The Family Acetobacteraceae: The Genera Acetobacter, Acidomonas, Asaia, Gluconacetobacter, Gluconobacter, and Kozakia

  • Karel Kersters
  • Puspita Lisdiyanti
  • Kazuo Komagata
  • Jean Swings

Introduction and General Characteristics

Acetic acid bacteria comprise a widespread group of Gram-negative, obligately aerobic rods. They occur mainly in sugary, acidic and alcoholic habitats and have been studied extensively, since they can play a positive, neutral or detrimental role in foodstuffs and beverages. Some species of the Acetobacteraceae play a key role in the industrial manufacture of vinegar. The following genera belong to this family: Acetobacter (type genus), Acidomonas, Asaia, Gluconacetobacter, Gluconobacter and Kozakia. The names Acetobacter and Gluconobacter are known in literature since 1898 and 1935, respectively, whereas the other genus names were published after 1989.

All members of the Acetobacteraceae are obligately aerobic and their metabolism is strictly respiratory with oxygen as the terminal electron acceptor. A common feature of the acetic acid bacteria (with the exception of Asaia) is the aerobic oxidation of ethanol to acetic acid, with accumulation...


Bacterial Cellulose Gluconic Acid Acetic Acid Bacterium Palm Wine Acetic Acid Fermentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Abadie, M. 1962 Association de Candida mycoderma Rees Lodder et d’Acetobacter xylinum Brown dans la fermentation acétique des infusions de thé Ann. Sci. Nat. Bot. Biol. Veg. 2 765–800Google Scholar
  2. Adachi, O., H. Toyama, and K. Matsushita. 1999a Crystalline NADP-dependent D-mannitol dehydrogenase from Gluconobacter suboxydans Biosci. Biotechnol. Biochem. 63 402–407CrossRefGoogle Scholar
  3. Adachi, O., H. Toyama, G. Theeragool, N. Lotong, and K. Matsushita. 1999b Crystallization and properties of NAD-dependent D-sorbitol dehydrogenase from Gluconobacter suboxydans IFO 3257 Biosci. Biotechnol. Biochem. 63 1589–1595CrossRefGoogle Scholar
  4. Adachi, O., Y. Fujii, Y. Ano, D. Moonmangmee, H. Toyama, E. Shinagawa, G. Theeragool, N. Lotong, and K. Matsushita. 2001a Membrane-bound sugar alcohol dehydrogenase in acetic acid bacteria catalyzes L-ribulose formation and NAD-dependent ribitol dehydrogenase is independent of the oxidative fermentation Biosci. Biotechnol. Biochem. 65 115–125PubMedCrossRefGoogle Scholar
  5. Adachi, O., Y. Fujii, M. F. Ghaly, H. Toyama, E. Shinagawa, and K. Matsushita. 2001b Membrane-bound quinoprotein D-arabitol dehydrogenase of Gluconobacter suboxydans IFO 3257: A versatile enzyme for the oxidative fermentation of various ketoses Biosci. Biotechnol. Biochem. 65 2755–2762PubMedCrossRefGoogle Scholar
  6. Adachi, O., D. Moonmangmee, E. Shinagawa, H. Toyama, M. Yamada, and K. Matsushita. 2003a New quinoproteins in oxidative fermentation Biochim. Biophys. Acta Prot. Proteomics 1647 10–17CrossRefGoogle Scholar
  7. Adachi, O., D. Moonmangmee, H. Toyama, M. Yamada, E. Shinagawa, and K. Matsushita. 2003b New developments in oxidative fermentation Appl. Microbiol. Biotechnol. 60 643–653PubMedGoogle Scholar
  8. Adachi, O, N. Yoshihara, S. Tanasupawat, H. Toyama, and K. Matsushita. 2003c Purification and characterization of membrane-bound quinoprotein quinate dehydrogenase Biosci. Biotechnol. Biochem. 67 2115–2123PubMedCrossRefGoogle Scholar
  9. Alaban, ñC. A. 1962 Studies on the optimum conditions for “nata de coco” bacterium or “nata” formation in coconut water Philippine Agric. 45 490–515Google Scholar
  10. Allen, T. C., and A. J. Ricker. 1932 A rot of apple fruit caused by Phytomonas melophtora n. sp. following invasion by the apple maggot Phytopathology 22 557–571Google Scholar
  11. Allgeier, R. J., and F. M. Hildebrandt. 1960 Newer developments in vinegar manufacture Adv. Appl. Microbiol. 2 163–182PubMedCrossRefGoogle Scholar
  12. Ameyama, M. 1975 Gluconobacter oxydans subsp. sphaericus new subspecies isolated from grapes Int. J. Syst. Bacteriol. 25 365–370CrossRefGoogle Scholar
  13. André, J. 1958 Plinius, S. Histoire naturelle [translation] Société d’Edition “Les Belles Lettres.” Paris, FranceGoogle Scholar
  14. André, J. 1961 L’alimentation et la cuisine à Rome Librairie C. Klincksieck Paris, FranceGoogle Scholar
  15. Aries, V., P. A. Cheney, and D. A. A. Mossel. 1982 Ecological studies on the occurrence of bacteria utilizing lactic acid at pH values below 4–5 J. Appl. Bacteriol. 52 345–351PubMedCrossRefGoogle Scholar
  16. Asai, T. 1935 Taxonomic studies on acetic acid bacteria and allied oxidative bacteria isolated from fruits. A new classification of the oxidative bacteria J. Agric. Chem. Soc. Japan 11 674–708Google Scholar
  17. Asai, T. 1968 Acetic Acid Bacteria: Classification and Biochemical Activities University of Tokyo Press and University Park Press Tokyo, Japan and, Baltimore, MDGoogle Scholar
  18. Attwood, M. A., J. P. van Dijken, and J. T. Pronk. 1991 Glucose metabolism and gluconic acid production by Acetobacter diazotrophicus J. Ferment. Bioengin. 72 101–105CrossRefGoogle Scholar
  19. Ault, R. G. 1965 Spoilage bacteria in brewing—a review J. Inst. Brew. 71 376–391Google Scholar
  20. Babel, W., D. Miethe, U. Iske, K. Sattler, H. P. Richter, and J. Schmidt. 1991 Microbial manufacture of gluconic acid: German Patent DD 293,135 Chem. Abstr. 115 278185Google Scholar
  21. Bassir, O. 1968 Some Nigerian wines West African J. Biol. Appl. Sci. 5 67–85Google Scholar
  22. Batra, L. R., S. W. T. Batra, and G. E. Bohart. 1973 The mycoflora of domesticated and wild bees (Apoidea) Mycopathol. Mycol. Appl. 49 13–44CrossRefGoogle Scholar
  23. Behrens, J. 1896 Die Infektionskrankheiten des Weines Zbl. Bakteriol. Parasitenkde. Infektionskrankh. Hyg., 2 Abt. 2 213–231Google Scholar
  24. Beijerinck, M. W. 1898 Ueber die Arten der Essigbakterien Zbl. Bakteriol. Parasitenkde. Infektionskrankh. Hyg., 2 Abt. 4 209–216Google Scholar
  25. Beijerinck, M. W. 1916 Formation of Pyruvic Acid from Malic Acid by Microbes Verslag gewone vergadering Akademie Amsterdam, The Netherlands 18 1198–2000Google Scholar
  26. Beppu, T. 1993 Genetic organization of Acetobacter for acetic acid fermentation Ant. v. Leeuwenhoek 64 121–135CrossRefGoogle Scholar
  27. Bernardo, E. B., B. A. Neilan, and I. Couperwhite. 1998 Characterization, differentiation and identification of wild-type cellulose-synthesizing Acetobacter strains involved in Nata de Coco production Syst. Appl. Microbiol. 21 599–608CrossRefGoogle Scholar
  28. Bhat, J. V., and K. Rijsinghani. 1955 Studies on Acetobacter. I. Isolation and characterization of the species Proc. Indian Acad. Sci. 41 209–219Google Scholar
  29. Bielecki, S., A. Krystynowicz, M. Turkiewicz, and H. Kalinowska. 2002 Bacterial cellulose In: E. J. Vandamme, S. De Baets, and A. Steinbüchel (Eds.) “Biopolymers” from Polysaccharides I: Polysaccharides from Prokaryotes Wiley chichester,, UK 5 37–90Google Scholar
  30. Blackwood, A.-C., G. Guimberteau, and E. Peynaud. 1969 Sur les bactéries acétiques isolées de raisins C.R. Hebd. Séances Acad Sci., Série D 269 802–804Google Scholar
  31. Blatny, J. M., T. Brautaset, H. C. Winther-Larsen, K. Haugan, and S. Valla. 1997 Construction and use of a versatile set of broad-host-range cloning and expression vectors based on the RK2 replicon Appl. Environ. Microbiol. 63 370–379PubMedGoogle Scholar
  32. Boddey, R. M., S. Urquiaga, V. M. Reis, and J. Döbereiner. 1991 Biological nitrogen fixation associated with sugar cane Plant Soil 137 111–117CrossRefGoogle Scholar
  33. Boesch, C., J. Trek, M. Sievers, and M. Teuber. 1998 Acetobacter intermedius sp. nov Syst. Appl. Microbiol. 21 220–229PubMedCrossRefGoogle Scholar
  34. Borchert, A. 1966 Die Krankheiten und Schädlinge der Honigbiene Hirzel Leipzig, GermanyGoogle Scholar
  35. Boudrant, J. 1990 Microbial processes for ascorbic acid biosynthesis: A review Enz. Microb. Technol. 12 322–329CrossRefGoogle Scholar
