Nonmedical: Pseudomonas

  • Edward R. B. Moore
  • Brian J. Tindall
  • Vitor A. P. Martins Dos Santos
  • Dietmar H. Pieper
  • Juan-Luis Ramos
  • Norberto J. Palleroni


Pseudomonas comprises a genus of species capable of utilizing a wide range of organic and inorganic compounds and of living under diverse environmental conditions. Consequently, they are ubiquitous in soil and water ecosystems and are important as plant, animal and human pathogens (Palleroni, 1992; Schroth et al., 1992). The genus Pseudomonas is well known for its metabolic versatility and genetic plasticity. The species of Pseudomonas, in general, grow rapidly and are particularly renowned for their ability to metabolize an extensive number of substrates, including toxic organic chemicals, such as aliphatic and aromatic hydrocarbons. Strains of Pseudomonas species are often resistant to antibiotics, disinfectants, detergents, heavy metals, and organic solvents. Some strains have been confirmed to produce metabolites that stimulate plant growth or inhibit plant pests.

Pseudomonaswas already recognized as a complex collection of a large number of described species when...

Literature Cited

  1. Aagot, N., O. Nybroe, P. Nielsen, and K. Johnsen. 2001 An altered Pseudomonas diversity is recovered from soil by using nutrient-poor Pseudomonas-selective soil extract media Appl. Environ. Microbiol. 67 5233–5239PubMedCrossRefGoogle Scholar
  2. Abril, M.-A., C. Michan, K. N. Timmis, and J. L. Ramos. 1989 Regulator and enzyme specificities of the TOL plasmid-encoded upper pathway for degradation of aromatic hydrocarbons and expansion of the substrate range of the pathway J. Bacteriol. 171 6782–6790PubMedGoogle Scholar
  3. Achouak, W., L. Sutra, T. heulin, J.-M. Meyer, N. Fromin, S. Degraeve, R. Christen, and L. Gardan. 2000 Pseudomonas brassicacearum sp. nov. and Pseudomonas thivervalensis sp. nov., two root-associated bacteria isolated from Brassica napus and Arabidopsis thaliana Int. J. Syst. Evol. Microbiol. 50 9–18PubMedGoogle Scholar
  4. Alaminos, M., and J. L. Ramos. 2001 The methionine biosynthetic pathway from homoserine in Pseudomonas putida involves the metW, metX, met Z, metH and metE gene products Arch. Microbiol. 176 151–154PubMedCrossRefGoogle Scholar
  5. Amann, R. I., W. Ludwig, and K.-H. Schleifer. 1995 Phylogenetic identification and in situ detection of individual microbial cells without cultivation Microbiol. Rev. 59 143–169PubMedGoogle Scholar
  6. Andersen, G. L., G. A. Beattie, and S. E. Lindow. 1998 Molecular characterization and sequence of a methionine biosynthetic locus from Pseudomonas syringae J. Bacteriol. 180 4497–4507PubMedGoogle Scholar
  7. Andersen, S. M., K. Johnsen, J. Sørensen, P. Nielsen, and C. S. Jacobsen. 2000 Pseudomonas frederiksbergensis sp. nov., isolated from soil at a coal gasification site Int. J. Syst. Evol. Microbiol. 50 1957–1964PubMedGoogle Scholar
  8. Anzai, Y., Y. Kodo, and H. Oyaizu. 1997 The phylogeny of the genera Chryseomonas, Flavimonas and Pseudomonas supports synonymy of these three genera Int. J. Syst. Bacteriol. 47 249–251PubMedGoogle Scholar
  9. Anzai, Y., H. Kim, J.-Y. Park, H. Wakabayashi, and H. Oyaizu. 2000 Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence Int. J. Syst. Evol. Microbiol. 50 1563–1589PubMedGoogle Scholar
  10. Aranda-Olmedo, I., R. Tobes, M. Manzanera, J. L. Ramos, and S. Marqués. 2002 Species-specific repetitive extragenic palindromic (REP) sequences in Pseudomonas putida Nucleic Acids Res. 30 1826–1833PubMedCrossRefGoogle Scholar
  11. Arenghi, F. L., P. Barbieri, G. Bertoni, and V. de Lorenzo. 2001 New insights into the activation of o-xylene biodegradation in Pseudomonas stutzeri OX1 by pathway substrates EMBO Rep. 2 409–414PubMedGoogle Scholar
  12. Arensdorf, J. J., and D. D. Focht. 1994 Formation of chlorocatechol meta cleavage products by a Pseudomonad during metabolism of monochlorobiphenyls Appl. Environ. Microbiol. 60 2884–2889PubMedGoogle Scholar
  13. Arensdorf, J. J., and D. D. Focht. 1995 A meta cleavage pathway for 4-chlorobenzoate, an intermediate in the metabolism of 4-chlorobiphenyl by Pseudomonas cepacia P166 Appl. Environ. Microbiol. 61 443–447PubMedGoogle Scholar
  14. Armengaud, J., B. Happe, and K. N. Timmis. 1998 Genetic analysis of dioxin dioxygenase of Sphingomonas sp. strain RW1: Catabolic genes dispersed on the genome J. Bacteriol. 180 3954–3966PubMedGoogle Scholar
  15. Babbitt, P. C., G. L. Kenyon, B. M. Martin, H. Charest, M. Sylvestre, J. D. Scholten, K.-H. Chang, P.-H. Liang, and D. Dunaway-Mariano. 1992 Ancestry of the 4-chlorobenzoate dehalogenase: Analysis of amino acid sequence identities among families of acyl: adenyl ligases, enoyl-CoA hydratases/ isomerases, and acyl-CoA thioesterases Biochemistry 31 5594–5604PubMedCrossRefGoogle Scholar
  16. Bailey, M. J. 2004 Life in the phyllosphere In: J. L. Ramos (Ed.) Pseudomonas Kluwer Academic/Plenum Publishers New York, NY 431–456Google Scholar
  17. Barrett, E. L., R. E. Solanes, J. S. Tang, and N. J. Palleroni. 1986 P. fluorescens biovarf V: Its resolution into distinct component groups and the relationship of these groups to other P. fluorescens biovars, to P. putida, and to psychrotrophic pseudomonads associated with food spoilage J. Gen. Microbiol. 60 2709–2721Google Scholar
  18. Bartels, I., H.-J. Knackmuss, and W. Reineke. 1984 Suicide inactivation of catechol 2,3-dioxygenase from Pseudomonas putida mt-2 by 3-halocatechols Appl. Environ. Microbiol. 47 500–505PubMedGoogle Scholar
  19. Bartels, F., S. Backhaus, E. R. B. Moore, K. N. Timmis, and B. Hofer. 1999 Occurrence and expression of glutathione-S-transferase-encoding bphK genes in Burkholderia sp. strain LB400 and other biphenyl-utilizing bacteria Microbiology 145 2821–2834PubMedGoogle Scholar
  20. Baumann, L., and P. Baumann. 1978 Studies of relationship among terrestrial Pseudomonas, Alcaligenes, and enterobacteria by an immunological comparison of glutamine synthetase Arch. Microbiol. 119 25–30PubMedCrossRefGoogle Scholar
  21. Bayly, R. C., S. Dagley, and D. T. Gibson. 1966 The metabolism of cresols by species of Pseudomonas Biochem. J. 101 293–301PubMedGoogle Scholar
  22. Beare, P. A., R. J. For, L. W. Martin, and I. L. Lamont. 2003 Siderophore-mediated cell signalling in Pseudomonas aeruginosa: Divergent pathways regulate virulence factor production and siderophore receptor synthesis Molec. Microbiol. 47 195–207CrossRefGoogle Scholar
  23. Bedard, D. L., and M. L. Haberl. 1990 Influence of chlorine substitution pattern on the degradation of polychlorinated biphenyls by eight bacterial strains Microb. Ecol. 20 87–102Google Scholar
  24. Behrendt, U., A. Ulrich, P. Schumann, W. Erler, J. Burghardt, and W. Seyfarth. 1999 A taxonomic study of bacteria isolated from grasses: A proposed new species Pseudomonas graminis sp. nov Int. J. Syst. Bacteriol. 49 297–308PubMedGoogle Scholar
  25. Beil, S., J. R. Mason, K. N. Timmis, and D. H. Pieper. 1998 Identification of chlorobenzene dioxygenase sequence elements involved in dechlorination of 1,2,4,5-tetrachlorobenzene J. Bacteriol. 180 5520–5528PubMedGoogle Scholar
  26. Bélanger, M., L. L. Burrows, and J. S. Lam. 1999 Functional analysis of genes responsible for the synthesis of the B-band O antigen of Pseudomonas aeruginosa serotype O6 2lipopolysaccharide Microbiology 145 3505–3521PubMedGoogle Scholar
  27. Bergen, T. 1981 Human and animal pathogenic members of the genus Pseudomonas In: M. P. Starr, H. Stolp, H G. Trüper, A. Balows, and H. G. Schlegel (Eds.) The Prokaryotes Springer-Verlag New York, NY 1 666–700Google Scholar
  28. Bertoni, G., F. Bolognese, E. Galli, and P. Barbieri. 1996 Cloning of the genes for and characterization of the early stages of toluene and o-xylene catabolism in Pseudomonas stutzeri OX1 Appl. Environ. Microbiol. 62 3704–3711PubMedGoogle Scholar
  29. Bhagwat, A. A., K. C. Gross, R. E. Tully, and D. L. Keister. 1996 Beta-glucan synthesis in Bradyrhizobium japonicum: Characterization of a new locus (ndvC) influencing β-(16) linkages J. Bacteriol. 178 4635–4642PubMedGoogle Scholar
  30. Bhoo, S. H., S. J. Davis, J. Walker, B. Karniol, and R. D. Vierstra. 2001 Bacteriophytochromes are photochromic histidine kinases using a biliverdin chromophore Nature 414 776–779PubMedCrossRefGoogle Scholar
  31. Blasco, R., R.-M. Wittich, M. Mallavarapu, K. N. Timmis, and D. H. Pieper. 1995 From xenobiotic to antibiotic: Formation of protoanemonin from 4-chlorocatechol by enzymes of the 3-oxoadipate pathway J. Biol. Chem. 270 29229–29235PubMedCrossRefGoogle Scholar
  32. Blasco, R., M. Mallavarapu, R. M. Wittich, K. N. Timmis, and D. H. Pieper. 1997 Evidence that formation of protoanemonin from metabolites of 4-chlorobiphenyl degradation negatively affects the survival of 4-chlorobiphenyl-cometabolizing microorganisms Appl. Environ. Microbiol. 63 427–434PubMedGoogle Scholar
  33. Blumer, C., S. Heeb, G. Pessi, and D. Haas. 1999 Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites Microbiology 24 14073–14078Google Scholar
  34. Bollag, J.-M., G. G. Briggs, J. E. Dawson, and M. Alexander. 1968 2,4-D Metabolism: Enzymatic degradation of chlorocatechol J. Agric. Food Chem. 16 829–833CrossRefGoogle Scholar
  35. Bos, P., and J. G. Kuenen. 1996 Microbial treatment of coal In: H. I. Ehrlich and C. L. Brierley (Eds.) Microbial Mineral Recovery McGraw-Hill New York, NY 343–377Google Scholar
  36. Bosch, R., E. Garcia-Valdes, and E. R. B. Moore. 1999a Genetic characterization and evolutionary implications of a chromosomally encoded naphthalene-degradation upper pathway from Pseudomonas stutzeri AN10 Gene 236 149–157PubMedCrossRefGoogle Scholar
  37. Bosch, R., E. R. B. Moore, E. Garcia-Valdes, and D. H. Pieper. 1999b NahW, a novel, inducible salicylate hydroxylase involved in mineralization of naphthalene by Pseudomonas stutzeri AN10 J. Bacteriol. 181 2315–2322PubMedGoogle Scholar
  38. Bott, T. L., and L. A. Kaplan. 2002 Autecological properties of 3-chlorobenzoate-degrading bacteria and their population dynamics when introduced into sediments Microb. Ecol. 43 199–216PubMedCrossRefGoogle Scholar
  39. Boucher, J. C., M. J. Schurr, and V. Deretic. 2000 Dual regulation of mucoidy in Pseudomonas aeruginosa and sigma factor antagonism Molec. Microbiol. 36 341–351CrossRefGoogle Scholar
  40. Boyle, A. W., C. J. Silvin, J. P. Hassett, J. P. Nakas, and S. W. Tanenbaum. 1992 Bacterial PCB biodegradation Biodegredation 3 285–298CrossRefGoogle Scholar
  41. Brandi, M. T., B. Quinones, and S. E. Lindow. 2001 Heterogeneous transcription of an indoleacetic acid biosynthetic gene in Erwinia herbicola on plant surfaces Proc. Natl. Acad. Sci. USA 98 3454–3459CrossRefGoogle Scholar
  42. Brenner, D. J., J. T. Staley, and N. R. Krieg. 2001 Classification of procaryotic organisms and the concept of bacterial speciation In: D. R. Boone, R. W. Castenholz, and G. M. Garrity (Eds.) Bergey’s Manual of Systematic Bacteriology, 2nd ed Springer-Verlag New York, NY 1 27–31Google Scholar
  43. Brianciotto, V., S. Minerdi, S. Perotto, and P. Bonfante. 1996 Cellular interactions between arbuscular mycorrhizal fungi and rhizosphere bacteria Protoplasma 193 123–131CrossRefGoogle Scholar
  44. Brinkman, F. S., G. Schoofs, R. E. Hancock, and R. De Mot. 1999 Influence of a putative ECF sigma factor on expression of the major outer membrane protein, OprF, in Pseudomonas aeruginosa and Pseudomonas fluorescens J. Bacteriol. 181 4746–4754PubMedGoogle Scholar
  45. Brinkmann, U., and W. Reineke. 1992 Degradation of chlorotoluenes by in vivo constructed hybrid strains: Problems of enzyme specificity, induction and prevention of meta-pathway FEMS Microbiol. Lett. 96 81–88CrossRefGoogle Scholar
  46. Brint, J. M., and D. E. Ohman. 1995 Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family J. Bacteriol. 177 7155–7163PubMedGoogle Scholar
  47. Broderick, J. B., and T. V. O’Halloran. 1991 Overproduction, purification, and characterization of chlorocatechol dioxygenase, a non-heme iron dioxygenase with broad substrate tolerance Biochemistry 30 7349–7358PubMedCrossRefGoogle Scholar
  48. Buell, C. R., V. Joardar, M. Lindeberg, J. Selengut, I. T. Paulsen, M. L. Gwinn, R. J. Dodson, R. T. Deboy, A. S. Durkin, J. F. Kolonay, R. Madupu, S. Daugherty, L. Brinkac, M. J. Beanan, D. H. Haft, W. C. Nelson, T. Davidsen, N. Zafar, L. Zhou, J. Liu, Q. Yuan, H. Khouri, N. Fedorova, B. Tran, D. Russell, K. Berry, T. Utterback, S. E. Van Aken, T. V. Feldblyum, M. D’Ascenzo, W. L. Deng, A. R. Ramos, J. R. Alfano, S. Cartinhour, A. K. Chatterjee, T. P. Delaney, S. G. Lazarowitz, G. B. Martin, D. J. Schneider, X. Tang, C. L. Bender, O. White, C. M. Fraser, and A. Collmer. 2003 The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000 Proc. Natl. Acad. Sci. USA 100 10181–10186PubMedCrossRefGoogle Scholar
  49. Burger, M., R. G. Woods, C. McCarthy, and I. R. Beacham. 2000 Temperature regulation of protease in Pseudomonas fluorescens LS107d2 by an ECF sigma factor and a transmembrane activator Microbiology 146 3149–3155PubMedGoogle Scholar
  50. Byng, G. S., R. J. Whitaker, R. L. Gherna, and R. A. Jensen. 1980 Variable enzymological patterning in tyrosine biosynthesis as a new means of determining natural relatedness among Pseudomonadaceae J. Bacteriol. 144 247–257PubMedGoogle Scholar
  51. Byng, G. S., J. F. Kane, and R. A. Jensen. 1982 Diversity in the routing and regulation of complex biochemical pathways as indicators of microbial relatedness Crit. Rev. Microbiol. 9 227–252PubMedGoogle Scholar
  52. Byng, G. S., J. L. Johnson, R. J. Whitaker, R. L. Gherna, and R. A. Jensen. 1983 The evolutionary pattern of aromatic amino acid biosynthesis and the emerging phylogeny of pseudomonad bacteria J. Molec. Evol. 19 272–282PubMedCrossRefGoogle Scholar
  53. Calfee, M. W., J. P. Coleman, and E. C. Pesci. 2001 Interference with Pseudomonas quinolone signal synthesis inhibits virulence factor expression by Pseudomonas aeruginosa Proc. Natl. Acad. Sci. USA 98 11633–11637PubMedCrossRefGoogle Scholar
  54. Cane, P. A., and P. A. Williams. 1982 The plasmid-coded metabolism of naphthalene and 2-methylnaphthalene in Pseudomonas strains: Phenotypic changes correlated with structural modification of the plasmid pWW60-1 J. Gen. Microbiol. 128 2281–2290Google Scholar
