The Genera Beggiatoa and Thioploca

  • Andreas Teske
  • Douglas C. Nelson
SECTION 3.3 Gamma Subclass


Filamentous sulfur-oxidizing bacteria of the genera Beggiatoa and Thioploca are some of the largest and most conspicuous bacteria in nature (Schulz and Jørgensen, 2001). Their white or yellow color, their filamentous morphology, the large width and length of their filaments, and their growth pattern in flocs and mats on sediment surfaces makes them highly conspicuous even to the unaided eye. The two genera are distinguished by a single morphological character: Thioploca filaments occur in bundles surrounded by a common sheath, whereas Beggiatoa filaments do not form this structure and occur as individual filaments. All Beggiatoa and Thioploca strains have the ability to oxidize sulfide to elemental sulfur that is stored as intracellular sulfur globules, which make the cells highly refractory and conspicuous under the microscope. This characteristic, together with the absence of photosynthetic pigments, has distinguished the genera Beggiatoa and Thioplocaas filamentous...


Sulfide Oxidation Reduce Sulfur Compound Filament Diameter Ammonia Flux Guaymas Basin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Ahmad, A. 1999a Phylogenetic and Physiological Studies of Filamentous Sulfur-oxidizing Bacteria Belonging to the Genus Beggiaota [Ph.D. dissertation] University of California, Davis Davis CAGoogle Scholar
  2. Ahmad, A., J. P. Barry, and D. C. Nelson. 1999b Phylogenetic affinity of a wide, vacuolate, nitrate-accumulating Beggiatoa sp. from Monterey Canyon, California, with Thioploca spp Appl. Environ. Microbiol. 65 270–277PubMedGoogle Scholar
  3. Bernard, C., and T. Fenchel. 1995 Mats of colourless sulphur bacteria. II: Structure, composition of biota, and successional patterns Mar. Ecol. Prog. Ser. 128 171–179Google Scholar
  4. Brock, T. D., and H. G. Schlegel. 1989 Introduction In: H. G. Schlegel and B. Bowien (Eds.) Autotrophic Bacteria Science Tech Publishers Madison WI 1–16Google Scholar
  5. Burton, S. D., R. Y. Morita, and W. Miller. 1966 Utilization of acetate by Beggiatoa J. Bacteriol. 91 1192–1200PubMedGoogle Scholar
  6. Burton, S. D., and J. D. Lee. 1978 Improved enrichment and isolation procedures for obtaining pure cultures of Beggiatoa Appl. Environ. Microbiol. 45 614–617Google Scholar
  7. Caldwell, D. E., S. J. Caldwell, and J. M. Tiedje. 1975 An ecological study on the sulfur bacteria from the littoral zone of a Michigan Lake and a sulfur spring in Florida Plant Soil 43 101–114CrossRefGoogle Scholar
  8. Cannon, G. C., W. R. Strohl, J. M. Larkin, and J. M. Shively. 1979 Cytochromes in Beggiatoa alba Curr. Microbiol. 2 263–266Google Scholar
  9. Carlton, R. G., and L. L. Richardson. 1995 Oxygen and sulfide dynamics in a horizontally migrating cyanobacterial mat: Black band disease of corals FEMS Microbiol. Ecol. 18 155–162CrossRefGoogle Scholar
  10. Carrasco, F. D., V. A. Gallardo, and M. Baltazar. 1999 The structure of the benthic macrofauna collected across a transect at the central Chile shelf and relationships with giant sulfur bacteria Thioploca spp. mats Cahiers Biol. Mar. 40 195–202Google Scholar
  11. Cataldi, M. S. 1940 Aislamiento de Beggiatoa alba en cultivo puro Rev. Inst. Bacteriol. Dept. Nac. Hig. (Buenos Aires) 9 393–423Google Scholar
  12. Chekanova, Y. A., and G. A. Dubinina. 1990 Cytochemical localization of hydrogen peroxide and superoxide radicals in colorless sulfur bacteria Microbiology 59 585–591Google Scholar
  13. Cypionka, H. 2000 Oxygen respiration by Desulfovibrio Ann. Rev. Microbiol. 54 827–848CrossRefGoogle Scholar