  36. Brown R. M., and I. M. Saxena. 2000 Cellulose biosynthesis: A model for understanding the assembly of biopolymers Plant Physiol. Biochem. 38 57–67CrossRefGoogle Scholar
  37. Brown R. M. 2004 Cellulose structure and biosynthesis: What is in store for the 21st century J. Polymer Sci. Part A: Polymer Chem. 42 487–495CrossRefGoogle Scholar
  38. Buddenhagen, I. W., and G. G. Dull. 1967 Pink disease of pineapple fruit caused by strains of acetic acid bacteria [Abstract] Phytopathology 57 806Google Scholar
  39. Bulygina, E. S., O. M. Gulikova, E. M. Dikanskaya, A. I. Netrusov, T. P. Tourova, and K. M. Chumakov. 1992 Taxonomic studies of the genera Acidomonas, Acetobacter and Gluconobacter by 5S ribosomal RNA sequencing J. Gen. Microbiol. 138 2283–2286CrossRefGoogle Scholar
  40. Burris, R. H. 1994 Comparative study of the response of Azotobacter vinelandii and Acetobacter diazotrophicus to changes in pH Protoplasma 183 62–66CrossRefGoogle Scholar
  41. Caballero-Mellado, J., L. E. Fuentes-Ramírez, V. M. Reis, and E. Martínez-Romero. 1995 Genetic structure of Acetobacter diazotrophicus populations and identification of a new genetically distant group Appl. Environ. Microbiol. 61 3008–3013PubMedGoogle Scholar
  42. Campbell, L. K., D. E. Baker, and R. K. Campbell. 2000 Miglitol: assessment of its role in the treatment of patients with diabetes mellitus Ann. Pharmacother. 34 1291–1301PubMedCrossRefGoogle Scholar
  43. Cancalon, P. F., and M. E. Parish. 1995 Changes in the chemical composition of orange juice during growth of Saccharomyces cerevisiae and Gluconobacter oxydans Food Microbiol. 12 117–124CrossRefGoogle Scholar
  44. Cannon, R. E., and S. M. Anderson. 1991 Biogenesis of bacterial cellulose Crit. Rev. Microbiol. 17 435–447PubMedCrossRefGoogle Scholar
  45. Carr, J. G. 1958 Acetobacter estunense nov. spec., an addition to Frateur’s ten basic species Ant. v. Leeuwenhoek 24 158–160Google Scholar
  46. Carr, J. G., and G. E. Whiting. 1971 Microbiological aspects of production and spoilage of cider J. Appl. Bacteriol. 34 81–93PubMedCrossRefGoogle Scholar
  47. Carr, J. G., and S. M. Passmore. 1979 Methods for identifying acetic acid bacteria In: F. A. Skinner and D. Lovelock (Eds.) Identification Methods for Microbiologists Academic Press London, UK 33–47Google Scholar
  48. Cavalcante, V. A., and J. Döbereiner. 1988 A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane Plant Soil 108 23–31CrossRefGoogle Scholar
  49. Cha, J. S., C. Pujol, A. R. Ducusin, E. A. Macion, C. H. Hubbard, and C. I. Kado. 1997 Studies on Pantoea citrea, the causal agent of pink disease of pineapple J. Phytopathol. 145 313–319CrossRefGoogle Scholar
  50. Chan, H. T. C., and C. Anthony. 1991 The interaction of methanol dehydrogenase and cytochrome c1 in the acidophilic methylotroph Acetobacter methanolicus Biochem. J. 280 139–146PubMedGoogle Scholar
  51. Chao, Y., Y. Sugano, and M. Shoda. 2001 Bacterial cellulose production under oxygen-enriched air at different fructose concentrations in a 50-liter, internal-loop airlift reactor Appl. Microbiol. Biotechnol. 55 673–679PubMedCrossRefGoogle Scholar
  52. Choi, E. S., E. H. Lee, and S. K. Rhee. 1995 Purification of a membrane-bound sorbitol dehydrogenase from Gluconobacter suboxydans FEMS Microbiol. Lett. 125 45–49CrossRefGoogle Scholar
  53. Claret, C., J. M. Salmon, C. Romieu, and A. Bories. 1994 Physiology of Gluconobacter oxydans during dihydroxyacetone production from glycerol Appl. Environ. Microbiol. 41 359–365Google Scholar
  54. Cleenwerck, I., K. Vandemeulebroecke, D. Janssens, and J. Swings. 2002 Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov Int. J. Syst. Evol. Microbiol. 52 1551–1558PubMedCrossRefGoogle Scholar
  55. Cleton-Jansen, A.-M., S. Dekker, P. van de Putte, and N. Goosen. 1991 A single amino acid substitution changes the substrate specificity of quinoprotein glucose dehydrogenase in Gluconobacter oxydans Molec. Gen. Genet. 229 206–212PubMedCrossRefGoogle Scholar
  56. Cole, M. 1959 Bacterial rotting of apple fruit Ann. Appl. Biol. 47 601–611CrossRefGoogle Scholar
  57. Colvin, J. R. 1977 A new look at cellulose biosynthesis in relation to structure and industrial use Tappi 60 59–62Google Scholar
  58. Colvin, J. R. 1980 The biosynthesis of cellulose In: J. Priess (Ed.) Plant Biochemistry Academic Press New York, NY 3 543–570Google Scholar
  59. Conner, H. A., and R. J. Allgeier. 1976 Vinegar: Its history and development Adv. Appl. Microbiol. 20 81–133CrossRefGoogle Scholar
  60. Coucheron, D. H. 1991 An Acetobacter xylinum insertion sequence element associated with inactivation of cellulose production J. Bacteriol. 173 5723–5731PubMedGoogle Scholar
  61. Coucheron, D. H. 1993 A family of IS1031 elements in the genome of Acetobacter xylinum: Nucleotide sequences and strain distribution Molec. Microbiol. 9 211–218CrossRefGoogle Scholar
  62. Couso, R. O., L. Ielpi, and M. A. Dankert. 1987 A xanthan-gum-like polysaccharide from Acetobacter xylinum J. Gen. Microbiol. 133 2123–2135Google Scholar
  63. Dachs, E. 1975 Gram-negative Bakterien im Erfrischungsgetränkbetrieb Brauwelt 115 238–240Google Scholar
  64. Dachs, E. 1976 Infektionen durch Gram-negative Bakterien: Gram-negative Bakterien in C.I.P. Anlagen und Desinfektionsmittelbehältern gezelt bekämpfen Brauwelt 116 151–156Google Scholar
  65. De Ley, J. 1961 Comparative carbohydrate metabolism and a proposal for a phylogenetic relationship of the acetic acid bacteria J. Gen. Microbiol. 24 31–50CrossRefGoogle Scholar
  66. De Ley, J., and J. Frateur. 1970 The status of the generic name Gluconobacter Int. J. Syst. Bacteriol. 20 83–95CrossRefGoogle Scholar
  67. De Ley, J., and J. Frateur. 1974a Genus Acetobacter In: R. E. Buchanan and N. E. Gibbons (Eds.) Bergey’s Manual of Determinative Bacteriology, 8th ed Williams and Wilkins Baltimore, MD 276–278Google Scholar
  68. De Ley, J., and J. Frateur. 1974b Genus Gluconobacter In: R. E. Buchanan and N. E. Gibbons (Eds.) Bergey’s Manual of Determinative Bacteriology, 8th ed Williams and Wilkins Baltimore, MD 251–253Google Scholar
  69. De Ley, J., and J. Swings. 1984a Genus Gluconobacter In: N. R. Krieg and J. G. Holt (Eds.) Bergey’s Manual of Systematic Bacteriology Williams and Wilkins Baltimore, MD 1 275–278Google Scholar
  70. De Ley, J., M. Gillis, and J. Swings. 1984b Family Acetobacteraceae In: N. R. Krieg and J. G. Holt (Eds.) Bergey’s Manual of Systematic Bacteriology Williams and Wilkins Baltimore, MD 1 267–268Google Scholar
  71. De Ley, J., J. Swings, and F. Gosselé. 1984c Genus Acetobacter In: N. R. Krieg and J. G. Holt (Eds.) Bergey’s Manual of Systematic Bacteriology Williams and Wilkins Baltimore, MD 1 268–274Google Scholar
  72. Deppenmeier, U., M. Hoffmeister, and C. Prust. 2002 Biochemistry and biotechnological applications of Gluconobacter strains Appl. Microbiol. Biotechnol. 60 233–242PubMedCrossRefGoogle Scholar
  73. De Wulf, P., K. Joris, and E. J. Vandamme. 1996 Improved cellulose formation by an Acetobacter xylinum mutant limited in (keto)gluconate synthesis J. Chem. Technol. Biotechnol. 67 376–380CrossRefGoogle Scholar
  74. De Wulf, P., W. Soetaert, and E. J. Vandamme. 2000 Optimized synthesis of L-sorbose by C-5-dehydrogenation of D-sorbitol with Gluconobacter oxydans Biotechnol. Bioengin. 69 339–343CrossRefGoogle Scholar
  75. Dhanvantari, B. N., D. W. Dye, and J. M. Young. 1978 Pseudomonas pomi Cole 1959 is a later subjective synonym of Acetobacter pasteurianus (Hansen 1879) Beijerinck 1898, and Pseudomonas melophtora Allen and Riker 1932 is a nomen dubium Int. J. Syst. Bacteriol. 28 532–537CrossRefGoogle Scholar
  76. Dinslage, E., and W. Ludorff. 1927 Der “indische Teepilz.” Zeitschr. Untersuch. Lebensm. 53 458–467CrossRefGoogle Scholar
  77. Dittrich, H. H. 1972 Mikroorganismen als Schädlinge in Fruchtsäften und Fruchtsaftgetränken Flüssiges Obst. 39 518–522Google Scholar
  78. Doelger, W. P. 1936 The action of microorganisms on vegetable tanning materials. IV: Characteristics of the acetic acid fermentation J. Am. Leather Chem. Ass. 31 531–544Google Scholar
