfur bacterium Thiocapsa roseopersicina under anaerobic conditions in the darkness [in Russian, with English summary] Mikrobiologiya 44 700–703Google Scholar
  116. Krasilnikova, E. N. 1976 Anaerobic metabolism of Thiocapsa roseopersicina [in Russian, with English summary] Mikrobiologiya 45 372–376Google Scholar
  117. Krasilnikova, E. N., R. N. Ivanovskii, and E. N. Kondratieva. 1983 Growth of purple bacteria utilizing acetate under anaerobic conditions in darkness [English trans.] Mikrobiologiya 52 189–194Google Scholar
  118. Kriss, A. E., and E. A. Rukina. 1953 Purple sulphur bacteria in deep sulfurous water of the Black Sea [in Russian] Doklady Akademii Nauk SSSR 93 1107–1110PubMedGoogle Scholar
  119. Kumazawa, S., and A. Mitsui. 1982 Hydrogen metabolism of photosynthetic bacteria and algae In: Handbook of Biosolar Resources A. Mitsui and C. C. Black (Eds.) CRC Press Boca Raton FL 299–316Google Scholar
  120. Kusnetzov, S. I. 1970 The Microflora of Lakes and its Geochemical Activity University of Texas Press Austin TXGoogle Scholar
  121. Kützing, F. T. 1883 Beiträge zur Kenntnis über die Entstehung und Metamorphose der niederen vegetabilischen Organismen, nebst einer systematische Zusammenstellung der hierher gehörigen niederen Algenformen Linnaea 8 335–384Google Scholar
  122. Lankester, R. 1873 On a peach-colored bacterium: Bacterium rubescens n.s Quart. J. Microscop. Sci. 13 408–425Google Scholar
  123. Larsen, H. 1952 On the culture and general physiology of the green sulphur bacteria J. Bacteriol. 64 187–196PubMedCrossRefGoogle Scholar
  124. Liebergesell, M., E. Hustede, A. Timm, A. Steinbüchel, R. C. Fuller, R. W. Lenz, and H. G. Schlegel. 1991 Formation of poly(3-hydroxyalkanoates) by phototrophic and chemolithotrophic bacteria Arch. Microbiol. 155 415–421CrossRefGoogle Scholar
  125. Liebergesell, M., B. Schmidt, and A. Steinbüchel. 1992 Isolation and identification of granule-associated proteins relevant for poly(3-hydroxyalkanoic acid) biosynthesis in Chromatium vinosum D FEMS Microbiol. Lett. 99 227–232CrossRefGoogle Scholar
  126. Lindholm, T. 1987 Ecology of photosynthetic prokaryotes with special reference to meromictic lakes and coastal lagoons ABO Academy Press Abo FinlandGoogle Scholar
  127. Ludden, P. W., and G. P. Roberts. 1995 The biochemistry and genetics of nitrogen fixation by photosynthetic bacteria In: R. E. Blankenship, M. T. Madigan, and C. E. Bauer (Eds.) Anoxygenic Photosynthetic Bacteria Kluwer Academic Publishers Dordrecht The Netherlands 929–947Google Scholar
  128. Madigan, M. T. 1986 Chromatium tepidum sp. nov., a thermophilic photosynthetic bacterium of the family Chromatiaceae Int. J. Syst. Bacteriol. 36 222–227Google Scholar
  129. Madigan, M. T. 1988 Microbiology, physiology, and ecology of phototrophic bacteria In: A. J. B. Zehnder (Ed.) Biology of Anaerobic Microorganisms John Wiley Chichester UK 39–111Google Scholar
  130. Madigan, M. T. 1995 Microbiology of nitrogen fixation by anoxygenic photosynthetic bacteria In: Anoxygenic Photosynthetic Bacteria R. E. Blankenship, M. T. Madigan, and C. E. Bauer (Eds.) Kluwer Academic Publishers Dordrecht The Netherlands 915–928Google Scholar
  131. May, D. S., and J. B. Stahl. 1967 The Ecology of Chromatium in Sewage Ponds: Sanitary Engineering Sec. Rep. No. 36 Bulletin No. 303 College of Engineering Research Division, Washington State University Pullman WAGoogle Scholar