  55. Canosa, I., J. M. Sánchez-Romero, L. Yuste, and F. Rojo. 2000 A positive feedback mechanism controls expression of AlkS, the transcriptional regulator of the Pseudomonas oleovorans alkane degradation pathway Molec. Microbiol. 35 791–799CrossRefGoogle Scholar
  56. Cao, H., R. L. Baldini, and L. G. Rahme. 2001 Common mechanisms for pathogens of plants and animals Ann. Rev. Phytopathol. 39 259–284CrossRefGoogle Scholar
  57. Carmona, M., M. J. Rodriguez, O. Martinez-Costa, and V. De Lorenzo. 2000 In vivo and in vitro effects of (p)ppGpp on the sigma(54) promoter Pu of the TOL plasmid of Pseudomonas putida J. Bacteriol. 182 4711–4718PubMedCrossRefGoogle Scholar
  58. Cases, I., V. de Lorenzo, and J. Pérez-Martín. 1996 Involvement of sigma 54 in exponential silencing of the Pseudomonas putida TOL plasmid Pu promoter Molec. Microbiol. 19 7–17CrossRefGoogle Scholar
  59. Cases, I., and V. de Lorenzo. 1998 Expression systems and physiological control of promoter activity in bacteria Curr. Opin. Microbiol. 1 303–310PubMedCrossRefGoogle Scholar
  60. Cases, I., J. Pérez-Martín, and V. de Lorenzo. 1999 The IIANtr (PtsN) protein of Pseudomonas putida mediates the C source inhibition of the sigma 54-dependent Pu promoter of the TOL plasmid J. Biol. Chem. 274 15562–15568PubMedCrossRefGoogle Scholar
  61. Cases, I., F. Velazquez, and V. de Lorenzo. 2001 Role of ptsO in carbon-mediated inhibition of the Pu promoter belonging to the pWW0 Pseudomonas putida plasmid J. Bacteriol. 183 5128–5133PubMedCrossRefGoogle Scholar
  62. Cerniglia, C., J. Morgan, and D. T. Gibson. 1979 Bacterial and fungal oxidation of dibenzofuran Biochem. J. 180 175–185PubMedGoogle Scholar
  63. Chae, J., Y. Kim, Y. Kim, G. Zylstra, and C. Kim. 2000 Genetic structure and functional implication of the fcb gene cluster for hydrolytic dechlorination of 4-chlorobenzoate from Pseudomonas sp. DJ-12 Gene 258 109–116PubMedCrossRefGoogle Scholar
  64. Chancey, S. T., D. W. Wood, and L. S. Pierson 3rd. 1999 Two-component transcriptional regulation of N-acyl-homoserine lactone production in Pseudomonas aureofaciens Appl. Environ. Microbiol. 65 2294–2299PubMedGoogle Scholar
  65. Chang, K. H., P. H. Liang, W. Beck, J. D. Scholten, and D. Dunaway-Mariano. 1992 Isolation and characterization of the three polypeptide components of 4-chlorobenzoate dehalogenase from Pseudomonas sp. strain CBS-3 Biochemistry 31 5605–5610PubMedCrossRefGoogle Scholar
  66. Chapon, V., M. Akrim, A. Latifi, P. Williams, A. Lazdunski, and M. Bally. 1997 Regulation of the xcp secretion pathway by multiple quorum-sensing modulons in Pseudomonas aeruginosa Molec. Microbiol. 24 1169–1178CrossRefGoogle Scholar
  67. Chatterjee, D. K., S. T. Kellogg, S. Hamada, and A. M. Chakrabarty. 1981 Plasmid specifying total degradation of 3-chlorobenzoate by a modified ortho pathway J. Bacteriol. 146 639–646PubMedGoogle Scholar
  68. Chin-A-Woeng, T. F., D. van den Broek, G. de Voer, K. M. van der Drift, S. Tuinman, J. E. Thomas-Oates, B. J. Lugtenberg, and G. V. Bloemberg. 2001 Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL1391 is regulated by multiple factors secreted into the growth medium Molec. Plant Microbe Interact. 14 969–979Google Scholar
  69. Christensen, H., M. Boye, L. K. Poulsen, and O. F. Rasmussen. 1994 Analysis of fluorescent pseudomonads based on 23S ribosomal DNA sequences Appl. Environ. Microbiol. 60 2196–2199PubMedGoogle Scholar
  70. Chugani, S. A., M. Whiteley, K. M. Lee, D. D’Argenio, C. Manoil, and E. P. Greenberg. 2001 QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa Proc. Natl. Acad. Sci. USA 98 2752–2757PubMedCrossRefGoogle Scholar
  71. Clarke, P. H. 1972 Biochemical and immunological comparison of aliphatic amidases produced by Pseudomonas species J. Gen. Microbiol. 71 241–257PubMedGoogle Scholar
  72. Cole, J. R., B. Chai, T. L. Marsh, R. J. Farris, Q. Wang, S. A. Kulam, S. Chandra, D. M. McGarrell, T. M. Schmidt, G. M. Garrity, and J. M. Tiedje. 2003 The Ribosomal Database Project (RDP-II): Previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy Nucleic Acids Res. 31 442–443PubMedCrossRefGoogle Scholar
  73. Collier, D. N., P. W. Hager, and P. V. Phibbs Jr. 1996 Catabolite repression control in Pseudomonads Res. Microbiol. 147 551–561PubMedCrossRefGoogle Scholar
  74. Collins, M. D., and D. Jones. 1981 Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications Microbiol. Rev. 45 316–354PubMedGoogle Scholar
  75. Coschigano, P. W., M. M. Häggblom, and L. Y. Young. 1994 Metabolism of both 4-chlorobenzoate and toluene under denitrifying conditions by a constructed bacterial strain Appl. Environ. Microbiol. 60 989–995PubMedGoogle Scholar
  76. Cowles, C. E., N. N. Nichols, and C. S. Harwood. 2000 BenR, a XylS homologue, regulates three different pathways of aromatic acid degradation in Pseudomonas putida J. Bacteriol. 182 6339–6346PubMedCrossRefGoogle Scholar
  77. Dabboussi, F., M. Hamze, M. Elomari, S. Verhille, N. Baida, D. Izard, and H. Leclerc. 1999 Pseudomonas libanensis sp. nov., a new species isolated from Lebanese spring waters Int. J. Syst. Bacteriol. 49 1091–1101PubMedGoogle Scholar
  78. Dagley, S. 1971 Catabolism of aromatic compounds by micro-organisms Adv. Microb. Physiol. 6 1–46PubMedGoogle Scholar
  79. Dasgupta, N., S. K. Arora, and R. Ramphal. 2000 FleN, a gene that regulates flagellar number in Pseudomonas aeruginosa J. Bacteriol. 182 357–364PubMedCrossRefGoogle Scholar
  80. Davey, M. E., N. C. Caiazza, and G. A. O’Toole. 2003 Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1 J. Bacteriol. 185 1027–1036PubMedCrossRefGoogle Scholar
  81. Davies, D. G., M. R. Parsek, J. P. Pearson, B. H. Iglewski, J. W. Costerton, and E. P. Greenberg. 1998 The involvement of cell-to cell signals in the development of bacterial biofilm Science 280 295–298PubMedCrossRefGoogle Scholar
  82. Dean, C. R., and K. Poole. 1993 Expression of the ferric enterobactin receptor (PfeA) of Pseudomonas aeruginosa: Involvement of a two-component regulatory system Molec. Microbiol. 8 1095–1103Google Scholar
  83. De Bont, J. A. M., M. A. J. W. Vorage, S. Hartmans, and W. J. J. van den Tweel. 1986 Microbial degradation of 1,3-dichlorobenzene Appl. Environ. Microbiol. 52 677–680PubMedGoogle Scholar
  84. De Bont, J. A. M. 1998 Solvent-tolerant bacteria in biocatalysis Trends Biotechnol. 16 493–499CrossRefGoogle Scholar
  85. Dehmel, U., K.-H. Engesser, K. N. Timmis, and D. F. Dwyer. 1995 Cloning, nucleotide sequence, and expression of the gene encoding a novel dioxygenase involved in metabolism of carboxydiphenyl ethers in Pseudomonas pseudoalcaligenes POB310 Arch. Microbiol. 163 35–41PubMedGoogle Scholar
  86. Dejonghe, W., J. Goris, S. El Fantroussi, M. Hofte, P. de Vos, W. Verstraete, and E. M. Top. 2000 Effect of dissemination of 2,4-dichlorophenoxyacetic acid (2,4-D) degradation plasmids on 2,4-D degradation and on bacterial community structure in two different soil horizons Appl. Environ. Microbiol. 66 3297–3304PubMedCrossRefGoogle Scholar
  87. De Kievit, T. R., R. Gillis, S. Marx, C. Brown, and B. H. Iglewski. 2001 Quorum-sensing genes in Pseudomonas aeruginosa biofilms: Their role and expression patterns Appl. Environ. Microbiol. 67 1865–1873PubMedCrossRefGoogle Scholar
  88. Dekkers, L. C., C. C. Phoelich, L. van der Fits, and B. J. J. Lugtenberg. 1998 A site-specific recombinase is required for competitive root colonization by Pseudomonas fluorescens WC365 Proc. Natl. Acad. Sci. USA 95 7051–7056PubMedCrossRefGoogle Scholar
  89. De Lipthay, J. R., N. Tuxen, K. Johnsen, L. Hansen, H. J. Albrechtsen, P. L. Bjerg, and J. Aamand. 2003 In situ exposure to low herbicide concentrations affects microbial population composition and catabolic gene frequency in an aerobic shallow aquifer Appl. Environ. Microbiol. 69 461–467PubMedCrossRefGoogle Scholar
  90. Delorme, S., P. Lemanceau, R. Christen, T. Corberand, J.-M., Meyer, and L. Gardan. 2002 Pseudomonas lini sp. nov., a novel species from bulk and rhizospheric soils Int. J. Syst. Evol. Microbiol. 52 513–523PubMedGoogle Scholar
  91. Delorme, S., L. Philippot, V. Edel-Hermann, C. Deulvot, C. Mougel, and P. Lemanceau. 2003 Comparative genetic diversity of the narG, nosZ, and 16S rRNA genes in fluorescent pseudomonads Appl. Environ. Microbiol. 69 1004–1012PubMedCrossRefGoogle Scholar
  92. Den Dooren de Jong, L. E. 1926 Bijdrage tot de kennis van het mineralisatieproces: Thesis, Technische Hogeschool, Delft Nijgh & Van Ditmar Rotterdam, The Netherlands 1–199Google Scholar
  93. Dessaux, Y., P. Guyon, A. Petit, J. Tempe, M. Demarez, C. Legrain, M. E. Tate, and S. K. Farrand. 1988 Opine utilization by Agrobacterium spp.: Octopine-type Ti plasmids encode two pathways for mannopinic acid degradation J. Bacteriol. 170 2939–2946PubMedGoogle Scholar
  94. De Vos, P., and J. De Ley. 1983 Intra-and intergeneric similarities of Pseudomonas and Xanthomonas ribosomal ribonucleic acid cistrons Int. J. Syst. Bacteriol. 33 487–509Google Scholar
  95. De Vos, P., N. Goor, M. Gillis, and J. De Ley. 1985 Ribosomal ribonucleic acid cistron similarities of phytopathogenic Pseudomonas species Int. J. Syst. Bacteriol. 35 169–184Google Scholar
  96. De Vos, P., A. V. Landschoot, P. Segers, R. Tytgat, M. Gillis, M. Bauwens, R. Rossau, M. Goor, B. Pot, K. Kersters, P. Lizzaraga, and J. De Ley. 1989 Genotypic relationships and taxonomic localization of unclassified Pseudomonas and Pseudomonas-like strains by deoxy-ribonucleic acid: Ribosomal ribonucleic acid hybridizations Int. J. Syst. Bacteriol. 39 35–49Google Scholar
  97. Domínguez-Cuevas, P., and S. Marqués. 2004 Compiling sigma-70-dependent promoters In: J. L. Ramos (Ed.) Pseudomonas Kluwer Academic/Plenum Publishers New York, NY 2 319–344Google Scholar
  98. Don, R. H., and J. M. Pemberton. 1981 Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus J. Bacteriol. 145 681–686PubMedGoogle Scholar
  99. Dorn, E., M. Hellwig, W. Reineke, and H.-J. Knackmuss. 1974 Isolation and characterization of a 3-chlorobenzoate degrading pseudomonad Arch. Microbiol. 99 61–70PubMedCrossRefGoogle Scholar
  100. Dorn, E., and H.-J. Knackmuss. 1978a Chemical structure and biodegradability of halogenated aromatic compounds: Two catechol 1,2-dioxygenases from a 3-chlorobenzoate-grown pseudomonad Biochem. J. 174 73–84PubMedGoogle Scholar
  101. Dorn, E., and H.-J. Knackmuss. 1978b Chemical structure and biodegradability of halogenated aromatic compounds: Substituent effects on 1,2-dioxygenation of catechol Biochem. J. 174 85–94PubMedGoogle Scholar
  102. Douderoff, M., and N. J. Palleroni. 1974a Genus I: Pseudomonas Migula 1894 In: R. E. Buchanan and N. E. Gibbons (Eds.) Bergey’s Manual of Determinative Bacteriology, 8th ed Williams and Wilkins Baltimore, MD 217–243Google Scholar
  103. Douderoff, M., R. Contopoulou, R. Kunisawa, and N. J. Palleroni. 1974b Taxonomic validity of Pseudomonas denitrificans (Christensen) Bergey et al.: Request for an opinion Int. J. Syst. Bacteriol. 24 294–300Google Scholar
  104. Dubnau, D., I. Smith, P. Morell, and J. Marmur. 1965 Genetic conservation in Bacillus species and nucleic acid homologies Proc. Natl. Acad. Sci. USA 54 491–498PubMedCrossRefGoogle Scholar
  105. Dunn, N. W., and I. C. Gunsalus. 1973 Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida J. Bacteriol. 114 974–979PubMedGoogle Scholar
  106. Edwards, U., T. Rogall, H. Bloecker, M. Emde, and E. Boettger. 1989 Isolation and direct complete nucleotide determination of entire genes: Characterization of a gene coding for 16S ribosomal RNA Nucleic Acids Res. 17 7843–7853PubMedGoogle Scholar
  107. Eisenberg, R. C., S. J. Butters, S. C. Quay, and S. B. Friedman. 1974 Glucose uptake and phosphorylation in Pseudomonas fluorescens J. Bacteriol. 120 147–153PubMedGoogle Scholar
  108. Elomari, M., L. Coroler, B. Hoste, M. Gillis, D. Izard, and H. Leclerc. 1996 DNA relatedness among Pseudomonas strains isolated from natural mineral waters and proposal of Pseudomonas veronii sp. nov Int. J. Syst. Bacteriol. 46 1138–1144PubMedGoogle Scholar
  109. Elsner, A., F. Löffler, K. Miyashita, R. Müller, and F. Lingens. 1991 Resolution of 4-chlorobenzoate dehalogenase from Pseudomonas sp. strain CBS3 into three components Appl. Environ. Microbiol. 57 324–326PubMedGoogle Scholar
  110. Eltis, L. D., and J. T. Bolin. 1996 Evolutionary relationships among extradiol dioxygenases J. Bacteriol. 178 5930–5937PubMedGoogle Scholar
  111. Engesser, K.-H., E. Schmidt, and H.-J. Knackmuss. 1980 Adaptation of Alcaligenes eutrophus B9 and Pseudomonas sp. B13 to 2-fluorobenzoate as growth substrate Appl. Environ. Microbiol. 39 68–73PubMedGoogle Scholar
  112. Engesser, K.-H., V. Strubel, K. Christoglou, P. Fischer, and H. G. Rast. 1989 Dioxygenolytic cleavage of aryl ether bonds: 1,10-dihydro-1,10-dihydroxyfluoren-9-one, a novel arene dihydrodiol as evidence for angular dioxygenation of dibenzofuran FEMS Microbiol. Lett. 65 205–210CrossRefGoogle Scholar
  113. Erickson, B. D., and F. J. Mondello. 1992 Nucleotide sequencing and transcriptional mapping of the genes encoding biphenyl dioxygenase, a mutlicomponent polychlorinated biphenyl-degrading enzyme in Pseudomonas strain LB400 J. Bacteriol. 174 2903–2912PubMedGoogle Scholar
  114. Espinosa-Urgel, M., A. Salido, and J. L. Ramos. 2000 Genetic analysis of functions involved in adhesion of Pseudomonas putida to seeds J. Bacteriol. 182 2363–2369PubMedCrossRefGoogle Scholar
  115. Evans, W. C., B. S. W. Smith, P. Moss, and H. N. Fernley. 1971 Bacterial metabolism of 4-chlorophenoxyacetate Biochem. J. 122 509–517PubMedGoogle Scholar
  116. Faber, K., and M. C. Franssen. 1993 Prospects for the increased application of biocatalysts in organic transformations Trends Biotechnol. 11 461–470PubMedCrossRefGoogle Scholar
  117. Fett, W. F., S. F. Osman, M. L. Fishman, and T. S. Siebles 3rd. 1986 Alginate production by plant-pathogenic pseudomonads Appl. Environ. Microbiol. 52 466–473PubMedGoogle Scholar
  118. Fetzner, S., R. Müller, and F. Lingens. 1992 Purification and some properties of 2-halobenzoate 1,2-dioxygenase, a two component enzyme system from Pseudomonas cepacia 2CBS J. Bacteriol. 174 279–290PubMedGoogle Scholar