  79. Drilleau, J.-F. 1977 Le framboisé dans les cidres Bios 7–8 37–44Google Scholar
  80. Dufresne, C., and E. Farnworth. 2000 Tea, kombucha, and health: A review Food Res. Int. 33 409–421CrossRefGoogle Scholar
  81. Dupuy, P. 1957 Les Acetobacter du vin: Identification de quelques souches Ann. Technol. 2 217–233Google Scholar
  82. Du Toit, W. J., and M. G. Lambrechts. 2002 The enumeration and identification of acetic acid bacteria from South African red wine fermentations Int. J. Food Microbiol. 74 57–64PubMedCrossRefGoogle Scholar
  83. Entani, E., S. Ohmori, H. Masai, and K.-I. Suzuki. 1985 Acetobacter polyoxygenes sp. nov., a new species of an acetic acid bacterium useful for producing vinegar with high acidity J. Gen. Appl. Microbiol. 31 475–490CrossRefGoogle Scholar
  84. Faparusi, S. I. 1973 Origin of initial microflora of palm wine from oil palm trees (Elaeis quineensis) J. Appl. Bacteriol. 36 559–565CrossRefGoogle Scholar
  85. Faparusi, S. I. 1974 Microorganisms from oil palm tree (Elaeis quineensis) tap holes J. Food Sci. 39 755–757CrossRefGoogle Scholar
  86. Färber, G., and O. Hovezová-Vondrova. 1957 Symbiosen und Metabiosen in faulendem Obst Acta Musei Nationalis Pragae 23 1–23Google Scholar
  87. Fernandez, K., A. Irastorza, M. Duenas, and A. Bilbao. 1994 Evolution of acetic acid bacteria during cider making in the Basque country (Spain) Sci. Aliments 14 235–241Google Scholar
  88. Follner C., and W. Babel. 1992 Isolation of auxotrophic mutants from Acetobacter methanolicus MB58 Acta Biotechnol. 12 3–11CrossRefGoogle Scholar
  89. Follner C. G., R. Schroder, and W. Babel. 1994 Construction of broad-host-range plasmids for the expression of heterologous genes in Acetobacter methanolicus B58 Acta Biotechnol. 14 141–151CrossRefGoogle Scholar
  90. Franke, I. H., M. Fegan, A. C. Hayward, G. Leonard, E. Stackebrandt, and L. I. Sly. 1999 Description of Gluconacetobacter sacchari sp. nov., a new species of acetic acid bacteria isolated from the leaf sheath of sugarcane and from the pink sugarcane mealy bug Int. J. Syst. Bacteriol. 49 1681–1693PubMedCrossRefGoogle Scholar
  91. Frateur, J. 1950 Essai sur la systématique des Acetobacters La Cellule 53 287–392Google Scholar
  92. Frateur, J., and P. Simonart. 1952 Etude de la flore bactérienne d’un acétificateur de vinaigre d’alcool [abstract] In: IX Congresso Internazionale Industrie Agrarie, Roma 1–6Google Scholar
  93. Frazier, W. C. 1967 Food Microbiology McGraw-Hill New York, NYGoogle Scholar
  94. Frebortova, J., K. Matsushita, T. Yakushi, H. Toyama, and O. Adachi. 1997 Quinoprotein alcohol dehydrogenase of acetic acid bacteria: Kinetic study on the enzyme purified from Acetobacter methanolicus Biosci. Biotechnol. Biochem. 61 459–465CrossRefGoogle Scholar
  95. Fresenius, W., E. Wiemich, and F.-J. Bibo. 1977–78 Kennzeichnung getränkeschädlicher Keime und Methoden zu ihrem Nachweis Alimenta Sonderausgabe 9–15Google Scholar
  96. Fuentes-Ramírez, L. E., T. Jimenez-Salgado, I. R. Abarca-Ocampo, and J. Caballero-Mellado. 1993 Acetobacter diazotrophicus, an indolacetic acid producing bacterium isolated from sugarcane cultivars of Mexico Plant Soil 154 145–150CrossRefGoogle Scholar
  97. Fuentes-Ramírez, L. E., R. Bustillos-Cristales, A. Tapia-Hernandez, T. Jimenez-Salgado, E. T. Wang, E. Martinez-Romero, and J. Caballero-Mellado. 2001 Novel nitrogen-fixing acetic acid bacteria, Gluconacetobacter johannae sp. nov. and Gluconacetobacter azotocaptans sp. nov., associated with coffee plants Int. J. Syst. Evol. Microbiol. 51 1305–1314PubMedGoogle Scholar
  98. Fuhrmann, F. 1905 Morphologisch-biologische Untersuchungen über ein neues Essigsäure bildendes Bakterium Botanisches Centralblatt. Beihefte Abt. 1 19 1–33Google Scholar
  99. Fukaya, M., T. Iwata, E. Entani, H. Masai, T. Uozumi, and T. Beppu. 1985a Distribution and characterization of plasmids in acetic acid bacteria Agric. Biol. Chem. 49 1349–1355CrossRefGoogle Scholar
  100. Fukaya, M., H. Okumura, H. Masai, T. Uozumi, and T. Beppu. 1985b Construction of new shuttle vectors for Acetobacter Agric. Biol. Chem. 49 2083–2090CrossRefGoogle Scholar
  101. Fukaya, M., K. Tayama, H. Okumura, H. Masai, T. Uozumi, and T. Beppu. 1985c Improved transformation method for Acetobacter with plasmid DNA Agric. Biol. Chem. 49 2091–2097CrossRefGoogle Scholar
  102. Fukaya, M., K. Tayama, T. Tamaki, H. Tagami, H. Okumura, Y. Kawamura, and T. Beppu. 1989 Cloning of the membrane-bound aldehyde dehydrogenase gene of Acetobacter polyoxogenes and improvement of acetic acid production by use of the cloned gene Appl. Environ. Microbiol. 55 171–176PubMedGoogle Scholar
  103. Fukaya, M., H. Takemura, H. Okumura, Y. Kawamura, S. Horinouchi, and T. Beppu. 1990 Cloning of genes responsible for acetic acid resistance in Acetobacter aceti J. Bacteriol. 172 2096–2104PubMedGoogle Scholar
  104. Fukaya, M., H. Takemura, K. Tayama, H. Okumura, Y. Kawamura, S. Horinouchi, and T. Beppu. 1993a The aarC gene responsible for acetic acid assimilation confers acetic acid resistance on Acetobacter aceti J. Ferment. Bioengin. 76 270–275CrossRefGoogle Scholar
  105. Fukaya, M., K. Tayama, T. Tamaki, H. Ebisuya, H. Okumura, Y. Kawamura, S. Horinouchi, and T. Beppu. 1993b Characterization of a cytochrome-a(1) that functions as a ubiquinol oxidase in Acetobacter aceti J. Bacteriol. 175 4307–4314PubMedGoogle Scholar
  106. Gallardo-de Jesus, E., R. M. Andres, and E. T. Magno. 1973 A study of the isolation and screening of microorganisms for production of diverse-textured nata Philippine J. Sci. 100 41–49Google Scholar
  107. Gillis, M., and J. De Ley. 1980 Intra-and intergeneric similarities of the ribosomal ribonucleic acid cistrons of Acetobacter and Gluconobacter Int. J. Syst. Bacteriol. 30 7–27CrossRefGoogle Scholar
  108. Gillis, M., K. Kersters, B. Hoste, D. Janssens, R. M. Kroppenstedt, M. P. Stephan, K. R. S. Texeira, J. Döbereiner, and J. De Ley. 1989 Acetobacter diazotrophicus sp. nov., a new nitrogen-fixing acetic acid bacterium associated with sugarcane Int. J. Syst. Bacteriol. 39 361–364CrossRefGoogle Scholar
  109. Gosselé, F., J. Swings, K. Kersters, P. Pauwels, and J. De Ley. 1983 Numerical analysis of phenotypic features and protein gel electrophoregrams of a wide variety of Acetobacter strains. Proposal for the improvement of the taxonomy of the genus Acetobacter Beijerinck 1898, 215 Syst. Appl. Microbiol. 4 338–368PubMedCrossRefGoogle Scholar
  110. Gosselé, F., J. Swings, D. A. A. Mossel, and J. De Ley. 1984 Identification of Acetobacter strains isolated from spoiled lactic acid fermented meat food for pets Ant. v. Leeuwenhoek 50 269–274CrossRefGoogle Scholar
  111. Gosselé, F., and J. Swings. 1985 Identification of a nata-producing bacterium as Acetobacter hansenii Philippine J. Sci. 114 179–182Google Scholar
  112. Gosselé, F., and J. Swings. 1986 Identification of Acetobacter liquefaciens as causal agent of pink-disease of pineapple fruit J. Phytopathol. 116 167–175CrossRefGoogle Scholar
  113. Greene, R. A., and E. L. Breazeale. 1952 Cloudiness of tequila produced by Acetobacter Am. Brew. 85 41–52Google Scholar
  114. Greenfield, S., and G. W. Claus. 1972 Nonfunctional tricarboxylic acid cycle and the mechanism of glutamate biosynthesis in Acetobacter suboxydans J. Bacteriol. 112 1295–1301PubMedGoogle Scholar
  115. Greenwalt, C. J., K. H. Steinkraus, and R. A. Ledford. 2000 Kombucha, the fermented tea: microbiology, composition, and claimed health effects J. Food Protect. 63 976–981Google Scholar
  116. Griffin, A. M., V. J. Morris, and M. J. Gasson. 1994 Genetic analysis of acetan biosynthesis in Acetobacter xylinum Int. J. Biol. Macromol. 16 287–289PubMedCrossRefGoogle Scholar
  117. Griffin, A. M., V. J. Morris, and M. J. Gasson. 1996 Genetic analysis of the acetan biosynthetic pathway in Acetobacter xylinum: nucleotide sequence analysis of the aceB, aceC, aceD and aceE genes DNA Seq. 6 275–284PubMedGoogle Scholar