  132. Mitsui, A. 1975 The utilization of solar energy for hydrogen production by cell free system of photosynthetic organisms In: T. N. Veziroglu (Ed.) Hydrogen Energy Plenum Press New York NY 309–316Google Scholar
  133. Mitsui, A. 1979 Biosaline research In: A. Hollaender, J. C. Aller, E. Epstein, A. San Pietro, and O. Zaborsky (Eds.) The Use of Photosynthetic Marine Organisms in Food and Feed Production Plenum Press New York NY 177–215Google Scholar
  134. Miyoshi, M. 1897 Studien über die Schwefelrasenbildung und die Schwefelbakterien der Thermen von Yumoto bei Nikko Zentralbl. Bakteriol. Parasitenkd. Infektionskrankh., Abt. 2 3 526–527Google Scholar
  135. Molisch, H. 1907 Die Purpurbakterien nach neueren Untersuchungen G. Fischer Jena Germany 1–95Google Scholar
  136. Nicholson, J. A. M., J. F. Stolz, and B. K. Pierson. 1987 Structure of a microbial mat at Great Sippewissett Marsh, Cape Cod, Massachusetts FEMS Microbiol. Ecol. 45 343–364CrossRefGoogle Scholar
  137. Overmann, J., H. Cypionka, and N. Pfennig. 1992a An extremely low-light-adapted phototrophic sulfur bacterium from the Black Sea Limnol. Oceanogr. 37 150–155CrossRefGoogle Scholar
  138. Overmann, J., U. Fischer, and N. Pfennig. 1992b A new purple sulfur bacterium from saline littoral sediments, Thiorhodovibrio winogradskyi gen. nov. and sp. nov Arch. Microbiol. 157 329–335CrossRefGoogle Scholar
  139. Pattaragulwanit, K., D. C. Brune, H. G. Trüper, and C. Dahl. 1998 Molecular evidence for extracytoplasmic localization of sulfur globules in Chromatium vinosum Arch. Microbiol. 169 434–444PubMedCrossRefGoogle Scholar
  140. Pedros-Alio, C., and R. Guerrero. 1993 Microbial ecology in Lake Ciso Adv. Microb. Ecol. 13 155–209Google Scholar
  141. Petri, R., and J. F. Imhoff. 2001 Genetic analysis of sea-ice bacterial communities of the Western Baltic Sea using an improved double gradient method Polar. Biol. 24 252–257CrossRefGoogle Scholar
  142. Pfennig, N. 1962 Beobachtungen über das Schwärmen von Chromatium okenii Arch. Microbiol. 42 90–95Google Scholar
  143. Pfennig, N. 1965 Anreicherungskulturen für rote und grüne Schwefelbakterien Zentralbl. Bakteriol. Parasitenkd. Infektionskrankh. Hyg. Abt. 1, Orig. Suppl. 1 179–189 and 503–505Google Scholar
  144. Pfennig, N., and K. D. Lippert. 1966 über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien Arch. Mikrobiol. 55 245–256CrossRefGoogle Scholar
  145. Pfennig, N. 1967 Photosynthetic bacteria Ann. Rev. Microbiol. 21 285–324CrossRefGoogle Scholar
  146. Pfennig, N., and H. G. Trüper. 1971 Higher taxa of the phototrophic bacteria Int. J. Syst. Bacteriol. 21 17–18Google Scholar
  147. Pfennig, N., and H. G. Trüper. 1974 The phototrophic bacteria In: R. E. Buchanan and N. E. Gibbons (Eds.) Bergey’s Manual of Determinative Bacteriology, 8th ed Williams and Wilkins Baltimore MD 24–75Google Scholar
  148. Pfennig, N., and H. G. Trüper. 1981 Isolation of members of the families Chromatiaceae and Chlorobiaceae In: M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel (Eds.) The Prokaryotes Springer-Verlag Berlin Germany 279–289Google Scholar
  149. Pfennig, N. 1989a Ecology of phototrophic purple and green sulfur bacteria In: H. G. Schlegel and B. Bowien (Eds.) Autotrophic Bacteria Springer-Verlag New York NY 97–116Google Scholar