  14. Dermott, R., and M. Legner. 2002 Dense mat-forming bacterium Thioploca ingrica (Beggiatoaceae) in eastern Lake Ontario: Implications to the benthic food web J. Great Lakes Res. 28 688–697Google Scholar
  15. Dubinina, G. A., M. Y. Grabovich, V. V. Churikova, A. N. Pashkov, Y. A. Chekanova, and N. V. Leshcheva. 1990 Production of hydrogen-peroxide by Beggiatoa leptomitiformis Microbiology 59 283–288Google Scholar
  16. Farias, L., L. A. Chuecas, and M. A. Salamanca. 1996 Effect of coastal upwelling on nitrogen regeneration from sediments and ammonium supply to the water column in Concepcion Bay, Chile Estuar. Coast. Shelf Sci. 43 137–155CrossRefGoogle Scholar
  17. Farias, L. 1998 Potential role of bacterial mats in the nitrogen budget of marine sediments: The case of Thioploca spp Mar. Ecol. Prog. Ser. 170 291–292Google Scholar
  18. Faust, L., and R. S. Wolfe. 1961 Enrichment and cultivation of Beggiatoa alba J. Bacteriol. 81 99–106PubMedGoogle Scholar
  19. Fenchel, T., and C. Bernard. 1995 Mats of colourless sulphur bacteria. I: Major microbial processes Mar. Ecol. Prog. Ser. 128 161–170Google Scholar
  20. Ferdelman, T. G., C. Lee, S. Pantoja, J. Harder, B. M. Bebout, and H. Fossing. 1997 Sulfate reduction and methanogenesis in a Thioploca-dominated sediment off the coast of Chile Geochim. Cosmochim. Acta 61 3065–3079CrossRefGoogle Scholar
  21. Fossing, H., V. A. Gallardo, B. B. Jørgensen, M. Hüttel, L. P. Nielsen, H. Schulz, D. E. Canfield, S. Forster, R. N. Glud, J. K. Gundersen, J. Küver, N. B. Ramsing, A. Teske, B. Thamdrup, O. Ulloa. 1995 Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca Nature 374 713–715CrossRefGoogle Scholar
  22. Fukui, M., A. Teske, B. Assmus, G. Muyzer, and F. Widdel. 1999 Physiology, phylogenetic relationships, and ecology of filamentous sulfate-reducing bacteria (genus Desulfonema) Arch. Microbiol. 172 193–203PubMedCrossRefGoogle Scholar
  23. Gallardo, V. A. 1963 Notas sobre la densidad de la fauna bentonica en el sublitoral del norte de Chile Guyana 10 3–15Google Scholar
  24. Gallardo, V. A. 1975 On a benthic sulfide system on the continental shelf of north and central Chile In: International Symposium Coastal Upwelling, Proceedings, Coquimbo, Chile, November 18–19 1975 113–118Google Scholar
  25. Gallardo, V. A. 1977 Large benthic microbial communities in sulphide biota under Peru-Chile subsurface countercurrent Nature 268 331–332CrossRefGoogle Scholar
  26. Gallardo, V. A., F. D. Carrasco, R. Roa, and J. I. Canete. 1995 Ecological patterns in the benthic macrobiota across the continental shelf off central Chile Ophelia 40 167–188Google Scholar
  27. Gallardo, V. A., E. Klingelhoeffer, W. Arntz, and M. Graco. 1998 First report of the bacterium Thioploca in the Benguela ecosystem off Namibia J. Mar. Biol. Assoc. UK 78 1007–1010Google Scholar
  28. Garcia-Pichel, F., M. Mechling, and R. W. Castenholz. 1994 Diel migrations of microorganisms within a benthic, hypersaline mat community Appl. Environ. Microbiol. 60 1500–1511PubMedGoogle Scholar
  29. Genthner, F. J., L. A. Hook, and W. R. Strohl. 1985 Determination of the molecular mass of bacterial genomic DNA and plasmid copy number by high-pressure liquid chromatography Appl. Environ. Microbiol. 50 1007–1013PubMedGoogle Scholar
  30. Grabovich, M. Yu., G. A. Dubinina, V. V. Churikova, T. I. Korovina, A. F. Glushkov, and S. N. Churikov. 1993 Carbon metabolism of Beggiatoa leptomitiformis under conditions of chemoorganoheterotrophic growth Microbiology 62 267–271Google Scholar
  31. Grabovich, M. Yu., G. A. Dubinina, V. Yu. Lebedeva, and V. V. Churikova. 1998 Mixotrophic and lithoheterotrophic growth of the freshwater filamentous bacterium Beggiatoa leptomitiformis D-402 Microbiology 67 383–388Google Scholar