  118. Griffin, A. M., K. J. Edwards, V. J. Morris, and M. J. Gasson. 1997 Genetic analysis of acetan biosynthesis in Acetobacter xylinum: DNA sequence analysis of the aceM gene encoding an UDP-glucose dehydrogenase Biotechnol. Lett. 19 469–474CrossRefGoogle Scholar
  119. Grimmecke, H. D., U. Mamat, W. Lauk, A. S. Shashkov, Y. A. Knirel, E. V. Vinogradov, and N. K. Kochetkov. 1991 Structure of the capsular polysaccharide and the O-side-chain of the lipopolysaccharide from Acetobacter methanolicus MB-58/4 (IMET 10945), and of oligosaccharides resulting from their degradation by bacteriophage Acm1 Carbohydr. Res. 220 165–172PubMedCrossRefGoogle Scholar
  120. Grimmecke, H. D., Y. A. Knirel, B. Kiesel, M. Voges, and E. T. Rietschel. 1994a Structure of the Acetobacter methanolicus MB-129 capsular polysaccharide, and of oligosaccharides resulting from degradation by bacteriophage Acm7 Carbohydr. Res. 259 45–58PubMedCrossRefGoogle Scholar
  121. Grimmecke, H. D., Y. A. Knirel, A. S. Shashkov, B. Kiesel, W. Lauk, and M. Voges. 1994b Structure of the capsular polysaccharide and the O-side-chain of the lipopolysaccharide from Acetobacter methanolicus MB-70, and of oligosaccharides resulting from their degradation by bacteriophage Acm6 Carbohydr. Res. 253 277–282PubMedCrossRefGoogle Scholar
  122. Guittonneau, G., G. Macquot, and J. Tavernier. 1939 La cause microbiologique de la maladie des cidres dits framboisés: Production d’éthanol par actions conjuguées de levures alcooliques et de bactéries acétiques C.R. Acad. Sci. 209 809–811Google Scholar
  123. Gupta, A., V. Verma, and G. N. Qazi. 1997 Transposon induced mutation in Gluconobacter oxydans with special reference to its direct glucose oxidation metabolism FEMS Microbiol. Lett. 147 181–188PubMedCrossRefGoogle Scholar
  124. Gupta, A., M. Felder, V. Verma, J. Cullum, and G. N. Qazi. 1999 A mutant of Gluconobacter oxydans deficient in gluconic acid dehydrogenase FEMS Microbiol. Lett. 179 501–506PubMedCrossRefGoogle Scholar
  125. Gupta, A., V. K. Singh, G. N. Qazi, and A. Kumar. 2001 Gluconobacter oxydans: its biotechnological applications J. Molec. Microbiol. Biotechnol. 3 445–456Google Scholar
  126. Hall, P. E., S. M. Anderson, D. M. Johnston, and R. E. Cannon. 1992 Transformation of Acetobacter xylinum with plasmid DNA by electroporation Plasmid 28 194–200PubMedCrossRefGoogle Scholar
  127. Hanada, T., Y. Kashima, A. Kosugi, Y. Koizumi, F. Yanagida, and S. Udaka. 2001 A gene encoding phosphatidylethanolamine N-methyltransferase from Acetobacter aceti and some properties of its disruptant Biosci. Biotechnol. Biochem. 65 2741–2748PubMedCrossRefGoogle Scholar
  128. Hancock, R. D., and R. Viola. 2002 Biotechnological approaches for L-ascorbic acid production: current status and future perspectives Trends Biotechnol. 20 299–305PubMedCrossRefGoogle Scholar
  129. Henneberg, W. 1906 Zur Kenntnis der Schnellessig und Weinessigbakteriën Deutsch. Essigindustrie 10 106–108Google Scholar
  130. Henneberg, W. 1909 Gärungsbakteriologische Praktikum, Betriebsuntersuchungen und Pilzkunde Parey Berlin, GermanyGoogle Scholar
  131. Hermann, S. 1928a Ueber die sogenannte “Kombucha” I Biochem. Zeitschr. 192 176–187Google Scholar
  132. Hermann, S. 1928b Ueber die sogenannte “Kombucha” II Biochem. Zeitschr. 192 188–199Google Scholar
  133. Hernández, L., R. Ramírez, J. V. Hormaza, J. Madrazo, and J. Arrieta. 1999 Increased levansucrase production by a genetically modified Acetobacter diazotrophicus strain in shaking batch cultures Lett. Appl. Microbiol. 28 41–44CrossRefGoogle Scholar
  134. Hestrin, S., M. Aschner, and J. Mager. 1947 Synthesis of cellulose by resting cells of Acetobacter xylinum Nature (London) 159 64–65CrossRefGoogle Scholar
  135. Hestrin, S., and M. Schramm. 1954 Synthesis of cellulose by Acetobacter xylinum. II: Preparation of freeze-dried cells capable of polymerizing glucose to cellulose Biochem. J. 58 345–352PubMedGoogle Scholar
  136. Hestrin, S. 1962 Synthesis of polymeric homopolysaccharides In: I. C. Gunsalus and R. Y. Stanier (Eds.) The Bacteria Academic Press New York NY 3 373–388Google Scholar
  137. Hiraishi, A.,Y. Matsuzawa, T. Kanbe, and N. Wakao. 2000 Acidisphaera rubrifaciens gen. nov., sp nov., an aerobic bacteriochlorophyll-containing bacterium isolated from acidic environments Int. J. Syst. Evol. Microbiol. 50 1539–1546PubMedCrossRefGoogle Scholar
  138. Hoshino, T., T. Sugisawa, M. Tazoe, M. Shinjoh, and A. Fujiwara. 1990 Metabolic pathway for 2-keto-L-gulonic acid formation in Gluconobacter melanogenus IFO 3293 Agric. Biol. Chem. 54 1211–1218CrossRefGoogle Scholar
  139. Hoshino T., T. Sugisawa, M. Shinjoh, N. Tomiyama, and T. Miyazaki. 2003 Membrane-bound D-sorbitol dehydrogenase of Gluconobacter suboxydans IFO 3255enzymatic and genetic characterization Biochim. Biophys. Acta Prot. Proteomics 1647 278–288CrossRefGoogle Scholar
  140. Hromatka, O., and H. Ebner. 1949 Investigations on vinegar fermentation: Generator for vinegar fermentation and aeration procedures Enzymologia 13 369Google Scholar
  141. Huber, E. 1927 Der Essig in der altbabylonischen Kulturgeschichte Die Deutsche Essigindustrie 31 12–15, 28–30Google Scholar
  142. Iguchi, M., S. Yamanaka, and A. Budhiono. 2000 Bacterial cellulose—a masterpiece of nature’s arts J. Materials Sci. 35 261–270CrossRefGoogle Scholar
  143. Inoue, T., M. Sunagawa, A. Mori, C. Imai, M. Fukuda, M. Takagi, and K. Yano. 1989 Cloning and sequencing of the gene encoding the 72-kilodalton dehydrogenase subunit of alcohol dehydrogenase from Acetobacter aceti J. Bacteriol. 171 3115–3122PubMedGoogle Scholar
  144. Inoue, T., M. Sunagawa, A. Mori, C. Imai, M. Fukuda, M. Takagi, and K. Yano. 1990 Possible functional domains in a quinoprotein alcohol dehydrogenase from Acetobacter aceti J. Ferment. Bioengin. 70 58–60CrossRefGoogle Scholar
  145. Inoue, T., M. Sunagawa, A. Mori, C. Imai, M. Fukuda, M. Takagi and K. Yano. 1992 Nucleotide sequence of the gene encoding the 45-kilodalton subunit of alcohol dehydrogenase from Acetobacter aceti J. Ferment. Bioengin. 73 419–424CrossRefGoogle Scholar
  146. Iversen, T.-G., R. Standal, T. Pedersen, and D. H. Coucheron. 1994 IS1032 from Acetobacter xylinum, a new mobile insertion sequence Plasmid 32 46–54PubMedCrossRefGoogle Scholar
  147. James, E. K., and F. L. Olivares. 1997 Infection and colonization of sugar cane and other graminaceous plants by endophytic diazotrophs Crit. Rev. Plant Sci. 17 77–119CrossRefGoogle Scholar
  148. ojima Y., Y. Mihara, S. Suzuki, K. Yokozeki, S. Yamanaka, and R. Fudou. 2004 Saccharibacter floricola gen. nov., sp. nov., a novel osmophilic acetic acid bacterium isolated from pollen Int. J. Syst. Evol. Microbiol. 54 2263–2267CrossRefGoogle Scholar
  149. Jonas R., and L. F. Farah. 1998 Production and application of microbial cellulose Polym. Degrad. Stabil. 59 101–106CrossRefGoogle Scholar
  150. Jones, K. L., and S. E. Jones. 1984 Fermentations involved in the production of cocoa, coffee and tea Progr. Indust. Microbiol. 19 411–456Google Scholar
  151. Jucker, W., and L. Ettlinger. 1981 Host range of a bacteriophage of acetic acid bacteria Int. J. Syst. Bacteriol. 31 245–246CrossRefGoogle Scholar
  152. Kahlon, R. S., and S. R. Vyas. 1972 Isolation and identification of acetic acid bacteria from different ecosystems Proc. Indian Acad. Sci., Sect. B 74 293–300Google Scholar
  153. Kashima, Y., Y. Nakajima, T. Nakano, K. Tayama, Y. Koizumi, S. Udaka, and F. Yanagida. 1999 Cloning and characterization of ethanol-regulated esterase genes in Acetobacter pasteurianus J. Biosci. Bioengin. 87 19–27CrossRefGoogle Scholar
  154. Kashima, Y., Y. Nakajima, A. Kosugi, K. Tayama, Y. Koizumi, S. Udaka, and F. Yanagida. 2001 The est1 regulation depends on the oxygen concentration in Acetobacter pasteurinanus Biosci. Biotechnol. Biochem. 65 725–727PubMedCrossRefGoogle Scholar