  150. Pfennig, N. 1989b Genus Chromatium In: J. T. Staley, M. P. Bryant, N. Pfennig, and J. C. Holt (Eds.) Bergey’s Manual of Systematic Bacteriology, 1st ed Williams and Wilkins Baltimore MD 3 1639–1643Google Scholar
  151. Pfennig, N., and H. G. Trüper. 1992 The family Chromatiaceae In: The Prokaryotes, 2nd ed. A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer (Eds.) Springer-Verlag New York NY 3200–3221Google Scholar
  152. Pfennig, N., H. Lünsdorf, J. Süling, and J. F. Imhoff. 1997 Rhodospira trueperi, gen. nov. and spec. nov., a new phototrophic Proteobacterium of the alpha-group Arch. Microbiol. 168 39–45PubMedCrossRefGoogle Scholar
  153. Podgorsek, L., and J. F. Imhoff. 1999 Tetrathionate production by sulfur-oxidizing bacteria and the role of tetrathionate in the sulfur cycle in sediments of the Baltic Sea Aquat. Microb. Ecol. 17 255–265Google Scholar
  154. Proctor, L. M. 1997 Nitrogen-fixing, photosynthetic, anaerobic bacteria associated with pelagic copepods Aquat. Microb. Ecol. 12 105–113Google Scholar
  155. Puchkova, N. N., J. F. Imhoff, and V. M. Gorlenko. 2000 Thiocapsa litoralis sp. nov, a new purple sulfur bacterium from microbial mats from the White Sea Int. J. Syst. Evol. Microbiol. 50 1441–1447PubMedGoogle Scholar
  156. Rees, G. N., C. G. Harfoot, P. H. Janssen, L. Schoenborn, J. Kuever, and H. Lünsdorf. 2002 Thiobaca trueperi gen. nov., sp. nov., a phototrophic bacterium isolated from freshwater lake sediment Int. J. Syst. Evol. Microbiol. 52 671–678PubMedGoogle Scholar
  157. Repeta, D. J., D. J. Simpson, B. B. Jørgensen, and H. W. Jannasch. 1989 Evidence for anoxygenic photosynthesis from the distribution of bacteriochlorophylls in the Black Sea Nature 342 69–72PubMedCrossRefGoogle Scholar
  158. Roelofsen, P. A. 1935 On the metabolism of the purple sulfur bacteria Proceedings of the Royal Dutch Academy of Sciences Amsterdam The Netherlands 37 660–669Google Scholar
  159. Ruttner, F. 1962 In: Grundriss der Limnologie, 3rd ed De Gruyter Berlin Germany 171–172Google Scholar
  160. Sahl, H. G., and H. G. Trüper. 1977 Enzymes of CO2 fixation in Chromatiaceae FEMS Microbiol. Lett. 2 129–132CrossRefGoogle Scholar
  161. Sasikala, K., C. V. Ramana, P. R. Rao, and K. L. Kovacs. 1993 Anoxygenic phototrophic bacteria: physiology and advances in hydrogen production technology Adv. Appl. Microbiol. 38 211–295Google Scholar
  162. Schaub, B. E. M., and H. Van Gemerden. 1994 Simultaneous phototrophic and chemotrophic growth in the purple sulfur bacterium Thiocapsa roseopersicina M1 FEMS Microb. Ecol. 13 185–196CrossRefGoogle Scholar
  163. Schedel, M., M. Vanselow, and H. G. Trüper. 1979 Siroheme sulfite reductase isolated from Chromatiuni vinosum Arch. Microbiol. 121 29–36CrossRefGoogle Scholar
  164. Schegg, E. 1971 Produktion und Destruktion in der trophogenen Schicht Schweiz. Zeitschr. Hydrol. 33 427–532Google Scholar
  165. Schlegel, H. G., and N. Pfennig. 1961 Die Anreicherungskultur einiger Schwefelpurpurbakterien Arch. Mikrobiol. 38 1–39PubMedCrossRefGoogle Scholar
  166. Schrammeck, J. 1934 Untersuchungen über die Phototaxis der Purpurbacterien Beitr. Biol. Pflanz. 22 315–380Google Scholar
  167. Schulz, E. 1937 Das Farbstreifensandwatt und seine Fauna, eine ökologisch biozönotische Untersuchung an der Nordsee Kieler Meeresforsch. 1 359–378Google Scholar