  119. Fialho, A. M., N. A. Zielinski, W. F. Fett, A. M. Chakrabarty, and A. Berry. 1990 Distribution of alginate gene sequences in the Pseudomonas rRNA homology group I-Azomonas-Azotobacter lineage of superfamily B procaryotes Appl. Environ. Microbiol. 56 436–443PubMedGoogle Scholar
  120. Filloux, A., S. de Bentzmann, M. Aurouze, A. Lazdunski, and I. Vallet. 2004 Fimbrial genes in Pseudomonas aeruginosa and Pseudomonas putida In: J. L. Ramos (Ed.) Pseudomonas Kluwer Academic/Plenum Publishers New York, NY 1 319–344Google Scholar
  121. Foght, J. M., P. M. Fedorak, M. R. Gray, and D. W. S. Westlake. 1996 Microbial desulfurization of petroleum In: H. I. Ehrlich and C. L. Brierley (Eds.) Microbial Mineral Recovery McGraw-Hill New York, NY 343–377Google Scholar
  122. Fortnagel, P., H. Harms, R.-M. Wittich, S. Krohn, H. Meyer, V. Sinnwell, H. Wilkes, and W. Francke. 1990 Metabolism of dibenzofuran by Pseudomonas sp. strain HH69 and the mixed culture HH27 Appl. Environ. Microbiol. 56 1148–1156PubMedGoogle Scholar
  123. Fox, G. E., E. Stackebrandt, R. B. Hespell, J. Gibson, J. Maniloff, T. A. Dyer, R. S. Wolfe, W. E. Balch, R. S. Tanner, L. J. Magrum, L. B. Zablen, R. Blakemore, R. Gupta, L. Bonen, B. J. Lewis, D. A. Stahl, K. R. Luehrsen, K. N. Chen, and C. R. Woese. 1980 The phylogeny of prokaryotes Science 209 457–463PubMedCrossRefGoogle Scholar
  124. Fox, G. E., J. D. Wisotzkey, and P. Jurtshuk. 1992 How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity Int. J. Syst. Bacteriol. 42 166–170PubMedGoogle Scholar
  125. Fraser, J. A., M. A. Davis, and M. J. Hynes. 2002 A gene from Aspergillus nidulans with similarity to URE2 of Saccahromyces cerevisiae encodes a glutathione-S-transferase which contributes to heavy metal and xenobiotic resistance Appl. Environ. Microbiol. 68 2802–2808PubMedCrossRefGoogle Scholar
  126. Friscina, A., I. Bertani, G. Devescovi, and C. Aguilar. 2004 Quorum sensing in the Burkholderia cepacia complex Res. Microbiol. 155 238–244PubMedCrossRefGoogle Scholar
  127. Fromin, N., W. Achouak, J. M. Thiéry, and T. Heulin. 2001 The genotypic diversity of Pseudomonas brassicacearum populations isolated from roots of arabidopsis thaliana: Influence of plant genotype FEMS Microbiol. Ecol. 37 21–29CrossRefGoogle Scholar
  128. Fuchs, R. 2001 Siderotyping—a powerful tool for the characterization of the pyoverdines Curr. Top. Med. Chem. 1 31–57PubMedCrossRefGoogle Scholar
  129. Fuenmayor, S. L., M. Wild, A. L. Boyes, and P. A. Williams. 1998 A gene cluster encoding steps in conversion of naphthalene to gentisate in Pseudomonas sp. strain U2 J. Bacteriol. 180 2522–2530PubMedGoogle Scholar
  130. Fukuda, M., Y. Yasukochi, Y. Kikuchi, Y. Nagata, K. Kimbara, H. Horiuchi, M. Takagi, and K. Yano. 1994 Identification of the bph A and bph B genes of Pseudomonas sp. strain KKs102 involved in degradation of biphenyl and polychlorinated biphenyls Biochem. Biophys. Res. Commun. 202 850–856PubMedCrossRefGoogle Scholar
  131. Fukumori, F., and C. P. Saint. 2001 Nucleotide sequences and regulational analysis of genes involved in conversion of aniline to catechol in Pseudomonas putida UCC22(pTDN1) J. Bacteriol. 179 399–408Google Scholar
  132. Fulthorpe, R. R., and R. C. Wyndham. 1991 Transfer and expression of the catabolic plasmid pBRC60 in wild bacterial recipients in a freshwater ecosystem Appl. Environ. Microbiol. 57 1546–1553PubMedGoogle Scholar
  133. Fuqua, W. C., S. C. Winans, and E. P. Greenberg. 1994 Quorum sensing in bacteria: The LuxR-LuxI family of cell density-responsive transcriptional regulators J. Bacteriol. 176 269–275PubMedGoogle Scholar
  134. Fuqua, C., S. C. Winans, and E. P. Greenberg. 1996 Census and consensus in bacterial ecosystems: The LuxR-LuxI family of quorum-sensing transcriptional regulators Ann. Rev. Microbiol. 50 27–751Google Scholar
  135. Furlong, M. A., D. R. Singleton, D. C. Coleman, and W. B. Whitman. 2002 Molecular and culture-based analyses of prokaryotic communities from an agricultural soil and the burrows and casts of the earthworm Lumbricus rubellus Appl. Environ. Microbiol. 68 1265–1279PubMedCrossRefGoogle Scholar
  136. Furukawa, K., N. Tomizuka, and A. Kamibayashi. 1979 Effect of chlorine substitution on the bacterial metabolism of various polychlorinated biphenyls Appl. Environ. Microbiol. 38 301–310PubMedGoogle Scholar
  137. Furukawa, K., and T. Miyazaki. 1986 Cloning of a gene cluster encoding biphenyl and chlorobiphenyl degradation in Pseudomonas pseudoalcaligenes J. Bacteriol. 166 392–398PubMedGoogle Scholar
  138. Galan, B., E. Diaz, and J. L. Garcia. 2000 Enhancing desulphurization by engineering a flavin reductase-encoding gene cassette in recombinant biocatalysts Environ. Microbiol. 2 687–694PubMedCrossRefGoogle Scholar
  139. Gallagher, L. A., S. L. McKnight, M. S. Kuznetsova, E. C. Pesci, and C. Manoil. 2002 Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa J. Bacteriol. 184 6472–6480PubMedCrossRefGoogle Scholar
  140. Gallardo, M. E., A. Ferrandez, V. De Lorenzo, J. L. Garcia, and E. Diaz. 1997 Designing recombinant Pseudomonas strains to enhance biodesulfurization J. Bacteriol. 179 7156–7160PubMedGoogle Scholar
  141. Gambello, M. J., and B. H. Iglewski. 1991 Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression J. Bacteriol. 173 3000–3009PubMedGoogle Scholar
  142. Gambello, M. J., S. Kaye, and B. H. Iglewski. 1993 LasR of Pseudomonas aeruginosa is a transcriptional activator of the alkaline protease gene (apr) and an enhancer of exotoxin A expression Infect. Immun. 61 1180–1184PubMedGoogle Scholar
  143. Garcia, B., E. R. Olivera, B. Minambres, M. Fernandez-Valverde, L. M. Canedo, M. A. Prieto, J. L. Garcia, M. Martinez, and J. M. Luengo. 1999 Novel biodegradable aromatic plastics from a bacterial source: Genetic and biochemical studies on a route of the phenylacetyl-Coa catabolon J. Biol. Chem. 274 29228–29241PubMedCrossRefGoogle Scholar
  144. Gaunt, J. K., and W. C. Evans. 1971 Metabolism of 4-chloro-2-methylphenoxyacetate by a soil pseudomonad Biochem. J. 122 533–542PubMedGoogle Scholar
  145. Ghiorse, W., and J. Wilson. 1988 Microbial ecology of the terrestrial subsurface Adv. Appl. Microbiol. 33 107–172PubMedGoogle Scholar
  146. Gibson, D. T., M. Hensley, H. Yoshioka, and T. J. Mabry. 1970 Formation of (+)-cis-2,3-dihydroxy-1-methylcyclohexa-4,6-diene from toluene by Pseudomonas putida Biochemistry 9 1626–1630PubMedCrossRefGoogle Scholar
  147. Gibson, D. T., and R. E. Parales. 2000 Aromatic hydrocarbon dioxygenases in environmental biotechnology Curr. Opin. Biotechnol. 11 236–243PubMedCrossRefGoogle Scholar
  148. Gilardi, G. L. 1985 Pseudomonas In: E. H. Lennette, A. Balows, W. H. Hausler Jr., and H. J. Shadomy (Eds.) Manual of Clinical Microbiology, 4th ed ASM Press Washington, DC 350–372Google Scholar
  149. Goldberg, J. B., W. L. Gorman, J. L. Flynn, and D. E. Ohman. 1993 A mutation in algN permits trans activation of alginate production by algT in Pseudomonas species J. Bacteriol. 175 1303–1308PubMedGoogle Scholar
  150. Govan, J. R. W. 1988 Alginate biosynthesis and other unusual characteristics associated with the pathogenesis of Pseudomonas aeruginosa in cystic fibrosis In: E. Griffiths, W. Donachie, and J. Stephen (Eds.) Bacterial Infections of Respiratory and Gastrointestinal Mucosae IRL Press Oxford, UK 67–96Google Scholar
  151. Govan, J. R., and V. Deretic. 1996 Microbial pathogenesis in cystic fibrosis: Mucoid Pseudomonas aeruginosa and Burkholderia cepacia Microbiol. Rev. 60 539–574PubMedGoogle Scholar
  152. Guasp, K., E. R. B. Moore, J. Lalucat, and A. Bennasar. 2000 Utility of internally transcribed 16S-23S rDNA spacer regions for the definition of Pseudomonas stutzeri genomovars and other Pseudomonas species Int. J. Syst. Bacteriol. 50 1629–1639Google Scholar
  153. Gundlapalli, S., N. Reddy, G. I. Matsumoto, P. Schumann, E. Stackebrandt, and S. Shivaji. 2004 Psychrophilic pseudomonads from Antarctica: Pseudomonas Antarctica sp. nov., Pseudomonas meridiana sp. nov. and Pseudomonas proteolytica sp. nov Int. J. Syst. Evol. Microbiol. 54 713–719CrossRefGoogle Scholar
  154. Gunsalus, I. C. 1996 Pseudomonas: A century of biodiversity In: T. Nakazawa, K. Furukawa, D. Haas, and S. Silver (Eds.) Molecular Biology of Pseudomonads ASM Press Washington, DC 8–21Google Scholar
  155. Haas, D., C. Blumer, and C. Keel. 2000 Biocontrol ability of fluorescent pseudomonads genetically dissected: Importance of positive feedback regulation Curr. Opin. Biotechnol. 11 290–297PubMedCrossRefGoogle Scholar
  156. Haas, D., C. Keel, and C. Reimmann. 2002 Signal transduction in plant-beneficial rhizobacteria with biocontrol properties Ant. v. Leeuwenhoek 81 385–395CrossRefGoogle Scholar
  157. Haas, D., and C. Keel. 2003 Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease Ann. Rev. Phytopathol. 41 117–153CrossRefGoogle Scholar
  158. Habe, H., J. S. Chung, J. H. Lee, K. Kasuga, T. Yoshida, H. Nojiri, and T. Omori. 2001 Degradation of chlorinated dibenzofurans and dibenzo-p-dioxins by two types of bacteria having angular dioxygenases with different features Appl. Environ. Microbiol. 67 3610–3617PubMedCrossRefGoogle Scholar
  159. Habe, H., Y. Ashikawa, Y. Saiki, T. Yoshida, H. Nojiri, and T. Omori. 2002 Sphingomonas sp. strain KA1, carrying a carbazole dioxygenase gene homologue, degrades chlorinated dibenzo-p-dioxins in soil FEMS Microbiol. Lett. 211 43–49PubMedCrossRefGoogle Scholar
  160. Häggblom, M. M., M. D. Rivera, and L. Y. Young. 1996 Anaerobic degradation of halogenated benzoic acids coupled to denitrification observed in a variety of sediment and soil samples FEMS Microbiol. Lett. 144 213–219PubMedCrossRefGoogle Scholar
  161. Haigler, B. E., S. F. Nishino, and J. C. Spain. 1988 Degradation of 1,2-dichlorobenzene by a Pseudomonas sp Appl. Environ. Microbiol. 54 294–301PubMedGoogle Scholar
  162. Harayama, S., M. Rekik, A. Bairoch, E. L. Neidle, and L. N. Ornston. 1991 Potential DNA slippage structures acquired during evolutionary divergence of Acinetobacter calcoaceticus chromosomal benABC and Pseudomonas putida TOL pWW0 plasmid xylXYZ, genes encoding benzoate dioxygenases J. Bacteriol. 173 7540–7548PubMedGoogle Scholar
  163. Harazama, S., and M. Rekik. 1993 Comparison of the nucleotide sequences of the meta-cleavage pathway genes of TOL plasmid pWW0 from Pseudomonas putida with other meta-cleavage genes suggests that both single and multiple nucleotide substitutions contribute to enzyme evolution Molec. Gen. Genet. 239 81–89Google Scholar
  164. Harwood, C. S., and R. E. Parales. 1996 The β-ketoadipate pathway and the biology of self-identity Ann. Rev. Microbiol. 50 553–590CrossRefGoogle Scholar
  165. Havel, J., and W. Reineke. 1991 Total degradation of various chlorobiphenyls by cocultures and in vivo constructed hybrid pseudomonads FEMS Microbiol. Lett. 78 163–170CrossRefGoogle Scholar
  166. Heeb, S., C. Blumer, and D. Haas. 2002 Regulatory RNA as mediator in GacA/RsmAdependent global control of exoproduct formation in Pseudomonas fluorescens CHA0 J. Bacteriol. 184 1046–1056PubMedCrossRefGoogle Scholar
  167. Hendrickson, E. L., J. Plotnikova, S. Mahajan-Miklos, L. G. Rahme, and F. M. Ausubel. 2001 Differential roles of the Pseudomonas aeruginosa PA14 rpoN gene in pathogenicity in plants, nematodes, insects, and mice J. Bacteriol. 183 7126–7134PubMedCrossRefGoogle Scholar
  168. Hernandez, B. S., F. K. Higson, R. Kondrat, and D. D. Focht. 1991 Metabolism of and inhibition by chlorobenzoates in Pseudomonas putida P111 Appl. Environ. Microbiol. 57 3361–3366PubMedGoogle Scholar
  169. Hickey, W. J., and D. D. Focht. 1990 Degradation of mono-, di-, and trihalogenated benzoic acids by Pseudomonas aeruginosa JB2 Appl. Environ. Microbiol. 56 3842–3850PubMedGoogle Scholar
  170. Hickey, W. J., V. Brenner, and D. D. Focht. 1992 Mineralization of 2-chloro-and 2,5-dichlorobiphenyl by Pseudomonas sp. strain UCR2 FEMS Microbiol. Lett. 98 175–180CrossRefGoogle Scholar
  171. Hickey, W. J., and G. Sabat. 2001 Integration of matrix-assisted laser desorption ionization-time of flight mass spectrometry and molecular cloning for the identification and functional characterization of mobile ortho-halobenzoate oxygenase genes in Pseudomonas aeruginosa strain JB2 Appl. Environ. Microbiol. 67 5648–5655PubMedCrossRefGoogle Scholar
  172. Higson, F. K., and D. D. Focht. 1990 Degradation of 2-bromobenzoic acid by a strain of Pseudomonas aeruginosa Appl. Environ. Microbiol. 56 1615–1619PubMedGoogle Scholar
  173. Higson, F. K., and D. D. Focht. 1992 Utilization of 3-chloro-2-methylbenzoic acid by Pseudomonas cepacia MB2 through the meta fission pathway Appl. Environ. Microbiol. 58 2501–2504PubMedGoogle Scholar
  174. Hills, G. M. 1940 Ammonia production by pathogenic bacteria Biochem. J. 34 1057–1069PubMedGoogle Scholar
  175. Hiltner, L. 1904 Über neuer Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter bessonderer Berüksichtigung der Gründung und Brache Arb. Dtsch. Landwirtsch. Ges. Berl. 98 59–78Google Scholar
  176. Hobbs, M., E. S. Collie, P. D. Free, S. P. Livingstone, and J. S. Mattick. 1993 PilS and PilR, a two-component transcriptional regulatory system controlling expression of type 4 fimbriae in Pseudomonas aeruginosa Molec. Microbiol. 7 669–682Google Scholar
  177. Hofer, B., S. Backhaus, and K. N. Timmis. 1994 The biphenyl/polychlorinated biphenyl-degradation locus (bph) of Pseudomonas sp. LB400 encodes four additional metabolic enzymes Gene 144 9–16PubMedCrossRefGoogle Scholar
  178. Hollender, J., W. Dott, and J. Hopp. 1994 Regulation of chloro-and ethylphenol degradation in Comamonas testosteroni JH5 Appl. Environ. Microbiol. 60 2330–2338PubMedGoogle Scholar
  179. Hollender, J., J. Hopp, and W. Dott. 1997 Degradation of 4-chlorophenol via the meta cleavage pathway by Comamonas testosteroni JH5 Appl. Environ. Microbiol. 63 4567–4572PubMedGoogle Scholar
  180. Hooper, S. W., T. C. Dockendorf, and G. S. Sayler. 1989 Characteristics and restriction analysis of the 4-chlorobiphenyl catabolic plasmid, pSS50 Appl. Environ. Microbiol. 55 1286–1288PubMedGoogle Scholar
  181. Hrywna, Y., T. V. Tsoi, O. V. Maltseva, J. F. Quensen, and J. M. Tiedje. 1999 Construction and characterization of two recombinant bacteria that grow on ortho-and para-substituted chlorobiphenyls Appl. Environ. Microbiol. 65 2163–2169PubMedGoogle Scholar