  155. Katsura, K., H. Kawasaki, W. Potacharoen, S. Saono, T. Seki, Y. Yamada, T. Uchimura, and K. Komagata. 2001 Asaia siamensis sp, nov., an acetic acid bacterium in the alpha-Proteobacteria Int. J. Syst. Evol. Microbiol. 51 559–563PubMedGoogle Scholar
  156. Katsura, K., Y. Yamada, T. Uchimura, and K. Komagata. 2002 Gluconobacter asaii Mason and Claus 1989 is a junior subjective synonym of Gluconobacter cerinus Yamada and Akita 1984 Int. J. Syst. Evol. Microbiol. 52 1635–1640PubMedCrossRefGoogle Scholar
  157. Kersters, K., W. A. Wood, and J. De Ley. 1965 Polyol dehydrogenases of Gluconobacter oxydans J. Biol. Chem. 240 965–974PubMedGoogle Scholar
  158. Kiesel, B., and L. Wunsche. 1993 Phage Acm1-mediated transduction in the facultatively methanol-utilizing Acetobacter methanolicus MB-58/4 J. Gen. Virol. 74 1741–1745PubMedCrossRefGoogle Scholar
  159. Kishimoto, N., Y. Kosako, N. Wakao, T. Tano, and A. Hiraishi. 1995 Transfer of Acidiphilium facilis and Acidiphilium aminolytica to the genus Acidocella gen. nov., and emendation of the genus Acidiphilium Syst. Appl. Microbiol. 18 85–91CrossRefGoogle Scholar
  160. Klasen, R., S. Bringer-Meyer, and H. Sahm. 1992 Incapability of Gluconobacter oxydans to produce tartaric acid Biotechnol. Bioengin. 40 183–186CrossRefGoogle Scholar
  161. Kondo, K., T. Beppu, T., and S. Horinouchi. 1995 Cloning, sequencing, and characterization of the gene encoding the smallest subunit of the three-component membrane-bound alcohol dehydrogenase from Acetobacter pasteurianus J. Bacteriol. 177 5048–5055PubMedGoogle Scholar
  162. Kondo, K., and S. Horinouchi. 1997a A new insertion sequence IS1452 from Acetobacter pasteurianus Microbiology 143 539–546PubMedCrossRefGoogle Scholar
  163. Kondo, K., and S. Horinouchi. 1997b Characterization of an insertion sequence, IS12528, from Gluconobacter suboxydans Appl. Environ. Microbiol. 63 1139–1142PubMedGoogle Scholar
  164. Kondo, K., and S. Horinouchi. 1997c Characterization of the genes encoding the three-component membrane-bound alcohol dehydrogenase from Gluconobacter suboxydans and their expression in Acetobacter pasteurianus Appl. Environ. Microbiol. 63 1131–1138PubMedGoogle Scholar
  165. Kornmann, H., P. Duboc, I. Marison, and U. von Stockar. 2003 Influence of nutritional factors on the nature, yield, and composition of exopolysaccharides produced by Gluconacetobacter xylinus I-2281 Appl. Environ. Microbiol. 69 6091–6098PubMedCrossRefGoogle Scholar
  166. Kraft, M. M. 1959 Le champignon du thé Nova Hedwiga 1 297–304Google Scholar
  167. Kulhánek, M. 1984 Ketofermentations In: V. Krumphanzl and Z. Rehácek (Eds.) Modern Biotechnology Institute of Microbiology, Czechoslavak Academy of Sciences Prague, Czechoslovakia 2 614–676Google Scholar
  168. Kulhánek, M. 1989 Microbial dehydrogenations of monosaccharides Adv. Appl. Microbiol. 34 141–181CrossRefGoogle Scholar
  169. Kützing, F. T. 1837 Microscopische Untersuchungen über die Hefe und Essigmutter, nebst mehreren andern dazu gehörigen vegetabilischen Gebilden J. Prakt. Chem. 11 385–391CrossRefGoogle Scholar
  170. Lambert, B., K. Kersters, F. Gosselé, J. Swings, and J. De Ley. 1981 Gluconobacters from honey bees Ant. v. Leeuwenhoek 47 147–157CrossRefGoogle Scholar
  171. Lapuz, M. M., E. G. Gallardo, and M. A. Palo. 1967 The nata organismcultural requirements, characteristics and identity Philippine J. Sci. 96 91–109Google Scholar
  172. Lee, S., A. Reth, D. Meletzus, M. Sevilla, and C. Kennedy. 2000 Characterization of a major cluster of nif, fix, and associated genes in a sugarcane endophyte, Acetobacter diazotrophicus J. Bacteriol. 182 7088–7091PubMedCrossRefGoogle Scholar
  173. Leifson, E. 1954 The flagellation and taxonomy of species of Acetobacter Ant. v. Leeuwenhoek 20 102–110CrossRefGoogle Scholar
  174. Lisdiyanti, P., H. Kawasaki, T. Seki, Y. Yamada, T. Uchimura, and K. Komagata. 2000 Systematic study of the genus Acetobacter with descriptions of Acetobacter indonesiensis sp. nov., Acetobacter tropicalis sp. nov., Acetobacter orleanensis (Henneberg 1906) comb. nov., Acetobacter lovaniensis (Frateur 1950) comb. nov., and Acetobacter estunensis (Carr 1958) comb. nov J. Gen. Appl. Microbiol. 46 147–165PubMedCrossRefGoogle Scholar
  175. Lisdiyanti, P., H. Kawasaki, T. Seki, Y. Yamada, T. Uchimura, and K. Komagata. 2001 Identification of Acetobacter strains isolated from Indonesian sources, and proposals of Acetobacter syzygii sp. nov., Acetobacter cibinongensis sp. nov., and Acetobacter orientalis sp. nov J. Gen. Appl. Microbiol. 47 119–131PubMedCrossRefGoogle Scholar
  176. Lisdiyanti, P., H. Kawasaki, Y. Widyastuti, S. Saono, T. Seki, Y. Yamada, T. Uchimura, and K. Komagata. 2002 Kozakia baliensis gen. nov., sp. nov., a novel acetic acid bacterium in the alpha-Proteobacteria Int. J. Syst. Evol. Microbiol. 52 813–818PubMedCrossRefGoogle Scholar
  177. Lisdiyanti, P., K. Katsura, W. Potacharoen, R. R. Navarro, Y. Yamada, T. Uchimura, and K. Komagata. 2003 Diversity of acetic acid bacteria in Indonesia, Thailand, and the Philippines Microbiol. Cult. Coll. 19 91–98Google Scholar
  178. Liu, C. H., W. H. Hsu, F. L. Lee, and C. C. Liao. 1996 The isolation and identification of microbes from a fermented tea beverage, haipao, and their interactions during haipao fermentation Food Microbiol. 13 407–415CrossRefGoogle Scholar
  179. Loganathan, P., and S. Nair. 2004 Swaminathania salitolerans gen. nov., sp. nov., a salttolerant, nitrogen-fixing and phosphate-solubilizing bacterium from wild rice (Porteresia coarctata Tateoka). Int. J. Syst. Evol. Microbiol. 54 1185–1190PubMedCrossRefGoogle Scholar
  180. Lott, A. F., and J. G. Carr. 1964 Characteristics of an organism causing spoilage in an orange juice beverage J. Appl. Bacteriol. 27 379–384CrossRefGoogle Scholar
  181. Lu, S. F., F. L. Lee, and H. K. Chen. 1999 A thermotolerant and high acetic acid-producing bacterium Acetobacter sp. I14-2 J. Appl. Microbiol. 86 55–62CrossRefGoogle Scholar
  182. Lusta, K. A., and A. N. Reshetilov. 1998 Physiological and biochemical features of Gluconobacter oxydans and prospects of their use in biotechnology and biosensor systems [review] Appl. Biochem. Microbiol. 34 307–320Google Scholar
  183. Macauley, S., B. McNeil, and L. M. Harvey. 2001 The genus Gluconobacter and its applications in biotechnology Crit. Rev. Biotechnol. 21 1–25PubMedCrossRefGoogle Scholar
  184. Martens, H., E. Dawoud, and H. Verachtert. 1991 Wort enterobacteria and other microbial populations involved during the first month of lambic fermentation J. Inst. Brew. 97 435–439Google Scholar
  185. Masai, H. 1980 Recent technical developments on vinegar manufacture in Japan In: Proceedings of the Oriental Fermented Foods, Food Industry Research and Development Institute, Hsinchu, Taiwan 192–205Google Scholar
  186. Mason, L. M., and G. W. Claus. 1989 Phenotypic characteristics correlated with deoxyribonucleic acid sequence similarities for three species of Gluconobacter: Gluconobacter oxydans (Henneberg 1897) De Ley 1961, Gluconobacter frateurii sp. nov., and Gluconobacter asaii sp. nov Int. J. Syst. Bacteriol. 39 174–184CrossRefGoogle Scholar
  187. Matsushita, K., Y. Nagatani, E. Shinagawa, O. Adachi, and M. Ameyama. 1989 Effect of extracellular pH on the respiratory chain and energetics of Gluconobacter suboxydans Agric. Biol. Chem. 53 2895–2902CrossRefGoogle Scholar
  188. Matsushita, K., K. Takahashi, M. Takahashi, M. Ameyama, and O. Adachi. 1992a Methanol and ethanol oxidase respiratory chains of the methylotrophic acetic acid bacterium Acetobacter methanolicus J. Biochem. 111 739–747PubMedGoogle Scholar
  189. Matsushita, K., Y. Takaki, E. Shinagawa, M. Ameyama, and O. Adachi. 1992b Ethanol oxidase respiratory chain of acetic acid bacteria. Reactivity with ubiquinone of pyrroloquinoline quinone-dependent alcohol dehydrogenases purified from Acetobacter aceti and Gluconobacter suboxydans Biosci. Biotechnol. Biochem. 56 304–310CrossRefGoogle Scholar