  32. Grabovich, M. Yu., V. Yu. Patritskaya, M. S. Muntyan, and G. A. Dubinina. 2001 Lithoautotrophic growth of the freshwater strain Beggiatoa D-402 and energy conservation in a homogeneous culture under microoxic conditions FEMS Microbiol. Lett. 204 341–345PubMedCrossRefGoogle Scholar
  33. Graco, M., L. Farias, V. Molina, D. Gutierrez, and L. P. Nielsen. 2001 Massive developments of microbial mats following phytoplankton blooms in a naturally eutrophic bay: Implications for nitrogen cycling Limnol. Oceanogr. 46 821–832CrossRefGoogle Scholar
  34. Grant, J., and U. V. Bathmann. 1987 Swept away: Resuspension of bacterial mats regulates benthic-pelagic exchange of sulfur Science 236 1472–1474CrossRefPubMedGoogle Scholar
  35. Güde, H., W. R. Strohl, and J. M. Larkin. 1981 Mixotrophic and heterotrophic growth of Beggiatoa alba in continuous culture Arch. Microbiol. 129 357–360PubMedCrossRefGoogle Scholar
  36. Gundersen, J. K., B. B. Jørgensen, E. Larsen, and H. W. Jannasch. 1992 Mats of giant sulphur bacteria on deep-sea sediments due to fluctuating hydrothermal flow Nature 360 454–455CrossRefGoogle Scholar
  37. Hagen, K. D., and D. C. Nelson. 1996 Organic carbon utilization by obligately and facultatively autotrophic Beggiatoa strains in homogeneous and gradient cultures Appl. Environ. Microbiol. 62 947–953PubMedGoogle Scholar
  38. Hagen, K. D., and D. C. Nelson. 1997 Use of reduced sulfur compounds by Beggiatoa spp.: Enzymology and physiology of marine freshwater strains in homogeneous and gradient cultures Appl. Environ. Microbiol. 63 3957–3964PubMedGoogle Scholar
  39. Hinze, H. 1901 über den Bau der Zellen von Beggiatoa mirabilis Cohn Ber. Dtsch. Bot. Ges. 19 369–374Google Scholar
  40. Howarth, R., R. F. Unz, E. M. Seviour, R. J. Seviour, L. L. Blackall, R. W. Pickup, J. G. Jones, J. Yaguchi, and I. M. Head. 1999 Phylogenetic relationships of filamentous sulfur bacteria (Thiothrix spp. and Eikelboom type 021N bacteria) isolated from wastewater-treatment plants and description of Thiothrix eikelboomii sp. nov., Thiothrix unzii sp. nov., Thiothrix fructosivorans sp. nov. and Thiothrix defluvii sp. nov Int. J. Syst. Bacteriol. 49 1817–1827PubMedGoogle Scholar
  41. Hüttel, M., S. Forster, S. Klöser, and H. Fossing. 1996 Vertical migration in these sediment-dwelling sulfur bacteria Thioploca spp. in overcoming diffusion limitations Appl. Environ. Microbiol. 62 1863–1872Google Scholar
  42. Jannasch, H. W. 1989a Chemosynthetically sustained ecosystems in the deep sea In: H. G. Schlegel and B. Bowien (Eds.) Autotrophic Bacteria Science Tech Publishers Madison WI 147–166Google Scholar
  43. Jannasch, H. W., D. C. Nelson, and C. O. Wirsen. 1989b Massive natural occurrence of unusually large bacteria (Beggiatoa spp.) at a hydrothermal deep-sea vent site Nature 342 834–836CrossRefGoogle Scholar
  44. Jørgensen, B. B. 1977 Distribution of colorless sulfur bacteria (Beggiatoa spp.) in a coastal marine sediment Mar. Biol. 41 19–28CrossRefGoogle Scholar
  45. Jørgensen, B. B., N. P. Revsbech, T. H. Blackburn, and Y. Cohen. 1979 Diurnal cycle of oxygen and sulfide microgradients and microbial photosynthesis in a cyanobacterial mat Appl. Environ. Microbiol. 38 46–58PubMedGoogle Scholar
  46. Jørgensen, B. B. 1982 Ecology of the bacteria of the sulphur cycle with special reference to anoxic-oxic interface environments Phil. Trans. R. Soc. Lond. B 298 543–561Google Scholar
  47. Jørgensen, B. B., and N. P. Revsbech. 1983a Colorless sulfur bacteria, Beggiatoa spp. and Thiovulum spp., in O2 and H2S microgradients Appl. Environ. Microbiol. 45 1261–1270PubMedGoogle Scholar