  182. Hudlicky, T., D. Gonzalez, and D. T. Gibson. 1999 Enzymatic dihydroxylation of aromatics in enantioselective synthesis: Expanding asymmetric methodology Aldrichimica Acta 32 35–62Google Scholar
  183. Hugh, R., and G. L. Gilardi. 1980 Pseudomonas In: E. H. Lennette, A. Balows, W. H. Hausler Jr., and J. P. Truant (Eds.) Manual of Clinical Microbiology, 3rd ed ASM Press Washington, DC 288–317Google Scholar
  184. Hunkapiller, T., R. J. Kaiser, B. F. Koop, and L. Hood. 1991 Large-scale and automated DNA sequence determination Science 254 59–67PubMedCrossRefGoogle Scholar
  185. Iida, T., Y. Mukouzaka, K. Nakamura, and T. Kudo. 2002 Plasmid-borne genes code for an angular dioxygenase involved in dibenzofuran degradation by Terrabacter sp. strain YK3 Appl. Environ. Microbiol. 68 3716–3723PubMedCrossRefGoogle Scholar
  186. Ikawa, M. 1967 Bacterial phosphatides and natural relationships Bacteriol. Rev. 31 54–64PubMedGoogle Scholar
  187. Ikemoto, S., H. Kuraishi, K. Komagata, R. Azuma, T. Suto, and H. Muroka. 1978 Cellular fatty acid composition in Pseudomonas species J. Gen. Appl. Microbiol. 24 199–213Google Scholar
  188. Ivanova, E. P., N. M. Gorshkova, T. Sawabe, K. Hayashi, N. I. Kalinovskaya, A. M. Lysenko, N. V. Zhukova, D. V. Nicolau, T. A. Kuznetsova, V. V. Mikhailov, and R. Christen. 2002 Pseudomonas extremorientalis sp. nov., isolated from a drinking water reservoir Int. J. Syst. Evol. Microbiol. 52 2113–2120PubMedCrossRefGoogle Scholar
  189. Jaeger, K. E., B. Schneidinger, K. Liebeton, D. Haas, M. T. Reetz, S. Philippou, G. Gerritse, S. Ransac, and B. W. Dijkstra. 1996 Lipase of Pseudomonas aeruginosa: Molecular biology and biotechnological application In: T. Nakazawa, K. Furukawa, D. Haas, and S. Silver (Eds.) Molecular Biology of Pseudomonads ASM Press Washington, DC 319–330Google Scholar
  190. Janke, D., and W. Fritsche. 1979 Dechlorierung von 4-Chlorphenol nach extradioler Ringspaltung durch Pseudomonas putida Z. Allgem. Mikrobiol. 19 139–141Google Scholar
  191. Jann, A., H. Matsumoto, and D. Haas. 1988 The fourth arginine catabolic pathway of Pseudomonas aeruginosa J. Gen. Microbiol. 134 1043–1053PubMedGoogle Scholar
  192. Jaspers, M. C., A. Schmid, M. H. Sturme, D. A. Goslings, H. P. Kohler, and J. Roelof Van Der Meer. 2001 Transcriptional organization and dynamic expression of the hbpCAD genes, which encode the first three enzymes for 2-hydroxybiphenyl degradation in Pseudomonas azelaica HBP1 J. Bacteriol. 183 270–279PubMedCrossRefGoogle Scholar
  193. Jensen, L. J., M. Skovgaard, T. Sicheritz-Pontén, N. T. Hansen, H. Johansson, M. K. Jørgensen, K. Kiil, P. F. Hallin, and D. Ussery. 2004 Comparative genomics of four Pseudomonas species In: J. L. Ramos (Ed.) Pseudomonas Kluwer Academic/Plenum Publishers New York, NY 1 139–164Google Scholar
  194. Jimenez, J. I., B. Minambres, J. L. Garcia, and E. Diaz. 2002 Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440 Environ. Microbiol. 4 824–841PubMedCrossRefGoogle Scholar
  195. Johnson, J. L. 1984 Nucleic acids in bacterial classification In: N. R. Krieg and J. G. Holt (Eds.) Bergey’s Manual of Systematic Bacteriology, 1st ed Academic Press New York, NY 1 8–11Google Scholar
  196. Johnson, J. L., and N. J. Palleroni. 1989 Deoxyribonucleic acid similarities among Pseudomonas species Int. J. Syst. Bacteriol. 39 230–235Google Scholar
  197. Jones, R., V. Pagmantidis, and P. A. Williams. 2000 sal genes determining the catabolism of salicylate esters are part of a superoperonic cluster of catabolic genes in Acinetobacter sp. strain ADP1 J. Bacteriol. 182 2018–2025PubMedCrossRefGoogle Scholar
  198. Jurtshuk Jr., P., and D. N. McQuitty. 1976 Use of a quantitative oxidase test for characterizing oxidative metabolism in bacteria Appl. Environ. Microbiol. 31 668–679PubMedGoogle Scholar
  199. Kahnert, A., P. Vermeij, C. Wietek, P. James, T. Leisinger, and M. A. Kertesz. 2000 The ssu locus plays a key role in organosulfur metabolism in Pseudomonas putida S-313 J. Bacteriol. 182 2869–2878PubMedCrossRefGoogle Scholar
  200. Kaschabek, S. R., and W. Reineke. 1992 Maleylacetate reductase of Pseudomonas sp. strain B13: Dechlorination of chloromaleylacetates, metabolites in the degradation of chloroaromatic compounds Arch. Microbiol. 158 412–417PubMedCrossRefGoogle Scholar
  201. Kaschabek, S. R., T. Kasberg, D. Müller, A. E. Mars, D. B. Janssen, and W. Reineke. 1998 Degradation of chloroaromatics: Purification and characterization of a novel type of chlorocatechol 2,3-dioxygenase of Pseudomonas putida GJ31 J. Bacteriol. 180 296–302PubMedGoogle Scholar
  202. Kasuga, K., H. Habe, J. S. Chung, T. Yoshida, H. Nojiri, H. Yamane, and T. Omori. 2001 Isolation and characterization of the genes encoding a novel oxygenase component of angular dioxygenase from the Gram-positive dibenzofuran-degrader Terrabacter sp strain DBF63 Biochem. Biophys. Res. Commun. 283 195–204PubMedCrossRefGoogle Scholar
  203. Kaulmann, U., S. R. Kaschabek, and M. Schlömann. 2001 Mechanism of chloride elimination from 3-chloro-and 2,4-dichloro-cis,cis-muconate: New insight obtained from analysis of muconate cycloisomerase variant CatB-K169A J. Bacteriol. 183 4551–4561PubMedCrossRefGoogle Scholar
  204. Kersten, P., S. Dagley, J. Whittaker, D. Arciero, and J. Lipscomb. 1982 2-Pyrone-4,6-dicarboxylic acid, a catabolite of gallic acids in Pseudomonas species J. Bacteriol. 152 1154–1162PubMedGoogle Scholar
  205. Kersten, P., P. J. Chapman, and S. Dagley. 1985 Enzymatic release of halogens or methanol from some substituted protocatechuic acids J. Bacteriol. 162 693–697PubMedGoogle Scholar
  206. Kersters, K., W. Ludwig, M. Vancanneyt, P. DeVos, M. Gillis, and K.-H. Schleifer. 1996 Recent changes in the classification of the pseudomonads: An overview Syst. Appl. Microbiol. 19 465–477Google Scholar
  207. Kim, K., S. Lee, K. Lee, and D. Lim. 1998 Isolation and characterization of toluene-sensitive mutants from the toluene-resistant bacterium Pseudomonas putida GM73 J. Bacteriol. 180 3692–3696PubMedGoogle Scholar
  208. Kimura, N., A. Nishi, M. Goto, and K. Furukawa. 1997 Functional analyses of a variety of chimeric dioxygenases constructed from two biphenyl dioxygenases that are similar structurally but different functionally J. Bacteriol. 179 3936–3943PubMedGoogle Scholar
  209. King, E. O., M. K. Ward, and D. E. Rainey. 1954 Two simple media for the demonstration of pyocyanin and fluorescin J. Lab. Clin. Med. 44 301–307PubMedGoogle Scholar
  210. Kitayama, A., T. Achioku, T. Yanagawa, K. Kanou, M. Kikuchi, H. Ueda, E. Suzuki, H. Nishimura, T. Nagamune, and Y. Kawakami. 1996 Cloning and characterization of extradiol aromatic ring-cleavage dioxygenases from Pseudomonas aeruginosa JI104 J. Ferment. Bioengin. 82 217–223CrossRefGoogle Scholar
  211. Klages, U., and F. Lingens. 1980 Degradation of 4-chlorobenzoic acid by a Pseudomonas sp Zbl. Bakteriol. Parasit. Infekt. Hyg. Abt. 1. Orig. C 215–223Google Scholar
  212. Klages, U., A. Markus, and F. Lingens. 1981 Degradation of 4-chlorophenylacetic acid by a Pseudomonas species J. Bacteriol. 146 64–68PubMedGoogle Scholar
  213. Klecka, G. M., and D. T. Gibson. 1979 Metabolism of dibenzo(1,4)dioxin by a Pseudomonas species Biochem. J. 180 639–645PubMedGoogle Scholar
  214. Klecka, G. M., and D. T. Gibson. 1981 Inhibition of catechol 2,3-dioxygenase from Pseudomonas putida by 3-chlorocatechol Appl. Environ. Microbiol. 41 1159–1165PubMedGoogle Scholar
  215. Kohler, T., S. Harayama, J. L. Ramos, and K. N. Timmis. 1989 Involvement of Pseudomonas putida RpoN sigma factor in regulation of various metabolic functions J. Bacteriol. 171 4326–4333PubMedGoogle Scholar
  216. Kozlovsky, S. A., G. M. Zaitsev, F. Kunc, J. Gabriel, and A. M. Boronin. 1993 Degradation of 2-chlorobenzoic and 2,5-dichlorobenzoic acids in pure culture by Pseudomonas stutzeri Folia Microbiol. 38 371–375Google Scholar
  217. Kragelund, L., K. Leopold, and O. Nybroe. 1996 Outer membrane protein heterogeneity within Pseudomonas fluorescens and P. putida and use of an OprF antibody as a probe for rRNA homology Group I Pseudomonads Appl. Environ. Microbiol. 62 480–485PubMedGoogle Scholar
  218. Krooneman, J., E. B. A. Wieringa, E. R. B. Moore, J. Gerritse, R. A. Prins, and J. C. Gottschal. 1996 Isolation of Alcaligenes sp. strain L6 at low oxygen concentrations and degradation of 3-chlorobenzoate via a pathway not involving (chloro)catechols Appl. Environ. Microbiol. 62 2427–2434PubMedGoogle Scholar
  219. Krooneman, J., E. R. B. Moore, J. C. L. van Velzen, R. A. Prins, L. J. Forney, and J. C. Gottschal. 1998 Competition for oxygen and 3-chlorobenzoate between two aerobic bacteria using different degradation pathways FEMS Microbiol. Ecol. 26 171–179CrossRefGoogle Scholar
  220. Krooneman, J., A. O. Sliekers, T. M. P. Gomes, L. J. Forney, and J. C. Gottschal. 2000 Characterization of 3-chlorobenzoate degrading aerobic bacteria isolated under various environmental conditions FEMS Microbiol. Ecol. 32 53–59PubMedCrossRefGoogle Scholar
  221. Kwon, S. W., J. S. Kim, I. C. Park, S. H. Yoon, D. H. Park, C. K. Lim, and S. J. Go. 2003 Pseudomonas koreensis sp. nov., Pseudomonas umsongensis sp. nov. and Pseudomonas jinjuensis sp. nov., novel species from farm soils in Korea Int. J. Syst. Evol. Microbiol. 53 21–27PubMedCrossRefGoogle Scholar
  222. Lambowitz, A. M., and M. Belfort. 1993 Introns as mobile genetic elements Ann. Rev Biochem. 62 587–622PubMedCrossRefGoogle Scholar
  223. Lamont, I. L., P. A. Beare, U. Ochsner, A. I. Vasil, and M. L. Vasil. 2002 Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa Proc. Natl. Acad. Sci. USA 99 7072–7077PubMedCrossRefGoogle Scholar
  224. Lane, D., B. Pace, G. J. Olsen, D. A. Stahl, M. L. Sogin, and N. R., Pace. 1985 Rapid determination of 16S ribosmal RNA sequences for phylogenetic analysis Proc. Natl. Acad. Sci. USA 82 6955–6959PubMedCrossRefGoogle Scholar
  225. Latifi, A., M. K. Winson, M. Foglino, B. W. Bycroft, G. S. Stewart, A. Lazdunski, and P. Williams. 1995 Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1 Molec. Microbiol. 17 333–343Google Scholar
  226. Latifi, A., M. Foglino, K. Tanaka, P. Williams, and A. Lazdunski. 1996 A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS Molec. Microbiol. 21 1137–1146CrossRefGoogle Scholar
  227. Latorre, J., W. Reineke, and H.-J. Knackmuss. 1984 Microbial metabolism of chloroanilines: Enhanced evolution by natural genetic exchange Arch. Microbiol. 140 159–165CrossRefGoogle Scholar
  228. Lee, K. Y., R. Wahl, and E. Barbu. 1956 Contenu en bases puriques et pyrimidiques des acides désoxyribonucléiques des bactéries Ann. Inst. Pasteur 91 212–224Google Scholar
  229. Lee, J., K. R. Min, Y.-C. Kim, C.-K. Kim, J.-Y. Lim, H. Yoon, K.-H. Min, K.-S. Lee, and Y. Kim. 1995 Cloning of salicylate hydroxylase gene and catechol 2,3-dioxygenase gene and sequencing of an intergenic sequence between the two genes of Pseudomonas putida KF715 Biochem. Biophys. Res. Commun. 211 382–388PubMedCrossRefGoogle Scholar
  230. Lehrbach, P. R., J. Zeyer, W. Reineke, H.-J. Knackmuss, and K. N. Timmis. 1984 Enzyme recruitment in vitro: Use of cloned genes to extend the range of haloaromatics degraded by Pseudomonas sp. strain B13 J. Bacteriol. 158 1025–1032PubMedGoogle Scholar
  231. Liang, P.-H., G. Yang, and D. Dunaway-Mariano. 1993 Specificity of 4-chlorobenzoyl coenzyme A dehalogenase catalyzed dehalogenation of a halogenated aromatics Biochemistry 32 12245–12250PubMedCrossRefGoogle Scholar
  232. Lindow, S. E. 1995 Control of epiphytic ice nucleation-active bacteria for management of plant frost injury In: R. E. Lee, G. J. Warren, and L. V. Gusta (Eds.) Biological Ice Nucleation and ist Applications APS Press St. Paul, MN 239–256Google Scholar
  233. Liu, T., and P. J. Chapman. 1984 Purification and properties of a plasmid-encoded 2,4-dichlorophenol hydroxylase FEBS Lett. 173 314–318PubMedCrossRefGoogle Scholar
  234. Löffler, F., and R. Müller. 1991 Identification of 4-chlorobenzoyl-coenzyme A as intermediate in the dehalogenation catalyzed by 4-chlorobenzoate dehalogenase from Pseudomonas sp CBS3 FEBS Lett. 290 224–226PubMedCrossRefGoogle Scholar
  235. Löffler, F., R. Müller, and F. Lingens. 1992 Purification and properties of 4-halobenzoate-Coenzyme A ligase from Pseudomonas sp. CBS3 Biol. Chem. Hoppe-Seyler 373 1001–1007PubMedGoogle Scholar
  236. Löffler, F., F. Lingens, and R. Müller. 1995 Dehalogenation of 4-chlorobenzoate: Characterisation of 4-chorobenzoyl-coenzyme A dehalogenase from Pseudomonas sp. CBS3 Biodegredation 6 203–212CrossRefGoogle Scholar
  237. Loper, J. E., and M. D. Henkels. 1999 Utilization of heterologous siderophores enhaces levels of iron available to Pseudomonas putida in the rhizosphere Appl. Environ. Microbiol. 65 5357–5363PubMedGoogle Scholar
  238. Louie, T. M., C. M. Webster, and L. Y. Xun. 2002 Genetic and biochemical characterization of a 2,4,6-trichlorophenol degradation pathway in Ralstonia eutropha JMP134 J. Bacteriol. 184 3492–3500PubMedCrossRefGoogle Scholar
  239. Lu, C.-D., Z. Yang, and W. Li. 2004 Transcriptome analysis of the ArgR regulon in Pseudomonas aeruginosa J. Bacteriol. 186 3855–3861PubMedCrossRefGoogle Scholar
  240. Lugtenberg, B. J. J., and L. A. de Weger. 1992 Plant root colonization by Pseudomonas spp In: E. Galli, S. Silver, and B. Witholt (Eds.) Pseudomonas: Molecular Biology and Biotechnology ASM Press Washington, DC 131–191Google Scholar
  241. Lugtenberg, B. J. J., L. C. Dekkers, and G. V. Bloemberg. 2001 Molecular determinants of rhizosphere colonization by Pseudomonas Ann. Rev. Phytopathol. 39 461–490CrossRefGoogle Scholar
  242. Lugtenberg, B. J. J., and G. V. Bloemberg. 2004 Life in the rhizosphere In: J. L. Ramos (Ed.) Pseudomonas Kluwer Academic/Plenum Publishers New York, NY 1 403–430Google Scholar
  243. Lyi, S. M., S. Jafri, and S. C. Winans. 1999 Mannopinic acid and agropinic acid catabolism region of the octopine-type Ti plasmid pTi5955 Molec. Microbiol. 31 339–347CrossRefGoogle Scholar