  190. Matsushita, K., K. Takahashi, and O. Adachi. 1993 A novel quinoprotein methanol dehydrogenase containing an additional 32-kilodalton peptide purified from Acetobacter methanolicus: Identification of the peptide as a Moxj product Biochemistry 32 5576–5582PubMedCrossRefGoogle Scholar
  191. Matsushita, K., H. Toyama, and O. Adachi. 1994 Respiratory chains and bioenergetics of acetic acid bacteria Adv. Microbiol. Physiol. 36 247–301CrossRefGoogle Scholar
  192. Matsushita, K., T. Yakushi, H. Toyama, O. Adachi, H. Miyoshi, E. Tagami, and K. Sakamoto. 1999 The quinohemoprotein alcohol dehydrogenase of Gluconobacter suboxydans has ubiquinol activity at a site different from the ubiquinone reduction site Biochim. Biophys. Acta 1409 154–164PubMedCrossRefGoogle Scholar
  193. Matsushita, K., Y. Fujii, Y. Ano, H. Toyama, M. Shinjoh, N. Tomiyama, T. Miyazaki, T. Sugisawa, T. Hoshino, and O. Adachi. 2003 5-keto-D-gluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in Gluconobacter species Appl. Environ. Microbiol. 69 1959–1966PubMedCrossRefGoogle Scholar
  194. Maugenet, J. 1962 Les Acétobacters du cidre: Identification de quelques souches Annales de Technologie Agricole, Conservation et Transformation des Produits Agricoles 11 45–53Google Scholar
  195. Mayser, P., S. Fromme, C. Leitzmann, and K. Grunder. 1995 The yeast spectrum of the tea fungus Kombucha Mycoses 38 289–295PubMedCrossRefGoogle Scholar
  196. Mercier, J., and C. L. Wilson. 1994 Colonization of apple wounds by naturally occurring microflora and introduced Candida oleophila and their effect on infection by Botrytis cinerea during storage Biol. Control 4 138–144CrossRefGoogle Scholar
  197. Micales, B. K., J. L. Johnson, and G. W. Claus. 1985 Deoxyribonucleic acid homologies among organisms in the genus Gluconobacter Int. J. Syst. Bacteriol. 35 79–85CrossRefGoogle Scholar
  198. Miyazaki, T., N. Tomiyama, M. Shinjoh, and T. Hoshino. 2002 Molecular cloning and functional expression of D-sorbitol dehydrogenase from Gluconobacter suboxydans IFO3255, which requires pyrroloquinoline quinone and hydrophobic protein SldB for activity development in E.coli Biosci. Biotechnol. Biochem. 66 262–270PubMedCrossRefGoogle Scholar
  199. Molitoris, K. 1973 Schädliche Veränderungen alkoholfreier Erfrischungsgetränke durch Mikroorganismen Brauwelt 113 1199–1206Google Scholar
  200. Molitoris, K., and G. Hubner. 1975 Essigbakterien und ihre zunehmende Bedeutung als Getränkeschädlinge Erfrischungsgetränk 28 332–338Google Scholar
  201. Moonmangmee, D., O. Adachi, Y. Ano, E. Shinagawa, H. Toyama, G. Theeragool, N. Lotong, and K. Matsushita. 2000 Isolation and characterization of thermotolerant Gluconobacter strains catalyzing oxidative fermentation at higher temperatures Biosci. Biotechnol. Biochem. 64 2306–2315PubMedCrossRefGoogle Scholar
  202. Moore, J. E., M. McCalmont, J. Xu, B. C. Miller, and N. Heaney. 2002a Asaia sp., an unusual spoilage organism of fruit-flavored bottled water Appl. Environ. Microbiol. 68 4130–4131PubMedCrossRefGoogle Scholar
  203. Moore, J. E., J. Xu, N. Heaney, and B. C. Miller. 2002b Spoilage of fruit-flavoured bottled water by Gluconacetobacter sacchari Food Microbiol. 19 399–401CrossRefGoogle Scholar
  204. Muthukumarasamy, R., G. Revathi, and P. Loganathan. 2002a Effect of inorganic N on the population, in vitro colonization and morphology of Acetobacter diazotrophicus (syn. Gluconacetobacter diazotrophicus) Plant Soil 243 91–102CrossRefGoogle Scholar
  205. Muthukumarasamy, R., G. Revathi, S. Seshadri, and C. Lakshminarasimhan. 2002b Gluconacetobacter diazotrophicus (syn. Acetobacter diazotrophicus), a promising diazotrophic endophyte in tropics Curr. Sci. 83 137–145Google Scholar
  206. Nakai, T., A. Moriya, N. Tonouchi, T. Tsuchida, F. Yoshinaga, S. Horinouchi, Y. Sone, H. Mori, F. Sakai, and T. Hayashi. 1998 Control of expression by the cellulose synthase (bcsA) promotor region from Acetobacter xylinum BPR 2001 Gene 213 93–100PubMedCrossRefGoogle Scholar
  207. Nanda, K., M. Taniguchi, S. Ujike, N. Ishihara, H. Mori, H. Ono, and Y. Murooka. 2001 Characterization of acetic acid bacteria in traditional acetic acid fermentation of rice vinegar (komesu) and unpolished rice vinegar (kurosu) produced in Japan Appl. Environ. Microbiol. 67 986–990PubMedCrossRefGoogle Scholar
  208. Navarro R. R., and K. Komagata. 1999a Differentiation of Gluconacetobacter liquefaciens and Gluconacetobacter xylinus on the basis of DNA base composition, DNA relatedness, and oxidation products from glucose J. Gen. Appl. Microbiol. 45 7–15PubMedCrossRefGoogle Scholar
  209. Navarro R. R., T. Uchimura, and K. Komagata. 1999b Taxonomic heterogeneity of strains comprising Gluconacetobacter hansenii J. Gen. Appl. Microbiol. 45 295–300PubMedCrossRefGoogle Scholar
  210. Nickol, G. B. 1979 Vinegar In: H. J. Peppler, and D. Perlman (Eds.) Microbial Technology Academic Press London, UK 2 155–172Google Scholar
  211. Ohmori S., T. Uozumi, and T. Beppu. 1982 Loss of acetic acid resistance and ethanol oxidizing ability in an Acetobacter strain Agric. Biol. Chem. 46 381–389CrossRefGoogle Scholar
  212. Okafor, N. 1975 Microbiology of Nigerian palm wine with particular reference to bacteria J. Appl. Bacteriol. 38 81–88CrossRefGoogle Scholar
  213. Okamoto-Kainuma, A., W. Yan, S. Kadono, K. Tayama, Y. Koizumi, and F. Yanagida. 2002 Cloning and characterization of groESL operon in Acetobacter aceti J. Biosci. Bioengin. 94 140–147CrossRefGoogle Scholar
  214. Okumura, H., T. Uozumi, and T. Beppu. 1985 Construction of plasmid vectors and a genetic transformation system for Acetobacter aceti Agric. Biol. Chem. 49 1011–1017CrossRefGoogle Scholar
  215. Okumura, H., H. Tagami, M. Fukaya, H. Masai, Y. Kawamura, S. Horinouchi, and T. Beppu. 1988 Cloning of the beta-isopropylmalate dehydrogenase gene from Acetobacter aceti and its use for construction of a new host-vector system for Acetobacter Agric. Biol. Chem. 52 3125–3129CrossRefGoogle Scholar
  216. Park, Y. M., S. K. Rhee, E. S. Choi, and I. S. Chung. 1998 Effect of cross-linking agents on L-sorbose production by immobilized Gluconobacter suboxydans cells J. Microbiol. Biotechnol. 8 696–699Google Scholar
  217. Passmore, S. M., and J. G. Carr. 1975 The ecology of the acetic acid bacteria with particular reference to cider manufacture J. Appl. Bacteriol. 38 151–158CrossRefGoogle Scholar
  218. Pasteur, L. 1868 Etudes sur le vinaigre, sa fabrication, ses maladies, moyens de les prévoir et nouvelles observations sur la conservation des vins par la châleur Gauthier-Villars Paris, FranceGoogle Scholar
  219. Pasteur, L. 1876 Etudes sur la bièe Gauthier-Villars Paris, FranceGoogle Scholar
  220. Perlova, O., A. Ureta, D. Meletzus, and S. Nordlund. 2003a Sensing of N-status in Gluconacetobacter diazotrophicus: Biochemistry and genetics of nitrogen fixation and assimilation Symbiosis 35 73–84Google Scholar
  221. Perlova, O., A. Ureta, S. Nordlund, and D. Meletzus. 2003b Identification of three genes encoding P-II-like proteins in Gluconacetobacter diazotrophicus: Studies of their role(s) in the control of nitrogen fixation J. Bacteriol. 185 5854–5861PubMedCrossRefGoogle Scholar
  222. Petroni, E. A., and L. Ielpi. 1996 Isolation and nucleotide sequence of the GDP-mannose:cellobiosyl-diphosphopolyprenol alpha-mannosyltransferase gene from Acetobacter xylinum J. Bacteriol. 178 4814–4821PubMedGoogle Scholar
  223. Peynaud, E., and S. Domercq. 1961 Présence de bactéries lactiques sur les raisins mûrs C.R. Hebd. Séances Acad. Sci. Série D. 252 3343–3344Google Scholar
  224. Phillips, J. D., A. Pollard, and G. C. Whiting. 1956 Organic acid metabolism in cider and perry fermentation. I: A preliminary study J. Sci. Food Agric. 7 31–40CrossRefGoogle Scholar
  225. Poehland, H. D., V. Schierz, and R. Schumann. 1993 Optimization of gluconic acid synthesis by removing limitations and inhibitions Acta Biotechnol. 13 257–268CrossRefGoogle Scholar
  226. Prescott, S. C., and C. G. Dunn. 1959 Industrial Microbiology McGraw-Hill New York, NYGoogle Scholar