  48. Jørgensen, B. B., N. P. Revsbech, and Y. Cohen. 1983b Photosynthesis and structure of benthic microbial mats: Microelectrode and SEM studies of four cyanobacterial communities Limnol. Oceanogr. 28 1075–1093Google Scholar
  49. Jørgensen, B. B., and D. J. DesMarais. 1986 Competition for sulfide among colorless and purple sulfur bacteria in cyanobacterial mats FEMS Microbiol. Ecol. 38 179–186PubMedCrossRefGoogle Scholar
  50. Jørgensen, B. B., and V. A. Gallardo. 1999 Thioploca spp.: Filamentous sulfur bacteria with nitrate vacuoles FEMS Microbiol. Ecol. 28 301–313Google Scholar
  51. Joshi, M. M., and J. P. Hollis. 1976 Rapid enrichment of Beggiatoa from soils J. Appl. Bacteriol. 40 223–224PubMedGoogle Scholar
  52. Joshi, M. M., and J. P. Hollis. 1977 Interaction of Beggiatoa and rice plant: Detoxification of hydrogen sulfide in the rice rhizosphere Science 195 179–180PubMedGoogle Scholar
  53. Klas, Z. 1937 über den Formenkreis von Beggiatoa mirabilis Arch. Mikrobiol. 8 312–320CrossRefGoogle Scholar
  54. Kojima, H., A. Teske, and M. Fukui. 2003 Morphological and phylogenetic characterizations of freshwater Thioploca species from Lake Biwa, Japan, and Lake Constance, Germany Appl. Environ. Microbiol. 69 390–398PubMedCrossRefGoogle Scholar
  55. Kolkwitz. R. 1912 über die Schwefelbakterie Thioploca ingrica Wislouch Ber. Deutsch. Bot. Ges. 30 662–666Google Scholar
  56. Kolkwitz, R. 1918 über die Schwefelbakterien-Flora des Solgrabens von Artern Ber. Deutsch. Bot. Ges. 36 374–380Google Scholar
  57. Koppe, F. 1922 Die Schlammflora der ostholsteinischen Seen und des Bodensees Arch. Hydrobiol. 14 619–672Google Scholar
  58. Kowallik, U., and E. G. Pringsheim. 1966 The oxidation of hydrogen sulfide by Beggiatoa Am. J. Bot. 53 801–806CrossRefGoogle Scholar
  59. Krieg, N. R., and P. B. Hylemon. 1976 The taxonomy of the chemoheterotrophic spirilla Ann. Rev. Microbiol. 30 303–325CrossRefGoogle Scholar
  60. Kuever, J., C. Wawer, and R. Lillebaek. 1996 Microbiological observations in the anoxic basin Golfo Dulce, Costa Rica Revista de Biologia Tropical 44 49–57PubMedGoogle Scholar
  61. Larkin, J. M., and W. R. Strohl. 1983 Beggiatoa, Thiothrix, and Thioploca Ann. Rev. Microbiol. 37 341–367CrossRefGoogle Scholar
  62. Larkin, J. M., and M. C. Henk. 1989 Is “hollowness” an adaptation of large Prokaryotes to their largeness? Microbiol. Lett. 42 69–72Google Scholar
  63. Larkin, J., P. Aharon, and M. C. Henk. 1994 Beggiatoa in microbial mats at hydrocarbon vents in the Gulf of Mexico and Warm Mineral Springs, Florida Geo-Mar. Lett. 14 97–103CrossRefGoogle Scholar
  64. Larkin, J. M., and M. C. Henk. 1996 Filamentous sulfide-oxidizing bacteria at hydrocarbon seeps of the Gulf of Mexico Microsc. Res. Techn. 33 23–31CrossRefGoogle Scholar
  65. Laue, B. E., and D. C. Nelson. 1994 Characterization of the gene encoding the autotrophic ATP sulfurylase from the bacterial endosymbiont of the hydrothermal vent tube worm Riftia pachyptila J. Bacteriol. 176 3723–3729PubMedGoogle Scholar
  66. Lauterborn, R. 1907 Eine neue Gattung der Schwefelbakterien (Thioploca schmidlei nov. gen. nov. spec.) Ber. Deutsch. Bot. Ges. 25 238–242Google Scholar
  67. Lawry, N. H., V. Jani, and T. E. Jensen. 1981 Identification of the sulfur inclusion body in Beggiatoa alba B18LD by energy-dispersive X-ray microanalysis Curr. Microbiol. 6 71–74CrossRefGoogle Scholar
  68. Maier, S. H., and G. E. Murray. 1965 The fine structure of Thioploca ingrica and a comparison with Beggiatoa Can. J. Microbiol. 11 645–663PubMedGoogle Scholar