  168. Schulz, E., and H. Meyer. 1939 Weitere Untersuchungen über das Farbstreifensandwatt Kieler Meeresforsch. 3 321–336Google Scholar
  169. Siefert, E., R. L. Irgens, and N. Pfennig. 1978 Phototrophic purple and green bacteria in a sewage treatment plant Appl. Environ. Microbiol. 35 38–44PubMedGoogle Scholar
  170. Siefert, E., and N. Pfennig. 1984 Convenient method to prepare neutral sulfide solution for cultivation of phototrophic sulfur bacteria Arch. Microbiol. 139 100–101CrossRefGoogle Scholar
  171. Sletten, O., and R. H. Singer. 1971 Sulfur baceria in red lagoons J. Water Poll. Control Fed. 43 2118–2122Google Scholar
  172. Smith, A. J. 1965 The discriminative oxidation of the sulphur atoms of thiosulphate by a photosynthetic sulphur bacterium: Chromatium strain D Biochem. J. 94 27Google Scholar
  173. Smith, A. J. 1966 The role of tetrathionate in the oxidation of thiosulfate by Chromatium sp. strain D J. Gen. Microbiol. 42 371–380PubMedGoogle Scholar
  174. Sorokin, Y. I. 1970 Interrelations between sulfur and carbon turnover in a meromictic lake Arch. Hydrobiol. 66 391–446Google Scholar
  175. Steenbergen, C. L. M., and H. J. Korthals. 1982 Distribution of phototrophic microorganisms in the anaerobic and microaerophilic strata of Lake Vechten (The Netherlands): Pigment analysis and role in primary production Limnol. Oceanogr. 27 883–895Google Scholar
  176. Steudel, R. 1989 On the nature of the “elemental sulfur” (S°) produced by sulfur-oxidizing bacteria: A model for S° globules In: H. G. Schlegel and B. Bowien (Eds.) Autotrophic Bacteria Springer-Verlag New York NY 289–304Google Scholar
  177. Steudel, R., G. Holdt, P. T. Visscher, and H. van Gemerden. 1990 Search for polythionates in cultures of Chromatium vinosum after sulfide incubation Arch. Microbiol. 153 432–437CrossRefGoogle Scholar
  178. Stirn, J. 1971 Ecological consequences of marine pollution Rev. Int. Oceanogr. Med. 24 13–46Google Scholar
  179. Strzeszewski, B. 1913 Beiträge zur Kenntnis der Schwefelflora in der Umgebung von Krakau Bull. Int. Acad. Sci. Cracovie, Ser. B. Sci. Nat. I 309–334Google Scholar
  180. Suckow, R. 1966 Schwefelmikrobengesellschaften der See-und Boddengewässer von Hiddensee Zeitschr. Allgem. Mikrobiol. 6 309–315Google Scholar
  181. Szafer, W. 1910 Zur Kenntnis der Schwefelflora in der Umgebung von Lemberg Bull. Int. Acad. Sci. Cracovie, Ser. B. 160–167Google Scholar
  182. Tabita, F. R. 1995 The biochemistry and metabolic regulation of carbon metabolism and CO2 fixation in purple bacteria In: Anoxygenic Photosynthetic Bacteria R. E. Blankenship, M. T. Madigan, and C. E. Bauer (Eds.) Kluwer Academic Publishers Dordrecht The Netherlands 885–914Google Scholar
  183. Taga, N. 1967 Microbial coloring of sea water in tidal pool, with special reference of massive development of phototrophic bacteria Information Bulletin on Planetology in Japan: Commemoration Number of Dr. Y. Matsue’s Sixtieth Birthday 219–229Google Scholar
  184. Takahashi, M., and S. Ichimura. 1968 Vertical distribution and organic matter production of photosynthetic sulphur bacteria in Japanese lakes Limnol. Oceanogr. 13 644–655Google Scholar
  185. Taylor, W. R. 1964 Light and photosynthesis in intertidal benthic diatoms Helgol. Wiss. Meeresunters 10 29–37CrossRefGoogle Scholar