  244. Ma, J. F., U. A. Ochsner, M. G. Klotz, V. K. Nanayakkara, M. L. Howell, Z. Jonhsoin, J. E. Posey, M. L. Vasil, J. J. Monaco, and D. J. Hasset. 1999 Bacterioferritin A modulates catalase A (katA) activity and resistance to hydrogen peroxide in Pseudomonas aeruginosa J Bacteriol. 181(12) 3730–3742PubMedGoogle Scholar
  245. MacGregor, C. H., S. K. Arora, P. Hager, M. B. Dail, and P. V. Phibbs Jr. 1996 The nucleotide sequence of the Pseudomonas aeruginosa pyrE-crc-rph region and the purification of the crc gene product J. Bacteriol. 178 5627–5635PubMedGoogle Scholar
  246. Mae, A. A., and A. L. Heinaru. 1994 Transposon-mediated mobilization of chromosomally located catabolic operons of the CAM plasmid by TOL plasmid transposon Tn4652 and CAM plasmid transposon Tn3614 Microbiology 140 915–912PubMedGoogle Scholar
  247. Mahillon, J., and M. Chandler. 1998 Insertion sequences Microbiol. Molec. Biol. Rev. 62 725–774Google Scholar
  248. Manaia, C. M., and E. R. B. Moore. 2002 Pseudomonas thermotolerans sp. nov., a thermotolerant species of the genus Pseudomonas sensu stricto Int. J. Syst. Evol. Microbiol. 52 2203–2209PubMedCrossRefGoogle Scholar
  249. Marmur, J., and P. Doty. 1962 Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature J. Molec. Biol. 5 109–118PubMedGoogle Scholar
  250. Marmur, J., S. Falkow, and M. Mandelm. 1963 New approaches to bacterial taxonomy Ann. Rev. Microbiol. 17 329–372CrossRefGoogle Scholar
  251. Marqués, S., A. Holtel, K. N. Timmis, and J. L. Ramos. 1994 Transcriptional induction kinetics from the promoters of the catabolic pathways of TOL plasmid pWW0 of Pseudomonas putida for metabolism of aromatics J. Bacteriol. 176 2517–2524PubMedGoogle Scholar
  252. Mars, A. E., T. Kasberg, S. R. Kaschabek, M. H. van Agteren, D. B. Janssen, and W. Reineke. 1997 Microbial degradation of chloroaromatics: Use of the meta-cleavage pathway for mineralization of chlorobenzene J. Bacteriol. 179 4530–4537PubMedGoogle Scholar
  253. Mars, A. E., J. Kingma, S. R. Kaschabek, W. Reineke, and D. B. Janssen. 1999 Conversion of 3-chlorocatechol by various catechol 2,3-dioxygenases and sequence analysis of the chlorocatechol dioxygenase region of Pseudomonas putida GJ31 J. Bacteriol. 181 1309–1318PubMedGoogle Scholar
  254. Martínez-Bueno, M. A., R. Tobes, M. Rey, and J. L. Ramos. 2002 Detection of multiple extracytoplasmic function (ECF) sigma factors in the genome of Pseudomonas putida KT2440 and their counterparts in Pseudomonas aeruginosa PA01 Environ. Microbiol. 4 842–855PubMedCrossRefGoogle Scholar
  255. Martins dos Santos, V. A. P., K. N. Timmis, B. Tümmler, and C. Weinel. 2004 Genomic features of Pseudomonas putida strain KT2440 In: J. L. Ramos (Ed.) Pseudomonas Kluwer Academic/Plenum Publishers New York, NY 1 77–111Google Scholar
  256. Matthysse, A. G. 1983 Role of bacterial cellulose fibrils in Agrobacterium tumefaciens infection J. Bacteriol. 154 906–915PubMedGoogle Scholar
  257. McCullar, M. V., V. Brenner, R. H. Adams, and D. D. Focht. 1994 Construction of a novel polychlorinated biphenyl-degrading bacterium: Utilization of 3,4-dichlorobiphenyl by Pseudomonas acidovorans M3GY Appl. Environ. Microbiol. 60 3833–3839PubMedGoogle Scholar
  258. McFall, S. M., M. R. Parsek, and A. M. Chakrabarty. 1997 2-Chloromuconate and ClcR-mediated activation of the clcABD operon: In vitro transcriptional and DNase I footprint analyses J. Bacteriol. 179 3655–3663PubMedGoogle Scholar
  259. McGowan, C., R. Fulthorpe, A. Wright, and J. M. Tiedje. 1998 Evidence for interspecies gene transfer in the evolution of 2,4-dichlorophenoxyacetic acid degraders Appl. Environ. Microbiol. 64 4089–4092PubMedGoogle Scholar
  260. McKay, D. B., M. Seeger, M. Zielinski, B. Hofer, and K. N. Timmis. 1997 Heterologous expression of biphenyl dioxygenase-encoding genes from a Gram-positive broad-spectrum polychlorinated biphenyl degrader and characterization of chlorobiphenyl oxidation by the gene products J. Bacteriol. 179 1924–1930PubMedGoogle Scholar
  261. McKnight, S. L., B. H. Iglewski, and E. C. Pesci. 2000 The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa J. Bacteriol. 182 2702–2708PubMedCrossRefGoogle Scholar
  262. Mercier, J., and S. E. Lindow. 2000 Role of leaf surface sugars in colonization of plants by bacterial epiphytes Appl. Environ. Microbiol. 66 369–374PubMedGoogle Scholar
  263. Mermod, N., S. Harayama, and K. N. Timmis. 1986 New route to bacterial production of indigo Bio/Technology 4 321–324CrossRefGoogle Scholar
  264. Meyer, J. M., and J.-M. Hornsperger. 1998 Iron metabolism and siderophores in Pseudomonas and related species In: T. C. Monte (Ed.) Biotechnology Handbooks, Volume 10: Pseudomonas Plenum Publishing New York, NY 201–243Google Scholar
  265. Meyer, J.-M., V. A. Geoffroy, N. Baïda, L. Gardan, D. Izard, P. Lemanceau, W. Achouak, and N. J. Palleroni. 2002 Siderophore typing, a powerful tool for the identification of fluorescent and nonfluorescent pseudomonads Appl. Environ. Microbiol. 68 2745–2753PubMedCrossRefGoogle Scholar
  266. Migula, W. 1895 Ueber ein neues System der Bakterien Arb. Bakteriol. Inst. Technisch. Hochsch. Karlsruhe 1 235–238Google Scholar
  267. Migula, W. 1900 System der Bakterien: Handbuck der Morphologie, Entwickelung-geschichte und Systematik der Bakterien Verlag von Gustav Fischer Jena, Germany II 875–954Google Scholar
  268. Mohn, W. W., A. E. Wilson, P. Bicho, and E. R. B. Moore. 1999 Physiological and phylogenetic diversity of bacteria growing on resin acids Syst. Appl. Microbiol. 22 68–78PubMedGoogle Scholar
  269. Mokross, H., E. Schmidt, and W. Reineke. 1990 Degradation of 3-chlorobiphenyl by in vivo constructed hybrid pseudomonads FEMS Microbiol. Lett. 71 179–186CrossRefGoogle Scholar
  270. Molina, L., C., Ramos, E. Duque, M.-C. Ronchel, J. M., Gracía, L. Wyke, and J. L. Ramos. 2000 Survival of Pseudomonas putida KT2440 in soil and the rhizosphere of plants under greenhouse and environmental conditions Soil Biol. Biochem. 32 315–321CrossRefGoogle Scholar
  271. Moore, E. R. B., M., Mau, A. Arnscheidt, E. C. Böttger, R. A. Hutson, M. D. Collins, Y. Van De Peer, R. De Wachter, and K. N. Timmis. 1996 The determination and comparison of the 16S rRNA gene sequences of species of the genus Pseudomonas (sensu stricto) and estimation of the natural intrageneric relationships Syst. Appl. Microbiol. 19 478–492Google Scholar
  272. Morris, C. E., J. M. Monier, and M. A. Jacques. 1998 A technique to quantify the population size and composition of the biofilm component in communities of bacteria in the phyllosphere Appl. Environ. Microbiol. 64 4789–4795PubMedGoogle Scholar
  273. Moss, C. W., and S. B. Dees. 1976 Cellular fatty acids and metabolic products of Pseudomonas species obtained from clinical specimens J. Clin. Microbiol. 4 492–502PubMedGoogle Scholar
  274. Müller, R., J. Thiele, U. Klages, and F. Lingens. 1984 Incorporation of [18O] water into 4-hydroxybenzoic acid in the reaction of 4-chlorobenzoate dehalogenase from Pseudomonas spec CBS3 Biochem. Biophys. Res. Commun. 124 669–674CrossRefGoogle Scholar
  275. Mullis, K. B., and F. Faloona. 1987 Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction Meth. Enzymol. 155 335–350PubMedGoogle Scholar
  276. Murray, K., C. J. Duggleby, J. M. Sala-Trepat, and P. A. Williams. 1972 The metabolism of benzoate and methylbenzoates via the meta-cleavage by Pseudomonas arvilla mt-2 Eur. J. Biochem. 28 301–310PubMedCrossRefGoogle Scholar
  277. Nakatsu, C., and R. C. Wyndham. 1993 Cloning and expression of the transposable chlorobenzoate-3,4-dioxygenase genes of Alcaligenes sp. BR60 Appl. Environ. Microbiol. 59 3625–3633PubMedGoogle Scholar
  278. Nakatsu, C. H., R. R. Fulthorpe, B. A. Holland, M. C. Peel, and R. C. Wyndham. 1995a The phylogenetic distribution of a transposable dioxygenase from the Niagara river watershed Molec. Ecol. 4 593–603Google Scholar
  279. Nakatsu, C. H., N. A. Straus, and R. C. Wyndham. 1995b The nucleotide sequence of the Tn5271 3-chlorobenzoate 3,4-dioxygenase genes (cbaAB) unites the class IA oxygenase in a single lineage Microbiology 141 485–495PubMedGoogle Scholar
  280. Nakatsu, C. H., M. Providenti, and R. C. Wyndham. 1997 The cis-diol dehydrogenase cbaC gene of Tn5271 is required for growth on 3-chlorobenzoate but not 3,4-dichlorobenzoate Gene 196 209–218PubMedCrossRefGoogle Scholar
  281. Neefs, J. M., Y. Van de Peer, P. De Rijk, A. Goris, and R. De Wachter. 1991 Compilation of small ribosomal subunit RNA sequences Nucleic Acids Res. 19 1987–2015PubMedGoogle Scholar
  282. Nelson, K. E., C. Weinel, I. T. Paulsen, R. J. Dodson, H. Hilbert, V. dos Santos, D. E. Fouts, S. R. Gill, M. Pop, M. Holmes, L. Brinkac, M. Beanan, R. T. DeBoy, S. Daugherty, J. Kolonay, R. Madupu, W. Nelson, O. White, J. Peterson, H. Khouri, I. Hance, P. C. Lee, E. Holtzapple, D. Scanlan, K. Tran, A. Moazzez, T. Utterback, M. Rizzo, K. Lee, D. Kosack, D. Moestl, H. Wedler, J. Lauber, D. Stjepandic, J. Hoheisel, M. Straetz, S. Heim, C. Kiewitz, J. Eisen, K. N. Timmis, A. Dusterhoft, B. Tümmler, and C. M. Fraser. 2002 Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440 Environ. Microbiol. 4 799–808PubMedCrossRefGoogle Scholar
  283. Newby, D. T., T. Gentry, and I. L. Pepper. 2000 Comparison of 2,4-dichlorophenoxyacetic acid degradation and plasmid transfer in soil resulting from bioaugmentation with two different pJP4 donors Appl. Environ. Microbiol. 66 3399–3407PubMedCrossRefGoogle Scholar
  284. Nikodem, P., V. Hecht, M. Schlömann, and D. H. Pieper. 2003 New bacterial pathway for 4-and 5-chlorosalicylate degradation via 4-chlorocatechol and maleylacetate in Pseudomonas sp. strain MT1 J. Bacteriol. 185 6790–6800PubMedCrossRefGoogle Scholar
  285. Nishijyo, T., D. Haas, and Y. Itoh. 2001 The CbrA-CbrB two-component regulatory system controls the utilization of multiple carbon and nitrogen sources in Pseudomonas aeruginosa Molec. Microbiol. 40 917–931CrossRefGoogle Scholar
  286. Noda, Y., S. Nishikawa, K.-I. Shiozuka, H. Kadokuda, H. Nakajima, K. Yoda, Y. Katayama, N. Morohoshi, T. Haraguchi, and M. Yamasaki. 1990 Cloning of the protocatechuate 4,5-dioxygenase genes of Pseudomonas paucimobilis J. Bacteriol. 172 2704–2709PubMedGoogle Scholar
  287. Nogales, B., E. R. B. Moore, W.-R. Abraham, and K. N. Timmis. 1999 Identification of the metabolically active members of a bacterial community in a polychlorinated biphenyl-polluted moorland soil Environ. Microbiol. 1 199–212PubMedCrossRefGoogle Scholar
  288. Nogales, B., E. R. B. Moore, E. Llobet-Brossa, R. Rossello-Mora, R. Amann, and K. N. Timmis. 2001 Combined use of 16S ribosomal DNA and 16S rRNA to study the bacterial community of polychlorinated biphenyl-polluted soil Appl. Environ. Microbiol. 67 1874–1884PubMedCrossRefGoogle Scholar
  289. Ochsner, U. A., A. Fiechter, and J. Reiser. 1994a Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis J. Biol. Chem. 269 19787–19795PubMedGoogle Scholar
  290. Ochsner, U. A., A. K. Koch, A. Fiechter, and J. Reiser. 1994b Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa J. Bacteriol. 176 2044–2054PubMedGoogle Scholar
  291. Ohman, D. E., K. Mathee, C. J. McPherson, C. A. DeVries, S. Ma, D. J. Wozniak, and M. J. Franklin. 1996 Regulation of the alginate (algD) operon in Pseudomonas aeruginosa In: T. Nakazawa, K. Furukawa, D. Haas, and S. Silver (Eds.) Molecular Biology of Pseudomonads ASM Press Washington, DC 472–483Google Scholar
  292. Olivera, E. R., D. Carnicero, R. Jodra, B. Minambres, B. Garcia, G. A. Abraham, A. Gallardo, J. S. Roman, J. L. Garcia, G. Naharro, and J. M. Luengo. 2001 Genetically engineered Pseudomonas: A factory of new bioplastics with broad applications Environ. Microbiol. 10 612–618CrossRefGoogle Scholar
  293. Olsen, G. J. 1988 Phylogenetic analysis using ribosomal RNA Meth. Enzymol. 164 793–812PubMedCrossRefGoogle Scholar
  294. Olsen, R. H., J. J. Kukor, and B. Kaphammer. 1994 A novel toluene-3-monooxygenase pathway cloned from Pseudomonas pickettii PKO1 J. Bacteriol. 176 3749–3756PubMedGoogle Scholar
  295. Oltmanns, R. H., H. G. Rast, and W. Reineke. 1988 Degradation of 1,4-dichlorobenzene by enriched and constructed bacteria Appl. Microbiol. Biotechnol. 28 609–616CrossRefGoogle Scholar
  296. O’Sullivan, D. J., and F. O’Gara. 1992 Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens Microbiol. Rev. 56 662–676PubMedGoogle Scholar
  297. O’Toole, G. A., K. A. Gibbs, P. W. Hager, P. V. Phibbs Jr., and R. Kolter. 2000 The global carbon metabolism regulator Crc is a component of a signal transduction pathway required for biofilm development by Pseudomonas aeruginosa J. Bacteriol. 182 425–431PubMedCrossRefGoogle Scholar
  298. Owens, J. D., and R. M. Keddie. 1969 The nitrogen nutrition of soil and herbage coryneform bacteria J. Appl. Bacteriol. 32 338–347PubMedGoogle Scholar
  299. Oyaizu, H., and K. Komagata. 1983 Grouping of Pseudomonas species on the basis of cellular fatty acid composition and the quinone system with special reference to the existence of 3-hydrozy fatty acids J. Gen. Appl. Microbiol. 29 17–40Google Scholar
  300. Palleroni, N. J., M. Doudoroff, R. Y. Stanier, R. E. Solanes, and M. Mandel. 1970 Taxonomy of the aerobic pseudomonads: The properties of the Pseudomonas stutzeri group J. Gen. Microbiol. 60 215–231PubMedGoogle Scholar
  301. Palleroni, N. J., and M. Doudoroff. 1972 Some properties and subdivisions of the genus Pseudomonas Ann. Rev. Phytopathol. 10 73–100CrossRefGoogle Scholar
  302. Palleroni, N. J., R. Kunisawa, R. Contopoulou, and M. Doudoroff. 1973 Nucleic acid homologies in the genus Pseudomonas Int. J. Syst. Bacteriol. 23 333–339Google Scholar
  303. Palleroni, N. J. 1975 General properties and taxonomy of the genus Pseudomonas In: P. H. Clarke and M. H. Richmond (Eds.) Genetics and Biochemistry of Pseudomonas John Wiley London, UK 1–36Google Scholar
  304. Palleroni, N. J. 1984a Family I: Pseudomonadaceae In: N. R. Krieg and J. G. Holt (Eds.) Bergey’s Manual of Systematic Bacteriology, 1st ed Williams and Wilkins Baltimore, MD 1 141Google Scholar
  305. Palleroni, N. J. 1984b Genus I: Pseudomonas Migula 1894 In: N. R. Krieg and J. G. Holt (Eds.) Bergey’s Manual of Systematic Bacteriology, 1st ed Williams and Wilkins Baltimore, MD 1 141–199Google Scholar