  227. Pujol, C. J., and C. I. Kado. 2000 Genetic and biochemical characterization of the pathway in Pantoea citrea leading to pink disease of pineapple J. Bacteriol. 182 2230–2237PubMedCrossRefGoogle Scholar
  228. Rainbow, C. 1971 Spoilage organisms in breweries Proc. Biochem. 6 15–18Google Scholar
  229. Rajasekar, S., R. Rajasekar, and K. C. Narasimham. 2000 Acetobacter peroxydans based electrochemical biosensor for hydrogen peroxide Bull. Electrochem. 16 25–28Google Scholar
  230. Reis, V. M., and J. Döbereiner. 1998 Effect of high sugar concentration on nitrogenase activity of Acetobacter diazotrophicus Arch. Microbiol. 171 13–18PubMedCrossRefGoogle Scholar
  231. Robakis, N. K., N. J. Palleroni, C. W. Despreaux, M. Boublik, C. A. Baker, P. J. Churn, and G. W. Claus. 1985 Isolation and characterization of two phages for Gluconobacter oxydans J. Gen. Microbiol. 131 2467–2473Google Scholar
  232. Rohrbach, K. G., and J. B. Pfeiffer. 1976 The interaction of four bacteria causing pink disease of pineapple with several pineapple cultivars Phytopathology 66 396–399CrossRefGoogle Scholar
  233. Römling, U. 2002 Molecular biology of cellulose production in bacteria Res. Microbiol. 153 205–212PubMedCrossRefGoogle Scholar
  234. Ross, P., Y. Aloni, H. Weinhouse, D. Michaeli, P. Ohana, R. Mayer, and M. Benziman. 1986 Control of cellulose synthesis in A. xylinum. A unique guanyl oligonucleotide is the immediate activator of cellulose synthase Carbohydr. Res. 149 101–117CrossRefGoogle Scholar
  235. Ross, P., H. Weinhouse, Y. Aloni, O. Michaeli, P. Weinberger-Ohana, R. Mayer, D. Braun, E. De Vroom, and M. Benziman. 1987 Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid Nature 325 279–280PubMedCrossRefGoogle Scholar
  236. Ross, P., R. Mayer, and M. Benziman. 1991 Cellulose biosynthesis and function in bacteria Microbiol. Rev. 55 35–58PubMedGoogle Scholar
  237. Ruiz, A., M. Poblet, A. Mas, and J. M. Guillamon. 2000 Identification of acetic acid bacteria by RFLP of PCR-amplified 16S rDNA and 16S-23S rDNA intergenic spacer Int. J. Syst. Evol. Microbiol. 50 1981–1987PubMedCrossRefGoogle Scholar
  238. Ruiz-Argueso, T., and A. Rodriguez-Navarro. 1973 Gluconic acid-producing bacteria from honey bees and ripening honey J. Gen. Microbiol. 76 211–216PubMedCrossRefGoogle Scholar
  239. Ruiz-Argueso, T., and A. Rodriguez-Navarro. 1975 Microbiology of ripening honey Appl. Microbiol. 30 893–896PubMedGoogle Scholar
  240. Saito, Y., Y. Ishii, H. Hayashi, Y. Imao, T. Akashi, K. Yoshikawa, Y. Noguchi, S. Soeda, M. Yoshida, M. Niwa, J. Hosoda, and K. Shimomura. 1997 Cloning of genes coding for L-sorbose and L-sorbosone dehydrogenases from Gluconobacter oxydans and microbial production of 2-Keto-L-gulonate, a precursor of L-ascorbic acid, in a recombinant G. oxydans strain Appl. Environ. Microbiol. 63 454–460PubMedGoogle Scholar
  241. Saito, Y, Y. Ishii, H. Hayashi, K. Yoshikawa, Y. Noguchi, S. Yoshida, S. Soeda, and M. Yoshida. 1998 Direct fermentation of 2-keto-L-gulonic acid in recombinant Gluconobacter oxydans Biotechnol. Bioengin. 58 309–315CrossRefGoogle Scholar
  242. Saitoh, S., T. Suzuki T, and Y. Nishimura. 1998 Proposal of Craurococcus roseus gen. nov., sp. nov. and Paracraurococcus ruber gen. nov., sp. nov., novel aerobic bacteriochlorophyll a-containing bacteria from soil Int. J. Syst. Bacteriol. 48 1043–1047PubMedCrossRefGoogle Scholar
  243. Sand, F. E. M. J., and G. A. Kolfschoten. 1970 Zur Mikrobiologischen Kontrolle in der Erfrishungsgetränke-Industrie Doemensianer 10 97–108Google Scholar
  244. Sand, F. E. M. J. 1971 Zur Bakterien-Flora von Erfrischungsgetränken Brauwelt 111 252–264Google Scholar
  245. Sand, F. E. M. J. 1976 Gluconobacter, boissons plates et emballages en matire plastique Bios 7 7–14Google Scholar
  246. Saxena, I. M., K. Kudlicka, K. Okuda, and R. M. Brown Jr. 1994 Characterization of genes in the cellulose-synthesizing operon (acs operon) of Acetobacter xylinum: implications for cellulose crystallization J. Bacteriol. 176 5735–5752PubMedGoogle Scholar
  247. Schedel, M. 2000 Regioselective oxidation of aminosorbitol with Gluconobacter oxydans, a key reaction in the industrial synthesis of 1-deoxynojirimycin In: D. R. Kelly (Ed.) Biotechnology, Volume 8b: Biotransformations II Wiley-VCH Weinheim, Germany 296–308Google Scholar
  248. Schocher, A. J., H. Kuhn, B. Schindler, N. J. Palleroni, C. W. Despreaux, M. Boublik, and P. A. Miller. 1979 Acetobacter bacteriophage A-1 Arch. Microbiol. 121 193–197CrossRefGoogle Scholar
  249. Schüller, G., C. Hertel, and W. P. Hammes. 2000 Gluconacetobacter entanii sp. nov., a new species isolated from submerged high-acid industrial vinegar fermentations Int. J. Syst. Evol. Microbiol. 50 2013–2020PubMedCrossRefGoogle Scholar
  250. Schwan, R. F., A. H. Rose, and R. G. Board. 1995 Microbial fermentation of cocoa beans, with emphasis on enzymatic degradation of the pulp J. Appl. Bacteriol. Symp. 79 (Suppl.) 96S–107SGoogle Scholar
  251. Schwan, R. F. 1998 Cocoa fermentations conducted with a defined microbial cocktail inoculum Appl. Environ. Microbiol. 64 1477–1483PubMedGoogle Scholar
  252. Seearunruangchai, A., S. Tanasupawat, S. Keeratipibul, C. Thawai, T. Itoh, and Y. Yamada. 2004 Identification of acetic acid bacteria isolated from fruits collected in Thailand J. Gen. Appl. Microbiol. 50 47–53PubMedCrossRefGoogle Scholar
  253. Sevilla, M., and C. Kennedy. 2000 Genetic analysis of nitrogen fixation and plant-growth stimulating properties of Acetobacter diazotrophicus In: E. W. Triplett (Ed.) Prokaryotic Nitrogen Fixation Horizon Scientific Press Wyndham, UK 737–760Google Scholar
  254. Sevilla, M., R. H. Burris, N. Gunapala, and C. Kennedy. 2001 Comparison of benefit to sugarcane plant growth and N-15(2) incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and Nif(-) mutant strains Molec. Plant-Microbe Interact. 14 358–366CrossRefGoogle Scholar
  255. Shibata, T., C. Ichikawa, M. Matsuura, Y. Takata, Y. Noguchi, Y. Saito, and M. Yamashita. 2000a Cloning of a gene for D-sorbitol dehydrogenase from Gluconobacter oxydans G624 and expression of the gene in Pseudomonas putida IFO3738 J. Biosci. Bioengin. 89 463–468CrossRefGoogle Scholar
  256. Shibata, T., C. Ichikawa, M. Matsuura, Y. Takata, Y. Noguchi, Y. Saito, and M. Yamashita. 2000b Metabolic engineering study on the direct fermentation of 2-keto-L-gulonic acid, a key intermediate of L-ascorbic acid in Pseudomonas putida IFO3738 J. Biosci. Bioengin. 90 223–223Google Scholar
  257. Shimwell, J. L. 1948 Brewing bacteriology. IV: The acetic acid bacteria Wallerstein Laboratories Communications 11 27–39Google Scholar
  258. Shimwell, J. L. 1954 Pure culture vinegar production J. Inst. Brew. 60 136–141Google Scholar
  259. Shinagawa, E., K. Matsushita, H. Toyama, and O. Adachi. 1999 Production of 5-keto-D-gluconate by acetic acid bacteria is catalyzed by pyrroloquinoline quinone (PQQ)-dependent membrane-bound D-gluconate dehydrogenase J. Molec. Catal. B 6 341–350CrossRefGoogle Scholar
  260. Sievers, M., A. Andreesen, and M. Teuber. 1989 Plasmid profiles as tools to characterize the microflora of industrial vinegar fermenters [abstract] In: International Conference on Biotechnology and Food. Hohenheim University, StuttgartGoogle Scholar
  261. Sievers, M., S. Sellmer, and M. Teuber. 1992 Acetobacter europaeus sp. nov., a main component of industrial vinegar fermenters in central Europe Syst. Appl. Microbiol. 13 386–392CrossRefGoogle Scholar
  262. Sievers, M., W. Ludwig, and M. Teuber. 1994a Phylogenetic positioning of Acetobacter, Gluconobacter, Rhodopila and Acidiphilium species as a branch of acidophilic bacteria in the α-subclass of Proteobacteria based on 16S ribosomal DNA sequences Syst. Appl. Microbiol. 17 189–196CrossRefGoogle Scholar
  263. Sievers, M., W. Ludwig, and M. Teuber. 1994b Revival of the species Acetobacter methanolicus (ex Uhlig et al., 1986) nom. rev Syst. Appl. Microbiol. 17 352–354CrossRefGoogle Scholar