  186. Toohey, J. I. 1971 Purification of descobalt corrins from photosynthetic bacteria In: D. B. McCormick and L. D. Wright (Eds.) Meth. Enzymol Academic Press New York NY 18 71–75Google Scholar
  187. Trüper, H. G. 1964 CO2-Fixierung und Intermediärstoffwechsel bei Chromatium okenii Perty Arch. Mikrobiol. 49 23–50CrossRefGoogle Scholar
  188. Trüper, H. G., and N. Pfennig. 1966 Sulphur metabolism in Thiorhodaceae. III: Storage and turnover of thiosulphate sulphur in Thiocapsa floridana and Chromatium species Ant. v. Leeuwenhoek 32 261–276CrossRefGoogle Scholar
  189. Trüper, H. G., and S. Genovese. 1968 Characterization of photosynthetic sulfur bacteria causing red water in Lake Faro (Messina, Sicily) Limnol. Oceanogr. 13 225–232Google Scholar
  190. Trüper, H. G. 1970 Culture and isolation of phototrophic sulfur bacteria from the marine environment Helgol. Wiss. Meeresunters 20 6–16CrossRefGoogle Scholar
  191. Trüper, H. G. 1980 Distribution and activity of phiototrophic bacteria at the marine water-sediment interface: Coloques Internationeaux du C.N.R.S Biogéochemie de la matière organique à l’interface eau-sédiment marin 293 275–285Google Scholar
  192. Trüper, H. G. 1981a Photolithotrophic sulphur oxidation In: H. Bothe and A. Trebst (Eds.) Biology of Inorganic Nitrogen and Sulfur Springer-Verlag Berlin Germany 199–211Google Scholar
  193. Trüper, H. G. 1981b Versatility of carbon metabolism in the phototrophic bacteria In: H. Dalton (Ed.) Microbial Growth on C1 Compounds Heyden London UK 116–121Google Scholar
  194. Trüper, H. G., and U. Fischer. 1982 Anaerobic oxidation of sulphur compounds as electron donors for bacterial photosynthesis Phil. Trans. R. Soc. London B 298 529–542Google Scholar
  195. Trüper, H. G. 1984 Phototrophic bacteria and their sulfur metabolism In: A. Müller and B. Krebs (Eds.) Sulfur, its Significance for Chemistry, for the Geo-, Bio-and Cosmophere and Technology Elsevier Amsterdam The Netherlands 367–382Google Scholar
  196. Trüper, H. G. 1989 Physiology and biochemistry of phototrophic bacteria In: H. G. Schlegel and B. Bowien (Eds.) Autotrophic Bacteria Springer-Verlag New York NY 267–282Google Scholar
  197. Utermöhl, H. 1925 Limnologische Phytoplanktonstudien Arch. Hydrobiol. 5(Supp.) 251–277Google Scholar
  198. Van Gemerden, H. 1968a On the ATP generation by Chromatium in darkness Arch. Mikrobiol. 64 118–124PubMedCrossRefGoogle Scholar
  199. Van Gemerden, H. 1968b Utilization of reducing power in growing cultures of Chromatium Arch. Microbiol. 65 111–117Google Scholar
  200. Van Gemerden, H. 1974 Coexistence of organisms competing for the same substrate: An example among the purple sulfur bacteria Microb. Ecol. 1 19–23Google Scholar
  201. Van Gemerden, H., and H. H. Beeftink. 1983 Ecology of phototrophic bacteria In: J. G. Ormerod (Ed) The Phototrophic Bacteria: Anaerobic Life in the Light Blackwell Science Publishing Oxford UK 146–185Google Scholar
  202. Van Gemerden, H., E. Montesinos, J. Mas, and R. Guerrero. 1985 Diel cycle of metabolism of phototrophic purple sulphur bacteria in Lake Cisó (Spain) Limnol. Oceanogr. 30 932–943CrossRefGoogle Scholar
  203. Van Gemerden, H., and J. Mas. 1995 Ecology of phototrophic sulfur bacteria In: Anoxygenic Photosynthetic Bacteria R. E. Blankenship, M. T. Madigan, and C. E. Bauer (Eds.) Kluwer Academic Publishers Dordrecht The Netherlands 49–85Google Scholar