  69. Maier, S., and W. C. Preissner. 1979 Occurrence of Thioploca in Lake Constance and Lower Saxony, Germany Microb. Ecol. 5 117–119CrossRefGoogle Scholar
  70. Maier, S. 1980 Growth of Thioploca ingrica in a mixed culture system Ohio J. Sci. 80 30–32Google Scholar
  71. Maier, S., and V. A. Gallardo. 1984 Thioploca araucae sp. nov., and Thioploca chileae sp. nov Int. J. Syst. Bacteriol. 34 414–418Google Scholar
  72. Maier, S. 1989 Genus III: Thioploca Lauterborn 1907 In: J. T. Staley, M. P. Bryant, N. Pfennig, and J. C. Holt (Eds.) Bergey’s Manual of Systematic Bacteriology, 1st ed Williams and Wilkins Baltimore MD 2 2101–2105Google Scholar
  73. Maier, S., H. Völker, H., M. Beese, and V. A. Gallardo. 1990 The fine structure of Thioploca araucae annd Thioploca chileae Can. J. Microbiol. 36 438–448CrossRefGoogle Scholar
  74. Mattison, R. G., M. Abbiati, P. R. Dando, M. F. Fitzsimons, S. M. Pratt, A. J. Southward, and E. C. Southward. 1998 Chemoautotrophic microbial mats in submarine caves with hydrothermal sulphidic springs at Cape Palinuro, Italy Microb. Ecol. 35 58–71PubMedCrossRefGoogle Scholar
  75. McHatton, S. C., J. P. Barry, H. W. Jannasch, and D. C. Nelson. 1996 High nitrate concentrations in vacuolate, autotrophic marine Beggiatoa Appl. Environ. Microbiol. 62 954–958PubMedGoogle Scholar
  76. Mezzino, M. J., W. R. Strohl, and J. M. Larkin. 1984 Characterization of Beggiatoa alba Arch. Microbiol. 137 139–144CrossRefGoogle Scholar
  77. Minges, C. G., J. A. Titus, and W. R. Strohl. 1983 Plasmid DNA in colourless filamentous gliding bacteria Arch. Microbiol. 134 38–44PubMedCrossRefGoogle Scholar
  78. Møller, M. M., L. P. Nielsen, and B. B. Jørgensen. 1985 Oxygen responses and mat formation of Beggiatoa spp Appl. Environ. Microbiol. 50 373–382PubMedGoogle Scholar
  79. Mussmann, M., H. N. Schulz, B. Strothmann, T. Kjaer, L. P. Nielsen, R. A. Rossello-Mora, R. I. Amann, and B. B. Jørgensen. 2003 Phylogeny and distribution of nitrate-storing Beggiatoa spp. in coastal sediments Environ. Microbiol. 5 523–533PubMedCrossRefGoogle Scholar
  80. Namsaraev, B. B., L. E. Dulov, G. A. Dubinina, T. I. Zemskaya, L. Z. Granina, and E. V. Karabanov. 1994 Bacterial synthesis and destruction of organic matter in microbial mats of Lake Baikal Microbiology 63 193–197Google Scholar
  81. Nelson, D. C., and R. W. Castenholz. 1981a Organic nutrition of Beggiatoa sp J. Bacteriol. 147 236–247PubMedGoogle Scholar
  82. Nelson, D. C., and R. W. Castenholz. 1981b Use of reduced sulfur compounds by Beggiatoa sp J. Bacteriol. 147 140–154PubMedGoogle Scholar
  83. Nelson, D. C., and R. W. Castenholz. 1982a Light responses of Beggiatoa Arch. Microbiol. 131 146–155CrossRefGoogle Scholar
  84. Nelson, D. C., J. B. Waterbury, and H. W. Jannasch. 1982b Nitrogen fixation and nitrate utilization by marine and freshwater Beggiatoa Arch. Microbiol. 133 172–177CrossRefGoogle Scholar
  85. Nelson, D. C., and H. W. Jannasch. 1983 Chemoautotrophic growth of a marine Beggiatoa in sulfide-gradient cultures Arch. Microbiol. 136 262–269CrossRefGoogle Scholar
  86. Nelson, D. C., B. B. Jørgensen, and N. P. Revsbech. 1986a Growth pattern and yield of a chemoautotrophic Beggiatoa sp. in oxygen-sulfide microgradients Appl. Environ. Microbiol. 52 225–233PubMedGoogle Scholar
  87. Nelson, D. C., N. P. Revsbech, and B. B. Jørgensen. 1986b Microoxic-anoxic niche of Beggiatoa spp.: Microelectrode survey of marine and freshwater strains Appl. Environ. Microbiol. 52 161–168PubMedGoogle Scholar
  88. Nelson, D. C. 1989a Physiology and biochemistry of filamentous sulfur bacteria In: H. G. Schlegel and B. Bowien (Eds.) Autotrophic Bacteria Science Tech Madison WI 219–238Google Scholar