  306. Palleroni, N. J. 1992 Present situation of the taxonomy of aerobic pseudomonads In: E. Galli, S. Silver, and B. Witholt (Eds.) Pseudomonas: Molecular Biology and Biotechnology ASM Press Washington, DC 105–115Google Scholar
  307. Palleroni, N. J. 1993 Pseudomonas classification. A new case history in the taxonomy of Gram-negative bacteria Ant. v. Leeuwenhoek 64 231–251CrossRefGoogle Scholar
  308. Palleroni, N. J. 2005 Pseudomonas In: D. J. Brenner, N. R. Krieg, J. T. Staley, and G. M. Garrity (Eds.) Bergey’s Manual of Systematic Bacteriology, 2nd ed Springer-Verlag New York, NY 2 323–379Google Scholar
  309. Passador, L., J. M. Cook, M. J. Gambello, L. Rust, and B. H. Iglewski. 1993 Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication Science 260 1127–1130PubMedCrossRefGoogle Scholar
  310. Pearson, J. P., K. M. Gray, L. Passador, K. D. Tucker, A. Eberhard, B. H. Iglewski, and E. P. Greenberg. 1994 Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes Proc. Natl. Acad. Sci. USA 91 197–201PubMedCrossRefGoogle Scholar
  311. Pearson, J. P., L. Passador, B. H. Iglewski, and E. P. Greenberg. 1995 A second Nacylhomoserine lactone signal produced by Pseudomonas aeruginosa Proc. Natl. Acad. Sci. USA 92 1490–1494PubMedCrossRefGoogle Scholar
  312. Pearson, J. P., E. C. Pesci, and B. H. Iglewski. 1997 Role of Pseudomonas aeruginosa las and rhl quorum-sensing systems in the control of elastase and rhamnolipid biosynthesis genes J. Bacteriol. 179 5756–5767PubMedGoogle Scholar
  313. Pearson, J. P., C. van Delden, and B. H. Iglewski. 1999 Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals J. Bacteriol. 181 1203–1210PubMedGoogle Scholar
  314. Peel, M. C., and R. C. Wyndham. 1999 Selection of clc, cba, and fcb chlorobenzoate-catabolic genotypes from groundwater and surface waters adjacent to the Hyde Park, Niagara Falls, chemical landfill Appl. Environ. Microbiol. 65 1627–1635PubMedGoogle Scholar
  315. Pelz, O., M. Tesar, R. M. Wittich, E. R. B. Moore, K. N. Timmis, and W. R. Abraham. 1999 Towards elucidation of microbial community metabolic pathways: Unravelling the network of carbon sharing in a pollutant-degrading bacterial consortium by immunocapture and isotopic ratio mass spectrometry Environ. Microbiol. 1 167–174PubMedCrossRefGoogle Scholar
  316. Pesci, E. C., J. P. Pearson, P. C. Seed, and B. H. Iglewski. 1997 Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa J. Bacteriol. 179 3127–3132PubMedGoogle Scholar
  317. Pesci, E. C., J. B. Milbank, J. P. Pearson, S. McKnight, A. S. Kende, E. P. Greenberg, and B. H. Iglewski. 1999 Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa Proc. Natl. Acad. Sci. USA 96 11229–11234PubMedCrossRefGoogle Scholar
  318. Pessi, G., F. Williams, Z. Hindle, K. Heurlier, M. T. G. Holden, M. Camara, D. Haas, and P. Williams. 2001 The global posttranscriptional regulator RsmA modulates production of virulence determinants and N-acylhomoserine lactones in Pseudomonas aeruginosa J. Bacteriol. 183 6676–6683PubMedCrossRefGoogle Scholar
  319. Pessi, G., and D. Haas. 2004 Cyanogenesis In: J. L. Ramos (Ed.) Pseudomonas Kluwer Academic/Plenum Publishers New York, NY 3 671–687Google Scholar
  320. Petruschka, L., G. Burchhardt, C. Müller, C. Weihe, and H. Herrmann. 2001 The cyo operon of Pseudomonas putida is involved in catabolic repression of phenol degradation. Mol Genet. Genomics 266 199–206CrossRefGoogle Scholar
  321. Pieper, D. H., and W. Reineke. 2000 Engineering bacteria for bioremediation Curr. Opin. Biotechnol. 11 262–270PubMedCrossRefGoogle Scholar
  322. Pierson 3rd, L. S., V. D. Keppenne, and D. W. Wood. 1994 Phenazine antibiotic biosynthesis in Pseudomonas aureofaciens 30-84 is regulated by PhzR in response to cell density J. Bacteriol. 176 3966–3974PubMedGoogle Scholar
  323. Pinyakong, O., H. Habe, T. Yoshida, H. Nojiri, and T. Omori. 2003 Identification of three novel salicylate 1-hydroxylases involved in the phenanthrene degradation of Sphingobium sp strain P2 Biochem. Biophys. Res. Commun. 301 350–357PubMedCrossRefGoogle Scholar
  324. Powlowski, J., and V. Shingler. 1994 Genetics and biochemistry of phenol degradation by Pseudomonas sp. CF600 Biodegredation 5 219–236CrossRefGoogle Scholar
  325. Powlowski, J., J. Sealy, V. Shingler, and E. Cadieux. 1997 On the role of DmpK, an auxiliary protein associated with multicomponent phenol hydroxylase from Pseudomonas sp. CF600 J. Biol. Chem. 272 945–951PubMedCrossRefGoogle Scholar
  326. Prucha, M., A. Peterseim, K. N. Timmis, and D. H. Pieper. 1996a Muconolactone isomerase of the 3-oxoadipate pathway catalyzes dechlorination of 5-chloro-substituted muconolactones Eur. J. Biochem. 237 350–356PubMedCrossRefGoogle Scholar
  327. Prucha, M., V. Wray, and D. H. Pieper. 1996b Metabolism of 5-chlorosubstituted muconolactones Eur. J. Biochem. 237 357–366PubMedCrossRefGoogle Scholar
  328. Raetz, C. R. H., and C. Whitfield. 2002 Lipopolysaccharide endotoxins Ann. Rev. Biochem. 71 635–700PubMedCrossRefGoogle Scholar
  329. Rahme, L. G., F. M. Ausubel, H. Cao, E. Drenkard, B. C. Goumnerov, G. W. Lau, S. Mahajan-Miklos, J. Plotnikova, M. W. Tan, J. Tsongalis, C. L. Walendziewicz, and R. G. Tompkins. 2001 Plants and animals share functionally common bacterial virulence factors Proc. Natl. Acad. Sci. USA 97 8815–8821CrossRefGoogle Scholar
  330. Ramos, J. L., A. Wasserfallen, K. Rose, and K. N. Timmis. 1987 Redesigning metabolic routes: Manipulation of TOL plasmid pathway for catabolism of alkylbenzoates Science 235 593–596PubMedCrossRefGoogle Scholar
  331. Ramos, J. L., E. Diaz, D. Dowling, V. de Lorenzo, S. Molin, F. O’Gara, C. Ramos, and K. N. Timmis. 1994 The behavior of bacteria designed for biodegradation Bio/Technology 12 1349–1356PubMedCrossRefGoogle Scholar
  332. Ramos, J. L., S. Marqués, and K. N. Timmis. 1997 Transcriptional control of the Pseudomonas TOL plasmid catabolic operons is achieved through an interplay of host factors and plasmid-encoded regulators Ann. Rev. Microbiol. 51 341–373CrossRefGoogle Scholar
  333. Ratledge, C., and S. G. Wilkinson. 1988 An overview of microbial lipids In: C. Ratledge and S. G. Wilkinson (Eds.) Microbial Lipids Academic Press London, UK 3–22Google Scholar
  334. Ravatn, R., S. Studer, D. Springael, A. J. B. Zehnder, and J. R. van der Meer. 1998a Chromosomal integration, tandem amplification, and deamplification in Pseudomonas putida F1 of a 105-kilobase genetic element containing the chlorocatechol degradative genes from Pseudomonas sp. strain B13 J. Bacteriol. 180 4360–4369PubMedGoogle Scholar
  335. Ravatn, R., S. Studer, A. J. B. Zehnder, and J. R. van der Meer. 1998b Int-B13, an unusual site-specific recombinase of the bacteriophage P4 integrase family, is responsible for chromosomal insertion of the 105-kilobase clc element of Pseudomonas sp. strain B13 J. Bacteriol. 180 5505–5514PubMedGoogle Scholar
  336. Ravatn, R., A. J. B. Zehnder, and J. R. van der Meer. 1998c Low-frequency horizontal transfer of an element containing the chlorocatechol degradation genes from Pseudomonas sp. strain B13 to Pseudomonas putida F1 and to indigenous bacteria in laboratory-scale activated-sludge microcosms Appl. Environ. Microbiol. 64 2126–2132PubMedGoogle Scholar
  337. Raymond, C. K., E. H. Sims, A. Kas, D. H. Spencer, T. V. Kutyavin, R. G. Ivey, Y. Zhou, R. Kaul, J. B. Clendenning, and M. V. Olson. 2002 Genetic variation at the O-antigen biosynthetic locus in Pseudomonas aeruginosa J. Bacteriol. 84 3614–3622CrossRefGoogle Scholar
  338. Reimmann, C., M. Beyeler, A. Latifi, H. Winteler, M. Foglino, A. Lazdunski, and D. Haas. 1997 The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase Molec. Microbiol. 24 309–319CrossRefGoogle Scholar
  339. Reineke, W., and H.-J. Knackmuss. 1978 Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of benzoic acid Biochim. Biophys. Acta 532 412–423Google Scholar
  340. Reineke, W., and H.-J. Knackmuss. 1979 Construction of haloaromatics utilising bacteria Nature 277 385–386PubMedCrossRefGoogle Scholar
  341. Reineke, W., D. J. Jeenes, P. A. Williams, and H.-J. Knackmuss. 1982 TOL plasmid pWW0 in constructed halobenzoate-degrading Pseudomonas strains: Prevention of meta pathway J. Bacteriol. 150 195–201PubMedGoogle Scholar
  342. Reineke, W. 1998 Development of hybrid strains for the mineralization of chloroaromatics by patchwork assembly Ann. Rev. Microbiol. 52 287–331CrossRefGoogle Scholar
  343. Reizer, J. A., M. Reizer, J. Lagrou, K. R. Folger, C. K. Stover, and M. H. Saier Jr. 1999 Novel phosphotransferase systems revealed by genome analysis: The complete repertoire of pts genes in Pseudomonas aeruginosa J. Molec. Microbiol. Biotechnol. 1 289–293Google Scholar
  344. Rheinwald, J. G., A. M. Chakrabarty, and I. C. Gunsalus. 1973 A transmissible plasmid controlling camphor oxidation in Pseudomonas putida Proc. Natl. Acad. Sci. USA 70 885–889PubMedCrossRefGoogle Scholar
  345. Richtings, B. W., E. C. Almira, S. Lory, and R. Ramphal. 1995 Cloning and phenotypic characterization of fleS and fleR, new response regulators of Pseudomonas aeruginosa which regulate motility and adhesion to mucin Infect. Immun. 63 4868–4876Google Scholar
  346. Robert-Gero, M., M. Poiret, and R. Y. Stanier. 1969 The function of the beta-keto-adipate pathway in Pseudomonas acidovorans J. Gen. Microbiol. 57 207–214PubMedGoogle Scholar
  347. Rocchetta, H. L., L. L. Burrows, and J. S. Lam. 1999 Genetics of O-antigen biosynthesis in Pseudomonas aeruginosa Microbiol. Molec. Biol. Rev. 63 523–553Google Scholar
  348. Rojo, F., and A. Dinamarca. 2004 Catabolite repression and physiological control In: J. L. Ramos (Ed.) Pseudomonas Kluwer Academic/Plenum Publishers New York, NY 2 365–387Google Scholar
  349. Rokosu, A. A. 1983 Immunological relatedness of histidine ammonia-lyases from some species of Pseudomonas: Taxonomic implication Int. J. Biochem. 15 867–870PubMedCrossRefGoogle Scholar
  350. Romanov, V. P., G. M. Grechkina, V. M. Adanin, and I. I. Starovoitov. 1993 Oxidative dehalogenation of 2-chloro-and 2,4-dichlorobenzoates by Pseudomonas aeruginosa Microbiology 62 532–536Google Scholar
  351. Romanov, V., and R. P. Hausinger. 1994 Pseudomonas aeruginosa 142 uses a three-component ortho-halobenzoate 1,2-dioxygenase for the metabolism of 2,4-dichloro-and 2-chlorobenzoate J. Bacteriol. 176 3368–3374PubMedGoogle Scholar
  352. Rosselló-Mora, R. A., J. Lalucat, and E. Garcia-Valdes. 1994 Comparative biochemical and genetic analysis of naphthalene degradation among Pseudomonas stutzeri strains Appl. Environ. Microbiol. 6 966–972Google Scholar
  353. Rosselló-Mora, R., and R. Amann. 2001 The species concept for prokaryotes FEMS Microbiol. Rev. 25 39–67PubMedCrossRefGoogle Scholar
  354. Rowen, D. W., and V. Deretic. 2000 Membrane-to-cytosol redistribution of ECF sigma factor AlgU and conversion to mucoidy in Pseudomonas aeruginosa isolates from cystic fibrosis patients Molec. Microbiol. 36 314–327CrossRefGoogle Scholar
  355. Rubio, M. A., K.-H. Engesser, and H.-J. Knackmuss. 1986 Microbial metabolism of chlorosalicylates: Accelerated evolution by natural genetic exchange Arch. Microbiol. 145 116–122PubMedCrossRefGoogle Scholar
  356. Ruisinger, S., U. Klages, and F. Lingens. 1976 Abbau der 4-Chlorbenzoesäure durch eine Arthrobacter-Species Arch. Microbiol. 110 253–256PubMedCrossRefGoogle Scholar
  357. Salmond, G. P., B. W. Bycroft, G. S. Stewart, and P. Williams. 1995 The bacterial “enigma”: Cracking the code of cell-cell communication Molec. Microbiol. 16 615–624Google Scholar
  358. Sands, D. C., F. H. Gleason, and D. C. Hildebrand. 1967 Cytochromes of Pseudomonas syringae J. Bacteriol. 94 1785–1786PubMedGoogle Scholar
  359. Sands, D. C., and A. D. Rovira. 1970 Isolation of fluorescent pseudomonads with a selective medium Appl. Microbiol. 20 513–514PubMedGoogle Scholar
  360. Santos, S. R., and H. Ochman. 2004 Identification and phylogenetic sorting of bacterial lineages with universallz conseved genes and proteins Environ. Microbiol. 6 754–759PubMedCrossRefGoogle Scholar
  361. Sato, S. I., J. W. Nam, K. Kasuga, H. Nojiri, H. Yamane, and T. Omori. 1997 Identification and characterization of genes encoding carbazole 1,9a-dioxygenase in Pseudomonas sp. strain CA10 J. Bacteriol. 179 4850–4858PubMedGoogle Scholar
  362. Sauer, K., and A. K. Camper. 2001 Characterization of phenotypic changes Pseudomonas putida in response to surface-associated growth J. Bacteriol. 183 6579–6589PubMedCrossRefGoogle Scholar
  363. Savard, P., H. Charest, M. Sylvestre, F. Shareck, J. D. Scholten, and D. Dunaway-Mariano. 1992 Expression of the 4-chlorobenzoate dehalogenase genes from Pseudomonas sp. CBS3 in Eschericia coli and identification of the gene translation products Can. J. Microbiol. 38 1074–1083PubMedCrossRefGoogle Scholar
  364. Schlömann, M., P. Fischer, E. Schmidt, and H.-J. Knackmuss. 1990 Enzymatic formation, stability, and spontaneous reactions of 4-fluoromuconolactone, a metabolite of the bacterial degradation of 4-fluorobenzoate J. Bacteriol. 172 5119–5129PubMedGoogle Scholar
  365. Schlömann, M. 1994 Evolution of chlorocatechol catabolic pathways: Conclusions to be drawn from comparisons of lactone hydrolases Biodegredation 5 301–321CrossRefGoogle Scholar
  366. Schmid, A., J. S. Dordick, B. Hauer, A. Kiener, W. Wubbolts, and B. Witholt. 2001 Industrial biocatalysis today and tomorrow Nature 409 258–268PubMedCrossRefGoogle Scholar
  367. Schmidt, E., and H.-J. Knackmuss. 1980a Chemical structure and biodegradability of halogenated aromatic compounds. Conversion of chlorinated muconic acids into maleoylacetic acid Biochem. J. 192 339–347PubMedGoogle Scholar
  368. Schmidt, E., G. Remberg, and H.-J. Knackmuss. 1980b Chemical structure and biodegradability of halogenated aromatic compounds. Halogenated muconic acids as intermediates Biochem. J. 192 331–337PubMedGoogle Scholar
  369. Schmidt, S., R.-M. Wittich, D. Erdmann, H. Wilkes, W. Francke, and P. Fortnagel. 1992 Biodegradation of diphenyl ether and its monohalogenated derivatives by Sphingomonas sp. strain SS3 Appl. Environ. Microbiol. 58 2744–2750PubMedGoogle Scholar
  370. Schnider-Keel, U., K. B. Lejbolle, E. Baehler, D. Haas, and C. Keel. 2001 The sigma factor AlgU (AlgT) controls exopolysaccharide production and tolerance towards desiccation and osmotic stress in the biocontrol agent Pseudomonas fluorescens CHA0 Appl. Environ. Microbiol. 67 5683–5693PubMedCrossRefGoogle Scholar