  204. Van Niel., C. B. 1931 On the morphology and physiology of the purple and green sulfur bacteria Arch. Microbiol. 3 1–112Google Scholar
  205. Van Niel, C. B. 1971 Techniques for the enrichment, isolation, and maintenance of photosynthetic bacteria In: S. P. Collowick and N. V. Kaplan (Eds.) Methods in Enzymology Academic Press New York NY 23, part A 3–28Google Scholar
  206. Vignais, P. M., A. Colbeau, J. C. Willison, and Y. Jouanneau. 1985 Hydrogenase, nitrogenase, and hydrogen metabolism in photosynthetic bacteria Adv. Microb. Physiol. 26 155–234PubMedCrossRefGoogle Scholar
  207. Vignais, P. M., B. Toussaint, and A. Colbeau. 1995 Regulation of hydrogenase gene expression In: R. E. Blankenship, M. T. Madigan, and C. E. Bauer (Eds.) Anoxygenic Photosynthetic Bacteria Kluwer Academic Publishers Dordrecht The Netherlands 1175–1190Google Scholar
  208. Vrati, S. 1984 Single cell protein production by photosynthetic bacteria grown on the clarified effluents of a biogas plant Appl. Microbiol. Biotechnol. 19 199–202CrossRefGoogle Scholar
  209. Warming, E. 1875 Om nogle ved Danmarks Kyster levende Bakterier Videnskabelige Meddelelser Dansk Naturhistorisk Foreninge 20 307–420Google Scholar
  210. Weckesser, J., G. Drews, and H. Mayer. 1979 Lipopolysaccharides of photosynthetic prokaryotes Ann. Rev. Microbiol. 33 215–239CrossRefGoogle Scholar
  211. Weckesser, J., H. Mayer, and G. Schulz. 1995 Anoxygenic phototrophic bacteria: Model organisms for studies on cell wall macromolecules In: Anoxygenic Photosynthetic Bacteria R. E. Blankenship, M. T. Madigan, and C. E. Bauer (Eds.) Kluwer Academic Publishers Dordrecht The Netherlands 207–230Google Scholar
  212. Wenke, T. L., and J. C. Vogt. 1981 Temporal changes in a pink feedlot lagoon Appl. Environ. Microbiol. 41 381–385PubMedGoogle Scholar
  213. Widdel, F., S. Schnell, S. Heising, A. Ehrenreich, B. Assmus, and B. Schink. 1993 Ferrous iron oxidation by anoxygenic phototrophic bacteria Nature 362 834–836CrossRefGoogle Scholar
  214. Winogradsky, S. 1888 Beiträge zur Morphologie und Physiologie der Bakterien Zur Morphologie und Physiologie der Schwefelbakterien Arthur Felix Leipzig Germany 1 1–120Google Scholar
  215. Woese, C. R., W. G. Weisburg, C. M. Hahn, B. J. Paster, L. B. Zablen, B. J. Lewis, T. J. Macke, W. Ludwig, and E. Stackebrandt. 1985 The phylogeny of purple bacteria: The gamma subdivision Syst. Appl. Microbiol. 6 25–33Google Scholar
  216. Yarapolov, A. I., V. Malovik, V. A. Isumrudov, N. A. Zorin, S. O. Bachurin, I. N. Gogotov, and S. D. Varfolomeev. 1982 Immobilization of hydrogenase in semiconductor gels and its use in the electrooxidation of hydrogen at the anode of a biofuel cell [English trans. from Russian] Appl. Biochem. Microbiol. 18 401–406Google Scholar
  217. Zahr, M., B. Fobel, H. Mayer, J. F. Imhoff, V. Campos, and J. Weckesser. 1992 Chemical composition of the lipopolysaccharides of Ectothiorhodospira shaposhnikovii, Ectothiorhodospira mobilis, and Ectothiorhodospira halophila Arch. Microbiol. 157 499–504Google Scholar
  218. Zhukov, V. G. 1976 Formation of ribulose-1,5-diphosphate carboxylase by Thiocapsa roseopersicina in different growth conditions Mikrobiologiya 45 915–917Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Johannes F. Imhoff

There are no affiliations available

Personalised recommendations