  89. Nelson, D. C., C. A. Williams, B. A. Farah, and J. M. Shively. 1989b Occurrence and regulation of Calvin cycle enzymes in non-autotrophic Beggiatoa strains Arch Microbiol. 151 15–19CrossRefGoogle Scholar
  90. Nelson, D. C., C. O. Wirsen, and H. W. Jannasch. 1989c Characterization of large, autotrophic Beggiatoa spp. abundant at hydrothermal vents of the Guaymas Basin Appl. Environ. Microbiol. 55 2909–2917PubMedGoogle Scholar
  91. Nelson, D. C. 1992 The genus Beggiatoa In: A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer (Eds.) The Prokaryotes, 2nd ed Springer-Verlag New York NY 3171–3180Google Scholar
  92. Nishino, M., M. Fukui, and T. Nakajima. 1998 Dense mats of Thioploca, gliding filamentous sulfur-oxidizing bacteria in Lake Biwa, central Japan Water Res. 32 953–957CrossRefGoogle Scholar
  93. Orphan, V. J., C. H. House, K.-U. Hinrichs, K. D. McKeegan, and E. F. DeLong. 2002 Multiple groups mediate methane oxidation in anoxic cold seep sediments Proc. Natl. Acad. Sci. USA 99 7663–7668PubMedCrossRefGoogle Scholar
  94. Otte, S., G. J. Kuenen, L. P. Nielsen, H. W. Paerl, J. Zopfi, H. N. Schulz, A. Teske, B. Strotmann, V. A. Gallardo, and B. B. Jørgensen. 1999 Nitrogen, carbon and sulfur metabolism in natural Thioploca samples Appl. Environ. Microbiol. 65 3148–3157PubMedGoogle Scholar
  95. Pasteris, J. D., J. J. Freeman, S. K. Goffredi, and K. Buck. 2001 Raman spectroscopic and laser scanning confocal microscopic analysis of sulfur in living sulfur-precipitating marine bacteria Chem. Geol. 180 3–18CrossRefGoogle Scholar
  96. Patritskaya, V. Yu., M. Yu. Grabovich, M. S. Muntyan, and G. A. Dubinina. 2001 Lithoauto-trophic growth of the freshwater colorless sulfur bacterium Beggiatoa “leptomitiformis” D-402 Microbiology 70 145–150CrossRefGoogle Scholar
  97. Paull, C. K., J. P. Chanton, A. C. Neumann, J. A. Coston, and C. S. Martens. 1992 Indicators of methane-derived carbonates and chemosynthetic organic carbon deposits: Examples from the Florida Escarpment. Palaios 7 361–375Google Scholar
  98. Pfennig, N., and H. Biebl. 1981 The dissimilatory sulfur-reducing bacteria In: M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel (Eds.) The Prokaryotes, 1st ed Springer-Verlag Berlin Germany 941–942Google Scholar
  99. Pitts, G., A. I. Allam, and J. P. Hollis. 1972 Beggiatoa: Occurrence in the rice rhizosphere Science 178 990–992CrossRefPubMedGoogle Scholar
  100. Polman, J. K., and J. M. Larkin. 1988 Properties of in vivo nitrogenase in Beggiatoa alba Arch. Microbiol. 150 126–130CrossRefGoogle Scholar
  101. Prange, A., R. Chauvistré, H. Modrow, J. Hormes, H. G. Trüper, and C. Dahl. 2002 Quantitative speciation of sulfur in bacterial sulfur globules: X-ray absorption spectroscopy reveals at least three different species of sulfur Microbiology 148 267–276PubMedGoogle Scholar
  102. Prince, R. C., K. E. Stokley, C. E. Haith, and H. W. Jannasch. 1988 The cytochromes of a marine Beggiatoa Arch Microbiol. 150 193–196CrossRefGoogle Scholar
  103. Pringsheim, E. G. 1964 Heterotrophism and species concepts in Beggiatoa Am. J. Bot. 51 898–913CrossRefGoogle Scholar
  104. Pringsheim, E. G. 1967 Die Mixotrophie von Beggiatoa Arch. Mikrobiol. 59 247–254PubMedCrossRefGoogle Scholar
  105. Reichenbach, H., and M. Dworkin. 1981 Introduction to the gliding bacteria In: M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel (Eds.) The Prokaryotes, 1st ed Springer-Verlag Berlin Germany 315–327Google Scholar
  106. Risgard-Petersen, N. 1995 Denitrification and Dissimilatory Nitrate Reduction to Ammonium in Mats of Beggiatoa spp. on Marine Sediments [Ph.D. thesis] University of Aarhus Aarhus DenmarkGoogle Scholar