  371. Scholten, J. D., K.-H. Chang, P. C. Babbitt, H. Charest, M. Sylvestre, and D. Dunaway-Mariano. 1991 Novel enzymic hydrolytic dehalogenation of a chlorinated aromatic Science 253 182–185PubMedCrossRefGoogle Scholar
  372. Schraa, G., M. L. Boone, M. S. M. Jeten, A. R. W. van Neerven, P. J. Colberg, and A. J. B. Zehnder. 1986 Degradation of 1,4-dichlorobenzene by Alcaligenes sp. strain A175 Appl. Environ. Microbiol. 52 1374–1381PubMedGoogle Scholar
  373. Schroeter, J. 1872 Über einige durch bacterien gebildete pigmente In: F. Cohn (Ed.) Beitrage zur Biologie der Pflanzen J. U. Kern’s Verlag Breslau, Germany 1, Part 2 109–126Google Scholar
  374. Schroth, M., D. C. Hildebrand, and N. Panopoulos. 1981 Phytopathogenic members of the genus Pseudomonas In: M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel (Eds.) The Prokaryotes Springer-Verlag New York, NY 1 701–718Google Scholar
  375. Schroth, M., D. C. Hildebrand, and N. Panopoulos. 1992 Phytopathogenic pseudomonads and plant-associated pseudomonads In: A. Balows, H G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer (Ed.) The Prokaryotes, 2nd ed Springer-Verlag New York, NY 3 3104–3131Google Scholar
  376. Schurr, M. J., and V. Deretic. 1997 Microbial pathogenesis in cystic fibrosis: Co-ordinate regulation of heat-shock response and conversion to mucoidy in Pseudomonas aeruginosa Molec. Microbiol. 24 411–420CrossRefGoogle Scholar
  377. Schuster, M., C. P. Lostroh, T. Ogi, and E. P. Greenberg. 2003 Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: A transcriptome analysis J. Bacteriol. 185 2066–2079PubMedCrossRefGoogle Scholar
  378. Schwartz, R. M., and M. D. Dayhoff. 1978 Origins of prokaryotes, eukaryotes, mitochondria, and chloroplasts Science 199 395–403PubMedCrossRefGoogle Scholar
  379. Schwien, U., and E. Schmidt. 1982 Improved degradation of monochlorophenols by a constructed strain Appl. Environ. Microbiol. 44 33–39PubMedGoogle Scholar
  380. Seegal, B., and M. Holden. 1945 The antibiotic activity of extracts of Ranunculaceae Science 101 413–414CrossRefPubMedGoogle Scholar
  381. Seeger, M., M. Zielinski, K. N. Timmis, and B. Hofer. 1999 Regiospecificity of dioxygenation of di-to pentachlorobiphenyls and their degradation to chlorobenzoates by the bph-encoded catabolic pathway of Burkholderia sp. strain LB400 Appl. Environ. Microbiol. 65 3614–3621PubMedGoogle Scholar
  382. Segura, A., P. V. Bunz, D. D’Argenio, and N. L. Ornston. 1999 Genetic analysis of a chromosomal region containing vanA and vanB, genes required for conversion of either ferulate or vanillate to protocatechuate in Acinetobacter J. Bacteriol. 181 3494–504PubMedGoogle Scholar
  383. Sexton, R., P. R. Gill Jr., M. J. Callanan, D. J. O’Sullivan, D. N. Dowling, and F. O’Gara. 1995 Iron-responsive gene expression in Pseudomonas fluorescens M114: Cloning and characterization of a transcription-activating factor, PbrA Molec. Microbiol. 15 297–306Google Scholar
  384. Shepherd, J. M., and G. Lloyd-Jones. 1998 Novel carbazole degradation genes of Sphingomonas CB3: Sequence analysis, transcription, and molecular ecology Biochem. Biophys. Res. Commun. 247 129–135PubMedCrossRefGoogle Scholar
  385. Sherris, J. C., J. G. Shoesmith, M. T. Parker, and D. Breckon. 1959 Tests for the rapid breakdown of arginine by bacteria: Their use in the identification of pseudomonads J. Gen. Microbiol. 21 389–396PubMedGoogle Scholar
  386. Shingler, V. 2004 Transcriptional regulation and catabolic strategies of phenol degradative pathways In: J. L. Ramos (Ed.) Pseudomonas Kluwer Academic/Plenum Publishers New York, NY 2 451–477Google Scholar
  387. Shinoda, S., and K. Okamoto. 1977 Formation and function of Vibrio parahemolyticus lateral flagella J. Bacteriol. 129 1266–1271PubMedGoogle Scholar
  388. Sitnikov, D. M., J. B. Schineller, and T. O. Baldwin. 1995 Transcriptional regulation of bioluminesence genes from Vibrio fischeri Molec. Microbiol. 17 801–812CrossRefGoogle Scholar
  389. Skerman, V. B. D., V. McGowan, and P. A. H. Sneath. 1980 Approved Lists of Bacterial Names Int. J. Syst. Bacteriol. 30 225–420Google Scholar
  390. Skiba, A., V. Hecht, and D. H. Pieper. 2002 Formation of protoanemonin from 2-chloro-cis,cis-muconate by the combined action of muconate cycloisomerase and muconolactone isomerase J. Bacteriol. 184 5402–5409PubMedCrossRefGoogle Scholar
  391. Slade, H. D., C. C. Doughty, and W. C. Slamp. 1954 The synthesis of high-energy phosphate in the citrulline ureidase reaction by soluble enzymes of Pseudomonas Arch. Biochem. Biophys. 48 338–346PubMedCrossRefGoogle Scholar
  392. Song, J., and R. A. Jensen. 1996 PhhR, a divergently transcribed activator of the phenylalanine hydroxylase gene cluster of Pseudomonas aeruginosa Molec. Microbiol. 22 497–507CrossRefGoogle Scholar
  393. Song, B. K., N. J. Palleroni, and M. M. Häggblom. 2000 Isolation and characterization of diverse halobenzoate-degrading denitrifying bacteria from soils and sediments Appl. Environ. Microbiol. 66 3446–3453PubMedCrossRefGoogle Scholar
  394. Sørensen, J., and O. Nybroe. 2004 Pseudomonas in the soil environment In: J. L. Ramos (Ed.) Pseudomonas Kluwer Academic/Plenum Publishers New York, NY 1 369–401Google Scholar
  395. Springael, D., S. Kreps, and M. Mergeay. 1993 Identification of a catabolic transposon, Tn4371, carrying biphenyl and 4-chlorobiphenyl degradation genes in Alcaligenes eutrophus A5 J. Bacteriol. 175 1674–1681PubMedGoogle Scholar
  396. Springael, D., K. Peys, A. Ryngaert, S. van Roy, L. Hooyberghs, R. Ravatn, M. Heyndrickx, J. R. van der Meer, C. Vandecasteele, M. Mergeay, and L. Diels. 2002 Community shifts in a seeded 3-chlorobenzoate degrading membrane biofilm reactor: Indications for involvement of in situ horizontal transfer of the clc-element from inoculum to contaminant bacteria Environ. Microbiol. 4 70–80PubMedCrossRefGoogle Scholar
  397. Stackebrandt, E., R. G. E. Murray, and H. G. Trüper. 1988 Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives” Int. J. Syst. Bacteriol. 38 321–325Google Scholar
  398. Stackebrandt, E., and W. Liesack. 1993 Nucleic acids and classification In: M. Goodfellow and A. G. O’Donnell (Eds.) Handbook of New Bacterial Systematics Academic Press London, UK 151–194Google Scholar
  399. Stackebrandt, E., and B. M. Goebel. 1994 Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology Int. J. Syst. Bacteriol. 44 846–849Google Scholar
  400. Stalon, V., and A. Mercenier. 1984 L-arginine utilization by Pseudomonas species J. Gen. Microbiol. 130 69–76PubMedGoogle Scholar
  401. Stalon, V., C. Vander Wauven, P. Momin, and C. Legrain. 1987 Catabolism of arginine, citrulline and ornithine by Pseudomonas and related bacteria J. Gen. Microbiol. 133 2487–2495PubMedGoogle Scholar
  402. Stanier, R. Y., N. J. Palleroni, and M. Doudoroff. 1966 The aerobic pseudomonads: A taxonomic study J. Gen. Microbiol. 43 159–271PubMedGoogle Scholar
  403. Stanier, R. Y. 1968 In: Chemotaxonomy and Serotaxonomy, Systematic Association Special Volume 2 201–2xxGoogle Scholar
  404. Stanier, R. Y., D. Wachter, D. Gasser, and A. C. Wilson. 1970 Comparative immunological studies of two Pseudomonas enzymes J. Bacteriol. 102 351–362PubMedGoogle Scholar
  405. Starovoitov, I. I., S. A. Selifonov, M. I. U. Nefedova, and V. M. Adanin. 1985 Catabolism of biphenyl by Pseudomonas putida BS 893 strain containing the biodegradation plasmid pBS241 Mikrobiologiia 54 914–918PubMedGoogle Scholar
  406. Stead, D. E. 1992 Grouping of plant-pathogenic and some other Pseudomonas spp. by using cellular fatty acid profiles Int. J. Syst. Bacteriol. 42 281–295Google Scholar
  407. Stevens, A. M., K. M. Dolan, and E. P. Greenberg. 1994 Synergistic binding of the Vibrio fischeri LuxR transcriptional activator domain and RNA polymerase to the lux promoter region Proc. Natl. Acad. Sci. USA 91 12619–12623PubMedCrossRefGoogle Scholar
  408. Stevens, A. M., and E. P. Greenberg. 1997 Quorum sensing in Vibrio fischeri: Essential elements for activation of the luminescence genes J. Bacteriol. 179 557–562PubMedGoogle Scholar
  409. Stolp, H., and D. Gadkari. 1981 Nonpathogenic members of the genus Pseudomonas In: M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel (Eds.) The Prokaryotes Springer-Verlag New York, NY 1 719–741Google Scholar
  410. Stover, C. K., X. Q. Pham, A. L. Erwin, S. D. Mizoguchi, P. Warrener, M. J. Hickey, F. S. L. Brinkman, W. O. Hufnagle, D. J. Kowalik, M. Lagrou, R. L. Garber, L. Goltry, E. Tolentino, S. Westbrock-Wadman, Y. Yuan, L. L. Brody, S. N. Coulter, K. R. Folger, A. Kas, K. Larbig, R. Lim, K. Smith, D. Spencer, G. K. S. Wong, Z. Wu, I. T. Paulsen, J. Reizer, M. H. Saier, R. E. W. Hancock, S. Lory, and M. V. Olson. 2000 Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen Nature 406 959–964PubMedCrossRefGoogle Scholar
  411. Strubel, V., K.-H. Engesser, P. Fischer, and H.-J. Knackmuss. 1991 3-(2-Hydroxyphenyl) catechol as substrate for proximal meta ring cleavage in dibenzofuran degradation by Brevibacterium sp. strain DPO 1361 J. Bacteriol. 173 1932–1937PubMedGoogle Scholar
  412. Suzuki, K., N. Ogawa, and K. Miyashita. 2001 Expression of 1,2-halobenzoate dioxygenase genes (cbdSABC) involved in the degradation of benzoate and 2-halobenzoate in Burkholderia sp. TH2 Gene 262 137–145PubMedCrossRefGoogle Scholar
  413. Sze, C. C., T. Moore, and V. Shingler. 1996 Growth phase-dependent transcription of the sigma(54)-dependent Po promoter controlling the Pseudomonas-derived (methyl)phenol dmp operon of pVI150 J. Bacteriol. 178 3727–3735PubMedGoogle Scholar
  414. Sze, C. C., and V. Shingler. 1999 The alarmone (p)ppGpp mediates physiological-responsive control at the sigma 54-dependent Po promoter Molec. Microbiol. 31 1217–1228CrossRefGoogle Scholar
  415. Sze, C. C., L. M. D. Bernardo, and V. Shingler. 2002 Integration of global regulation of two aromatic-responsive sigma 54-dependent systems: A common phenotype by different mechanisms J. Bacteriol. 184 760–770PubMedCrossRefGoogle Scholar
  416. Tan, H. M. 1999 Bacterial catabolic transposons Appl. Microbiol. Biotechnol. 51 1–12PubMedCrossRefGoogle Scholar
  417. Tesar, M., C. Hoch, E. R. B. Moore, and K. N. Timmis. 1996 Westprinting: Development of a rapid immunochemical identification for species within the genus Pseudomonas sensu stricto Syst. Appl. Microbiol. 19 577–588Google Scholar
  418. Thornley, M. J. 1960 The differentiation of Pseudomonas from other Gram-negative bacteria on the basis of arginine metabolism J. Appl. Bacteriol. 23 37–52Google Scholar
  419. Tiedje, J. M., J. M. Duxbury, M. Alexander, and J. E. Dawson. 1969 2,4-D Metabolism: Pathway of degradation of chlorocatechols by Arthrobacter sp J. Agric. Food Chem. 17 1021–1026CrossRefGoogle Scholar
  420. Timmis, K. N., R. J. Steffan, and R. Unterman. 1994 Designing microorganisms for the treatment of toxic wastes Ann. Rev. Microbiol. 48 525–557CrossRefGoogle Scholar
  421. Tindall, B. J. 1994 Chemical analysis of Archaea and Bacteria: A critical evaluation of its use in taxonomy and identification In: G. F. Priest, A. Ramos-Cormenzana, and B. J. Tindall (Eds.) Bacterial Diversity and Systematics Plenum Press New York, NY 243–258Google Scholar
  422. Tolker-Nielsen, T., and S. Molin. 2004 The biofilm lifestyle of Pseudomonas In: J. L. Ramos (Ed.) Pseudomonas Kluwer Academic/Plenum Publishers New York, NY 1 547–571Google Scholar
  423. Top, E. M., W. Holben, and L. J. Forney. 1995 Characterization of diverse 2,4-dichlorophenoxyacetic acid-degradative plasmids isolated from soil by complementation Appl. Environ. Microbiol. 61 1691–1698PubMedGoogle Scholar
  424. Totten, P. A., J. C. Lara, and S. Lory. 1990 The rpoN gene product of Pseudomonas aeruginosa is required for expression of diverse genes, including the flagellin gene J. Bacteriol. 172 389–396PubMedGoogle Scholar
  425. Tsoi, T. V., E. G. Plotnikova, J. R. Cole, W. F. Guerin, M. Bagdasarian, and J. M. Tiedje. 1999 Cloning, expression, and nucleotide sequence of the Pseudomonas aeruginosa 142 ohb genes coding for oxygenolytic ortho dehalogenation of halobenzoates Appl. Environ. Microbiol. 65 2151–2162PubMedGoogle Scholar
  426. Tyler, S. D., C. A. Strathdee, K. R. Rozee, and W. M. Johnson. 1995 Oligonucleotide primers designed to differentiate pathogenic pseudomonads on the basis of the sequencing of genes coding for 16S-23S rRNA internal transcribed spacers Clin. Diagn. Lab. Immunol. 2 448–453PubMedGoogle Scholar
  427. Vaillancourt, F. H., G. Labbe, N. M. Drouin, P. D. Fortin, and L. D. Eltis. 2002 The mechanism-based inactivation of 2,3-dihydroxybiphenyl 1,2-dioxygenase by catecholic substrates J. Biol. Chem. 277 2019–2027PubMedCrossRefGoogle Scholar
  428. Valls, M., I. Cases, and V. de Lorenzo. 2004 Transcription mediated by rpoN-dependent promoters In: J. L. Ramos (Ed.) Pseudomonas Kluwer Academic/Plenum Publishers New York, NY 2 289–318Google Scholar
  429. Valverde, C., S. Heeb, C. Keel, and D. Haas. 2003 RsmY, a small regulatory RNA, is required in concert with RsmZ for GacA-dependent expression of biocontrol traits in Pseudomonas fluorescens CHA0 Molec. Microbiol. 50 1361–1379CrossRefGoogle Scholar
  430. Vancanneyt, M., U. Torck, D. Dewettinck, M. Vaerewijck, and K. Kersters. 1996a Grouping of pseudomonads by SDS-PAGE of whole-cell proteins Syst. Appl. Microbiol. 19 556–568Google Scholar
  431. Vancanneyt, M., S. Witt, W.-R. Abraham, K. Kersters, and H. L. Fredrickson. 1996b Fatty acid content in whole-cell hycrolysates and phospholipid fractions of pseudomonads: A taxonomic evaluation Syst. Appl. Microbiol. 19 528–540Google Scholar
  432. Van Delden, C., and B. H. Iglewski. 1998 Cell-to-cell signaling and Pseudomonas aeruginosa infections Emerg. Infect. Dis. 4 551–560PubMedGoogle Scholar
  433. Van Delden, C., R. Comte, and A. M. Bally. 2001 Stringent response activates quorum sensing and modulates cell density-dependent gene expression in Pseudomonas aeruginosa J. Bacteriol. 183 5376–5384PubMedCrossRefGoogle Scholar
  434. Van der Krooij, D. 1977 The occurrence of Pseudomonas spp. In surface water and in tap water as determined on citrate media Ant. v. Leeuwenhoek 43 187–197CrossRefGoogle Scholar