  107. Rosenberg, R., W. E. Arntz, E. Chumán de Flores, L. A. Flores, G. Carabajal, I. Finger, and J. Taranzona. 1983 Benthos biomass and oxygen deficiency in the upwelling system off Peru J. Mar. Res. 41 263–279CrossRefGoogle Scholar
  108. Sahling, H., D. Rickert, R. W. Lee, P. Linke, and E. Suess. 2002 Macrofaunal community structure and sulfide flux at gas hydrate deposits from the Cascadia convergent margin, NE Pacific Mar. Ecol. Prog. Ser. 231 121–138Google Scholar
  109. Sassen, R., H. H. Roberts, P. Aharon, J. Larkin, E. W. Chinn, and R. Carney. 1993 Chemosynthetic bacterial mats at cold hydrocarbon seeps, Gulf of Mexico continental slope Org. Geochem. 20 77–89CrossRefGoogle Scholar
  110. Sayama, M. 2001 Presence of nitrate-accumulating sulfur bacteria and their influence on nitrogen cycling in a shallow coastal marine sediment Appl. Environ. Microbiol. 67 3481–3487PubMedCrossRefGoogle Scholar
  111. Schmaljohann, R., M. Drews, S. Walter, P. Linke, U. Von Rad, and J. F. Imhoff. 2001 Oxygen minimum zone sediments in the northeastern Arabian Sea off Pakistan: A habitat for the bacterium Thioploca Mar. Ecol. Prog. Ser. 211 27–42Google Scholar
  112. Schmidt, T. M., V. A. Vinci, and W. R. Strohl. 1986 Protein synthesis by Beggiatoa alba B18LD in the presence and absence of sulfide Arch. Microbiol. 144 158–162CrossRefGoogle Scholar
  113. Schmidt, T. M., B. Arieli, Y. Cohen, E. Padan, and W. R. Strohl. 1987 Sulfur metabolism of Beggiatoa alba J. Bacteriol. 169 5466–5472PubMedGoogle Scholar
  114. Schulz, H. N., B. B. Jørgensen, H. A. Fossing, and N. B. Ramsing. 1996 Community structure of filamentous, sheath-building sulfur bacteria, Thioploca spp., off the coast of Chile Appl. Environ. Microbiol. 62 1855–1862PubMedGoogle Scholar
  115. Schulz, H. N., T. Brinkhoff, T. G. Ferdelman, M. Hernandez-Marine, A. Teske, and B. B. Jørgensen. 1999 Dense populations of a giant sulfur bacterium in Namibian shelf sediments Science 284 493–495PubMedCrossRefGoogle Scholar
  116. Schulz, H. N., B. Strotmann, V. A. Gallardo, and B. B. Jørgensen. 2000 Population study of the filamentous sulfur bacteria Thioploca spp. off the Bay of Concepción, Chile Mar. Ecol. Prog. Ser. 200 117–126Google Scholar
  117. Schulz, H. N., and B. B. Jørgensen. 2001 Big bacteria Ann. Rev. Microbiol. 55 105–137CrossRefGoogle Scholar
  118. Schulz, H. N. 2002a Thiomargarita namibiensis: Giant microbe holding its breath ASM News 68 122–127Google Scholar
  119. Schulz, H. N., and D. de Beer. 2002b Uptake rates of oxygen and sulfide measured with individual Thiomargarita namibiensis cells by using microelectrodes Appl. Environ. Microbiol. 68 5746–5749PubMedCrossRefGoogle Scholar
  120. Scotten, H. L., and J. L. Stokes. 1962 Isolation and properties of Beggiatoa Arch. Mikrobiol. 42 353–368CrossRefGoogle Scholar
  121. Skerman, V. B. D., G. Dementjeva, and B. J. Carey. 1957 Intracellular deposition of sulfur by Spaerotilus natans J. Bacteriol. 73 507–512Google Scholar
  122. Smith, C. R., H. Kukert, R. A. Wheatcroft, P. A. Jumars, and J. W. Deming. 1989 Vent fauna on whale remains Nature 341 27–28CrossRefGoogle Scholar
  123. Stahl, D. A., D. J. Lance, G. J. Olsen, D. J. Heller, T. M. Schmidt, and N. R. Pace. 1987 Phylogenetic analysis of certain sulfide-oxidizing and related morphologically conspicuous bacteria by 5S ribosomal ribonucleic acid sequences Int. J. Syst. Bacteriol. 37 116–122CrossRefGoogle Scholar
  124. Strohl, W. R., and J. M. Larkin. 1978a Cell division and trichome breakage in Beggiatoa Curr. Microbiol. 1 151–155Google Scholar
  125. Strohl, W. R., and J. M. Larkin. 1978b Enumeration, isolation, and characterization of Beggiatoa from freshwater sediments Appl. Environ. Microbiol. 36 755–770PubMedGoogle Scholar
  126. Strohl, W. R., G. C. Cannon, J. M. Shively, H. Güde, L. A. Hook, C. M. Kane, and J. M. Larkin. 1981a Heterotrophic carbon metabolism by Beggiatoa alba J. Bacteriol. 148 572–583PubMedGoogle Scholar
  127. Strohl, W. R., I. Geffers, and J. M. Larkin. 1981b Structure of the sulfur inclusion envelopes from four Beggiatoas Curr. Microbiol. 6 75–79CrossRefGoogle Scholar
  128. Strohl, W. R., K. S. Howard, and J. M. Larkin. 1982 Ultrastructure of Beggiatoa alba strain B15LD J. Gen. Microbiol. 128 73–84Google Scholar
  129. Strohl, W. R., and T. M. Schmidt. 1984 Mixotrophy of the colorless, sulfide-oxidizing, gliding bacteria Beggiatoa and Thiothrix In: W. R. Strohl and O. H. Tuovinen (Eds.) Microbial Autotrophy Ohio State University Press Columbus OH 79–95Google Scholar
  130. Teske, A., N. B. Ramsing, J. Kuever, and H. Fossing. 1995 Phylogeny of Thioploca and related filamentous sulfide-oxidizing bacteria Syst. Appl. Microbiol. 18 517–526Google Scholar
  131. Teske, A., M. L. Sogin, L. P. Nielsen, and H. W. Jannasch. 1999 Phylogenetic relationships of a large marine Beggiatoa Syst. Appl. Microbiol. 21 39–44Google Scholar
  132. Thamdrup, B., and D. E. Canfield. 1996 Pathways of carbon oxidation in continental margin sediments off central Chile Limnol. Oceanogr. 41 1629–1650PubMedCrossRefGoogle Scholar
  133. Uphof, J. C. T. 1927 Zur ökologie der Schwefelbakterien in den Schwefelquellen Mittelfloridas Arch. Hydrobiol. 18 71–84Google Scholar
  134. Vargas, A., and W. R. Strohl. 1985a Ammonia assimilation and metabolism by Beggiatoa alba Arch. Microbiol. 142 275–278CrossRefGoogle Scholar
  135. Vargas, A., and W. R. Strohl. 1985b Utilization of nitrate by Beggiatoa alba Arch. Microbiol. 142 279–284CrossRefGoogle Scholar
  136. Wagner, M., A. J. Roger, J. L. Flax, G. A. Brusseau, and D. A. Stahl. 1998 Phylogeny of dissimilatory sulfire reductases supports an early origin of sulfate respiration J. Bacteriol. 180 2975–2982PubMedGoogle Scholar
  137. Williams, L. A., and C. Reimers. 1983 Role of bacterial mats in oxygen-deficient marine basins and coastal upwelling regimes: Preliminary report Geology 11 267–269CrossRefGoogle Scholar
  138. Williams, T. M., and R. F. Unz. 1985 Filamentous sulfur bacteria of activated sludge: Characterization of Thiothrix, Beggiatoa, and Eikelboom type 021N strains Appl. Environ. Microbiol. 49 887–898PubMedGoogle Scholar
  139. Winogradsky, S. 1887 über Schwefelbacterien Botanische Zeitung 45 489–507, 513–523, 529–539, 545–559, 569–576, 585–594, 606–610Google Scholar
  140. Wislouch, S. M. 1912 Thioploca ingrica nov. sp Ber. Deutsch. Bot. Ges. 30 470–475Google Scholar
  141. Zafra, A. H., H. Salzwedel, and L. Flores. 1988 Distribucíon y biomasa de bacterias filamentosas (Thioploca spp.) en la costa norte del Perú 1976–1985 IMARPE (Bol. Extr.) 1 99–105Google Scholar
  142. Zemskaya, T. I., B. B. Namsaraev, N. M. Dul’tseva, T. A. Khanaeva, L. P. Golobokova, G. A. Dubinina, L. E. Dulov, and E. Wada. 2001 Ecophysiological characteristics of the mat-forming bacterium Thioploca in bottom sediments of the Frolikha Bay, northern Baikal Microbiology 70 335–341CrossRefGoogle Scholar
  143. Zopfi, J., T. Kjaer, L. P. Nielsen, and B. B. Jørgensen. 2001 Ecology of Thioploca spp.: Nitrate and sulfur storage in relation to chemical microgradients and influence of Thioploca spp. on the sedimentary nitrogen cycle Appl. Environ. Microbiol. 67 5530–5537PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Andreas Teske
  • Douglas C. Nelson

There are no affiliations available

Personalised recommendations