  435. Van der Meer, J. R., W. Roelofsen, G. Schra, and A. J. B. Zehnder. 1987 Degradation of low concentrations of dichlorobenzenes and 1,2,4-trichlorobenzene by Pseudomonas sp. strain P51 in nonsterile soil columns FEMS Microbiol. Ecol. 45 333–341CrossRefGoogle Scholar
  436. Van der Meer, J. R., A. R. W. van Nerven, E. J. de Vries, W. M. de Vos, and A. J. B. Zehnder. 1991 Cloning and characterization of plasmid-encoded genes for the degradation of 1,2-dichloro-,1,4-dichloro-, and 1,2,4-trichlorobenzene of pseudomonas sp. strain P51 J. Bacteriol. 173 6–15PubMedGoogle Scholar
  437. Van der Meer, J. R., R. Ravatn, and V. Sentchilo. 2001 The clc element of Pseudomonas sp. strain B13 and other mobile degradative elements employing phage-like integrases Arch. Microbiol. 175 79–85PubMedCrossRefGoogle Scholar
  438. Van Niel, C. B. 1946 The classification and natural relationships of bacteria Cold Spring Harbor Symp. Quant. Biol. 11 285–301Google Scholar
  439. Vargas, C., B. Song, M. Camps, and M. M. Häggblom. 2000 Anaerobic degradation of fluorinated aromatic compounds Appl. Microbiol. Biotechnol. 53 342–347PubMedCrossRefGoogle Scholar
  440. Vasil, M. L., and U. A. Ochsner. 1999 The response of Pseudomonas aeruginosa to iron: Genetics, biochemistry and virulence Molec. Microbiol. 34 399–413CrossRefGoogle Scholar
  441. Vasil, M. L. 2003 DNA microarrays in analysis of quorum sensing: Strengths and limitations J. Bacteriol. 185 2061–2065PubMedCrossRefGoogle Scholar
  442. Venturi, V., C. Ottevanger, M. Bracke, and P. Weisbeek. 1995a Iron regulation of siderophore biosynthesis and transport in Pseudomonas putida WCS358: Involvement of a transcriptional activator and of the Fur protein Molec. Microbiol. 15 1081–1093Google Scholar
  443. Venturi, V., P. Weisbeek, and M. Koster. 1995b Gene regulation of siderophore-mediated iron acquisition in Pseudomonas: Not only the Fur repressor Molec. Microbiol. 17 603–610CrossRefGoogle Scholar
  444. Venturi, V., F. Zennaro, G. Degrassi, B. C. Okeke, and C. V. Bruschi. 1998 Genetics of ferulic acid bioconversion to protocatechuic acid in plant-growth-promoting Pseudomonas putida WCS358 Microbiology 144 965–973PubMedCrossRefGoogle Scholar
  445. Venturi, V. 2004 Compiling extracytoplasmic function (ECF) sigma factors regulated promoters in Pseudomonas In: J. L. Ramos (Ed.) Pseudomonas Kluwer Academic/Plenum Publishers New York, NY 2 345–363Google Scholar
  446. Verhille, S., N. Baïda, F. Dabboussi, M. Hamze, D. Izard, and H. Leclerc. 1999 Pseudomonas gessardii sp. nov. and Pseudomonas migulae sp. nov., two new species isolated from natural mineral waters Int. J. Syst. Bacteriol. 49 1559–1572PubMedGoogle Scholar
  447. Visca, P., L. Leoni, M. J. Wilson, and I. L. Lamont. 2002 Iron transport and regulation, cell signalling and genomics: Lessons from Escherichia coli and Pseudomonas Molec. Microbiol. 45 1177–1190CrossRefGoogle Scholar
  448. Voisard, C., C. T. Bull, C. Keel, J. Laville, M. Maurhofer, V. Schnider, G. Defago, and D. Haas. 1994 Biocontrol of root diseases by Pseudomonas fluorescens CHAO: Current concepts and experimental approaches In: T. Nakazawa, K. Furukawa, D. Haas, and S. Silver (Eds.) ASM Press Washington, DC 502–511Google Scholar
  449. Vollmer, M. K., P. Fischer, H.-J. Knackmuss, and M. Schlömann. 1994 Inability of muconate cycloisomerases to cause dehalogenation during conversion of 2-chloro-cis,cis-muconate J. Bacteriol. 176 4366–4375PubMedGoogle Scholar
  450. Vollmer, M. D., and M. Schlömann. 1995 Conversion of 2-chloro-cis,cis-muconate and its metabolites 2-chloro-and 5-chloromuconolactone by chloromuconate cycloisomerase of pJP4 and pAC27 J. Bacteriol. 177 2938–2941PubMedGoogle Scholar
  451. Vollmer, M. D., H. Hoier, H. J. Hecht, U. Schell, J. Groning, A. Goldma, and M. Schlömann. 1998 Substrate specificity of and product formation by muconate cycloisomerases: An analysis of wild-type enzymes and engineered variants Appl. Environ. Microbiol. 64 3290–3299PubMedGoogle Scholar
  452. Vorhölter, F.-J., K. Niehaus, and A. Pühler. 2001 Lipopolysaccharide biosynthesis in Xanthomonas campestris pv campestris: A cluster of 15 genes is involved in the biosynthsis of the LPS O-antigen and the LPS core Molec. Genet. Genom. 266 79–95CrossRefGoogle Scholar
  453. Vuilleumier, S., and M. Pagni. 2002 The elusive roles of bacterial glutathione S-transferases: New lessons from genomes Appl. Microbiol. Biotechnol. 58 138–146PubMedCrossRefGoogle Scholar
  454. Wacket, L. P. 2003 Pseudomonas putida—a versatile biocatalyst Nature Biotechnol. 21 136–138CrossRefGoogle Scholar
  455. Walsh, U., J. P. Morrisey, and F. O’Gara. 2001 Pseudomonas for control of phytopathogens: From functional genomics to commercial exploitation Curr. Opin. Biotechnol. 12 289–295PubMedCrossRefGoogle Scholar
  456. Weinel, C., K. E. Nelson, and B. Tümmler. 2002 Global features of the Pseudomonas putida KT2440 genome sequence Environ. Microbiol. 4 809–818PubMedCrossRefGoogle Scholar
  457. Werlen, C., H. P. E. Kohler, and J. R. van der Meer. 1996 The broad substrate chlorobenzene dioxygenase and cis-chlorobenzene dihydrodiol dehydrogenase of Pseudomonas sp. strain P51 are linked evolutionarily to the enzymes for benzene and toluene degradation J. Biol. Chem. 271 4009–4016PubMedCrossRefGoogle Scholar
  458. Wery, J., B. Hidayat, J. Kieboom, and J. A. M. de Bont. 2001 An insertion sequence prepares Pseudomonas putida for severe solvent stress J. Biol. Chem. 276 5700–5706PubMedCrossRefGoogle Scholar
  459. West, S. E. H., and B. H. Iglewski. 1988 Codon usage in Pseudomonas aeruginosa Nucleic Acids Res. 16 9323–9335PubMedGoogle Scholar
  460. Whitaker, R. J., G. S. Byng, R. L. Gherna, and R. A. Jensen. 1981 Diverse enzymological patterns of phenylalanine biosynthesis in pseudomonad bacteria are conserved in parallel with DNA/DNA homology groups J. Bacteriol. 147 526–566PubMedGoogle Scholar
  461. Whited, G. M., and D. T. Gibson. 1991 Toluene-4-monooxygenase, a three-component enzyme system that catalyzes the oxidation of toluene to p-cresol in Pseudomonas mendocina KR1 J. Bacteriol. 173 3010–3016PubMedGoogle Scholar
  462. Whiteley, M., M. R. Parsek, and E. P. Greenberg. 2000 Regulation of quorum sensing by RpoS in Pseudomonas aeruginosa J. Bacteriol. 182 4356–4360PubMedCrossRefGoogle Scholar
  463. Whiteley, M., M. G. Bangera, R. E. Bumgarner, M. R. Parsek, G. M. Teitzel, S. Lory, and E. P. Greenberg. 2001 Gene expression in Pseudomonas aeruginosa biofilms Nature 413 860–864PubMedCrossRefGoogle Scholar
  464. Widmer, F., R. J. Seidler, P. M. Gillevet, L. S. Watrud, and G. D. Di Giovanni. 1998 A highly selective PCR protocol for detecting 16S rRNA genes of the genus Pseudomonas (sensu stricto) in environmental samples Appl. Environ. Microbiol. 64 2545–2553PubMedGoogle Scholar
  465. Wilkenson, S. G. 1970 Cell walls of Pseudomonas species sensitive to ethylenediaminetreaacetic acid J. Bacteriol. 104 1035–1044Google Scholar
  466. Wilkinson, S. G., L. Galbraith, and G. A. Lightfoot. 1973 Cell walls, lipids, and lipopolysaccharides of Pseudomonas species Eur. J. Biochem. 33 158–174PubMedCrossRefGoogle Scholar
  467. Williams, P. A., and M. J. Worsey. 1976 Ubiquity of plasmids in coding for toluene and xylene metabolism in soil bacteria: Evidence for the existence of new TOL plasmids J. Bacteriol. 125 818–828PubMedGoogle Scholar
  468. Wilson, M., S. S. Hirano, and S. E. Lindow. 1999 Location and survival of leaf-associated bacteria in relation to pathogenicity and potential for growth within the leaf Appl. Environ. Microbiol. 65 1435–1443PubMedGoogle Scholar
  469. Wilson, M. J., B. J. McMoraran, and I. L. Lamont. 2001 Analysis of promoters recognized by PvdS, an extracytoplasmic-function sigma factor protein from Pseudomonas aeruginosa J. Bacteriol. 183 2151–2155PubMedCrossRefGoogle Scholar
  470. Winslow, C.-E. A., J. Broadhurst, R. E. Buchanan Jr., C. Krumwiede, L. A. Rogers, and G. H. Smith. 1917 The families and genera of the bacteria J. Bacteriol. 2 505–566PubMedGoogle Scholar
  471. Winson, M. K., M. Cámara, A. Latifi, M. Fogliono, S. R. Chhabra, M. Daykin, M. Bally, V. Chapon, G. P. C. Salmond, B. W. Bycroft, A. Lazdunski, G. S. A. B. Stewart, and P. Williams. 1995 Multiple N-acyl-L-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa Proc. Natl. Acad. Sci. USA 92 9427–9431PubMedCrossRefGoogle Scholar
  472. Wittich, R. M., H. Wilkes, V. Sinnwell, W. Francke, and P. Fortnagel. 1992 Metabolism of dibenzo-p-dioxin by Sphingomonas sp. strain RW1 Appl. Environ. Microbiol. 58 1005–1010PubMedGoogle Scholar
  473. Wittich, R. M., C. Strömpl, E. R. B. Moore, R. Blasco, and K. N. Timmis. 1999 Interaction of Sphingomonas and Pseudomonas strains in the degradation of chlorinated dibenzofurans J. Indust. Microbiol. Biotechnol. 23 353–358CrossRefGoogle Scholar
  474. Woese, C. R., E. Stackebrandt, W. G. Weisburg, B. J. Paster, M. T. Madigan, V. J. Fowler, C. M. Hahn, P. Blanz, R. Gupta, K. H. Nelson, and G. E. Fox. 1984a The phylogeny of purple bacteria: The alpha subdivision Syst. Appl. Microbiol. 5 315–326PubMedGoogle Scholar
  475. Woese, C. R., W. G. Weisburg, B. J. Paster, C. M. Hahn, R. S. Tanner, N. R. Krieg, H.-P. Koops, H. Harms, and E. Stackebrandt. 1984b The phylogeny of purple bacteria: The beta subdivision Syst. Appl. Microbiol. 5 327–336Google Scholar
  476. Woese, C. R., W. G. Weisburg, C. M. Hahn, B. J. Paster, L. B. Zablen, B. J. Lewis, T. J. Macke, W. Ludwig, and E. Stackebrandt. 1985 The phylogeny of purple bacteria: The gamma subdivision Syst. Appl. Microbiol. 6 25–33Google Scholar
  477. Woese, C. R. 1987 Bacterial evolution Microbiol. Rev. 51 221–271PubMedGoogle Scholar
  478. Wolgel, S. A., J. E. Dege, P. E. Perkins-Olson, C. H. Juarez-Garcia, R. L. Crawford, E. Münck, and J. D. Lipscomb. 1993 Purification and characterization of protocatechuate 2,3-dioxygenase from Bacillus macerans: A new extradiol catecholic dioxygenase J. Bacteriol. 175 4414–4426PubMedGoogle Scholar
  479. Wolterink, A. F. W. M., A. B. Jonker, S. W. M. Kengen, and A. J. M. Stams. 2002 Pseudomonas chloritidismutans sp. nov., a non-denitrifying, chlorate-reducing bacterium Int. J. Syst. Evol. Microbiol. 52 2183–2190PubMedCrossRefGoogle Scholar
  480. Wong, C. L., and N. W. Dunn. 1976 Combined chromosomal and plasmid encoded control for the degradation of phenol in Pseudomonas putida Genet. Res. 27 405–412PubMedCrossRefGoogle Scholar
  481. Wood, D. W., and L. S. Pierson 3rd. 1996 The phzI gene of Pseudomonas aureofaciens 30-84 is responsible for the production of a diffusible signal required for phenazine antibiotic production Gene 168 49–53PubMedCrossRefGoogle Scholar
  482. Wood, D. W., F. Gong, M. M. Daykin, P. Williams, and L. S. Pierson 3rd. 1997 N-acyl-homoserine lactone-mediated regulation of phenazine gene expression by Pseudomonas aureofaciens 30-84 in the wheat rhizosphere J. Bacteriol. 179 7663–7670PubMedGoogle Scholar
  483. Worsey, M. J., and P. A. Williams. 1975 Metabolism of toluene and xylenes by Pseudomonas putida (arvilla) mt-2: Evidence for the TOL plasmid J. Bacteriol. 124 7–13PubMedGoogle Scholar
  484. Wyndham, R. C., A. E. Cashore, C. H. Nakatsu, and C. Peel. 1994 Catabolic transposons Biodegredation 5 323–342CrossRefGoogle Scholar
  485. Xiang, H., L. S. Luo, K. L. Taylor, and D. Dunaway-Mariano. 1999 Interchange of catalytic activity within the 2-enoyl-coenzyme a hydratase isomerase superfamily based on a common active site template Biochemistry 38 7638–7652PubMedCrossRefGoogle Scholar
  486. Yamamoto, S., M. Katagiri, H. Maeno, and O. Hayaishi. 1965 Salicylate hydroxylase, a monooxygenase requiring flavin adenin dinucleotide. I: Purification and general properties J. Biol. Chem. 240 3408–3413PubMedGoogle Scholar
  487. Yamamoto, S., and S. Harayami. 1998 Phylogenetic relationships of Pseudomonas putida strains deduced from the nucleotide sequences of gyrB, rpoD and 16S rRNA genes Int. J. Syst. Bacteriol. 48 813–819PubMedCrossRefGoogle Scholar
  488. Yamamoto, S., H. Kasai, D. L. Arnold, R. W. Jackson, A. Vivian, and S. Harayama. 2000 Phylogeny of the genus Pseudomonas: Intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes Microbiology 146 2385–2394PubMedGoogle Scholar
  489. Yeh, W. K., D. T. Gibson, and T.-N. Liu. 1977 Toluene dioxygenase: A multicomponent enzyme system Biochem. Biophys. Res. Commun. 78 401–411PubMedCrossRefGoogle Scholar
  490. Yen, K. M., and I. C. Gunsalus. 1982 Plasmid gene organization: Naphthalene/salicylate oxidation Proc. Natl. Acad. Sci. USA. 79 874–878PubMedCrossRefGoogle Scholar
  491. You, I.-S., D. Ghosal, and I. C. Gunsalus. 1991 Nucleotide sequence analysis of the Pseudomonas putida PpG7 salicylate hydroxylase gene (nahG) and its 3′-flanking region Biochemistry 30 1635–1641PubMedCrossRefGoogle Scholar
  492. Yuste, L., and F. Rojo. 2001 Role of the crc gene in catabolic repression of the Pseudomonas putida GPo1 alkane degradation pathway J. Bacteriol. 183 6197–6206PubMedCrossRefGoogle Scholar
  493. Zeyer, J., P. R. Lehrbach, and K. N. Timmis. 1985 Use of cloned genes of Pseudomonas TOL plasmid to effect biotransformation of benzoates to cis-hihydrodiols and catechols by Escherichia coli cells Appl. Environ. Microbiol. 50 1409–1413PubMedGoogle Scholar
  494. Zhou, J., and J. M. Tiedje. 1995 Gene transfer from a bacterium injected into an aquifer to an indigenous bacterium Molec. Ecol. 4 613–618Google Scholar
  495. Zielinski, M., S. Backhaus, and B. Hofer. 2002 The principal determinants for the structure of the substrate-binding pocket are located within a central core of a biphenyl dioxygenase alpha subunit Microbiology 148 2439–2448PubMedGoogle Scholar
  496. Zumft, W. G. 1997 Cell biology and molecular basis of denitrification Microbiol. Molec. Biol. Rev. 61 533–616Google Scholar
  497. Zylstra, G. J., W. R. McCombie, D. T. Gibson, and B. A. Finette. 1988 Toluene degradation by Pseudomonas putida F1: Genetic organization of the tod operon Appl. Environ. Microbiol. 54 1498–1503PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Edward R. B. Moore
  • Brian J. Tindall
  • Vitor A. P. Martins Dos Santos
  • Dietmar H. Pieper
  • Juan-Luis Ramos
  • Norberto J. Palleroni

There are no affiliations available

Personalised recommendations