  264. Sievers, M., and M. Teuber. 1995a The microbiology and taxonomy of Acetobacter europaeus in commercial vinegar production J. Appl. Bacteriol. Symp. 79 (Suppl.) 84S–95SGoogle Scholar
  265. Sievers, M., C. Gaberthüel, C. Boesch, W. Ludwig, and M. Teuber. 1995b Phylogenetic position of Gluconobacter species as a coherent cluster separated from all Acetobacter species on the basis of 16S ribosomal RNA sequences FEMS Microbiol. Lett. 126 123–126PubMedCrossRefGoogle Scholar
  266. Sievers, M., C. Lanini, A. Weber, U. Schuler-Schmid, and M. Teuber. 1995c Microbiology and fermentation balance in a kombucha beverage obtained from a tea fungus fermentation Syst. Appl. Microbiol. 18 590–594CrossRefGoogle Scholar
  267. Sievers, M., M. Stockli, and M. Teuber. 1997 Purification and properties of citrate synthase from Acetobacter europaeus FEMS Microbiol. Lett. 146 53–58PubMedCrossRefGoogle Scholar
  268. Sievers, M., and J. Swings. 2005 Family Acetobacteraceae In: G. M. Garrity (Ed.) Bergey’s Manual of Systematic Bacteriology Springer-Verlag New York, NYGoogle Scholar
  269. Simonart, P., and H. Laudelout. 1951 Etude microbiologique et biochimique du vin de palme Bulletin de l’Institut Royal Colonial Belge 22 385–401Google Scholar
  270. Skerman, V. B. D., V. McGowan, and P. H. A. Sneath. 1980 Approved lists of bacterial names Int. J. Syst. Bacteriol. 30 225–420CrossRefGoogle Scholar
  271. Sokollek, S. J., and W. P. Hammes. 1997 Description of a starter culture preparation for vinegar fermentation Syst. Appl. Microbiol. 20 481–491CrossRefGoogle Scholar
  272. Sokollek, S. J., C. Hertel, and W. P. Hammes. 1998a Cultivation and preservation of vinegar bacteria J. Biotechnol. 60 195–206CrossRefGoogle Scholar
  273. Sokollek, S. J., C. Hertel, and W. P. Hammes. 1998b Description of Acetobacter oboediens sp. nov. and Acetobacter pomorum sp. nov., two new species isolated from industrial vinegar fermentations Int. J. Syst. Bacteriol. 48 935–940PubMedCrossRefGoogle Scholar
  274. Stackebrandt, E., R. G. E. Murray, and H. G. Trüper. 1988 Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives.” Int. J. Syst. Bacteriol. 38 321–325CrossRefGoogle Scholar
  275. Standal, R., T.-G. Iversen, D. H. Coucheron, E. Fjærvik, J. M. Blatny, and S. Valla. 1994 A new gene required for cellulose production and a gene encoding cellulolytic activity in Acetobacter xylinum are colocalized with the bcs operon J. Bacteriol. 176 665–672PubMedGoogle Scholar
  276. Stephan, M. P., M. Oliveira, K. R. S. Teixeira, G. Martínez-Drets, and J. Döbereiner. 1991 Physiology and dinitrogen fixation of Acetobacter diazotrophicus FEMS Microbiol. Lett. 77 67–72CrossRefGoogle Scholar
  277. Steudel, A., D. Miethe, and W. Babel. 1980 Bakterium MB58, ein methylotrophes “Essigsäurebakterium.” Zeitschr. Allg. Mikrobiol. 20 663–672CrossRefGoogle Scholar
  278. Sugiyama, M., S. Suzuki, N. Tonouchi, and K. Yokozeki. 2003 Cloning of the xylitol dehydrogenase gene from Gluconobacter oxydans and improved production of xylitol from D-arabitol Biosci. Biotechnol. Biochem. 67 584–591PubMedCrossRefGoogle Scholar
  279. Suomalainen, H. 1961 Die Anwendung der Reinkultur beim Schnellessigverfahren Brauwissenschaft 2 95–98Google Scholar
  280. Suomalainen, H., E. J. A. Keränen, and J. Kangasperko. 1965 Production of spirit vinegar by the quick process with a pure culture of Acetobacter rancens Beijerinck J. Inst. Brew. 71 41–45Google Scholar
  281. Swings, J., and J. De Ley. 1977 The biology of Zymomonas Bacteriol. Rev. 41 1–46PubMedGoogle Scholar
  282. Swings, J., M. Gillis, K. Kersters, P. De Vos, F. Gosselé, and J. De Ley. 1980 Frateuria, a new genus for “Acetobacter aurantius.” Int. J. Syst. Bacteriol. 30 547–556CrossRefGoogle Scholar
  283. Swings, J. 1992a The genera Acetobacter and Gluconobacter In: A. Balows, H. G. Trüper, M. Dworkin, and K.-H. Schleifer (Eds.) The Prokaryotes, 2nd ed Springer-Verlag New York, NY 3 2268–2286Google Scholar
  284. Swings, J., M. Gillis, and K. Kersters. 1992b Phenotypic identification of acetic acid bacteria In: R. G. Board, D. Jones, and F. A. Skinner (Eds.) Identification Methods in Applied and Environmental Microbiology Society for Applied Bacteriology, Blackwell Scientific Publications London, UK Technical Series No. 29 103–110Google Scholar
  285. Tajima, K., N. Uenishi, M. Fujiwara, T. Erata, M. Munekata, and M. Takai. 1997 The production of a new water-soluble polysaccharide by Acetobacter xylinum NCI 1005 and its structural analysis by NMR spectroscopy Carbohydr. Res. 305 117–122PubMedCrossRefGoogle Scholar
  286. Takahashi, T. 1907 Studies on diseases of saké Bulletin of the College of Agriculture, Tokyo Imperial University 7 531–563Google Scholar
  287. Takeda, Y., T. Shimizu, K. Matsushita, O. Adachi, and M. Ameyama. 1992 Role of cytochrome-c-553(CO), the 2nd subunit of alcohol dehydrogenase in the azide-insensitive respiratory chain and in oxidative fermentation of Gluconobacter species J. Ferment. Bioengin. 94 209–213CrossRefGoogle Scholar
  288. Takemura, H., S. Horinouchi, and T. Beppu. 1991 Novel insertion sequence IS1380 from Acetobacter pasteurianus is involved in loss of ethanol-oxidizing ability J. Bacteriol. 173 7070–7076PubMedGoogle Scholar
  289. Takemura, H., K. Kondo, S. Horinouchi, and T. Beppu. 1993a Induction by ethanol of alcohol dehydrogenase activity in Acetobacter pasteurianus J. Bacteriol. 175 6857–6866PubMedGoogle Scholar
  290. Takemura, H., S. Horinouchi, and T. Beppu. 1993b Suppression of an ethanol sensitive mutation of Acetobacter pasteurianus by overexpression of the His1 gene encoding histidinol phosphate aminotransferase J. Ferment. Bioengin. 76 224–228CrossRefGoogle Scholar
  291. Tal, R., H. C. Wong, R. Calhoon, D. Gelfand, A. L. Fear, G. Volman, R. Mayer, P. Ross, D. Amikam, H. Weinhouse, A. Cohen, S. Sapir, P. Ohana, and M. Benziman. 1998 Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes J. Bacteriol. 180 4416–4425PubMedGoogle Scholar
  292. Tanaka, M., S. Murakami, R. Shinke, and K. Aoki. 1999 Reclassification of the strains with low G plus C contents of DNA belonging to the genus Gluconobacter Asai 1935 (Acetobacteraceae) Biosci. Biotechnol. Biochem. 63 989–992CrossRefGoogle Scholar
  293. Thompson, S. S., K. B. Miller, and A. S. Lopez. 1997 Cocoa and Coffee In: M. P. Doyle, L. R. Beuchat, and T. J. Montville (Eds.) Food Microbiology: Fundamentals and Frontiers ASM Press Washington, DC 649–661Google Scholar
  294. Thurner, C., C. Vela, L. Thöny-Meyer, L. Meile, and M. Teuber. 1997 Biochemical and genetic characterization of the acetaldehyde dehydrogenase complex of Acetobacter europaeus Arch. Microbiol. 168 81–91PubMedCrossRefGoogle Scholar
  295. Tkac, J., P. Gemeiner, J. Svitel, T. Benikovsky, E. Sturdik, V. Vala, L. Petrus, and E. Hrabarova. 2000 Determination of total sugars in lignocellulose hydrolysate by a mediated Gluconobacter oxydans biosensor Anal. Chim. Acta 420 1–7CrossRefGoogle Scholar
  296. Tkac, J., M. Navratil, E. Sturdik, and P. Gemeiner. 2001 Monitoring of dihydroxyacetone production during oxidation of glycerol by immobilized Gluconobacter oxydans cells with an enzyme biosensor Enz. Microb. Technol. 28 383–388CrossRefGoogle Scholar
  297. Tonouchi, N., T. Tsuchida, F. Yoshinaga, S. Horinouchi, and T. Beppu. 1994 A host-vector system for a cellulose-producing Acetobacter strain Biosci. Biotechnol. Biochem. 58 1899–1901PubMedCrossRefGoogle Scholar
  298. Tonouchi, N., M. Sugiyama, and K. Yokozeki. 2003 Construction of a vector plasmid for use in Gluconobacter oxydans Biosci. Biotechnol. Biochem. 67 211–213PubMedCrossRefGoogle Scholar
  299. Toyosaki, H., Y. Kojima, T. Tsuchida, K.-I. Hoshino, Y. Yamada, and F. Yoshinaga. 1995 The characterization of an acetic acid bacterium useful for producing bacterial cellulose in agitation cultures: the proposal of Acetobacter xylinum subsp. sucrofermentans subsp. nov J. Gen. Appl. Microbiol. 41 307–314CrossRefGoogle Scholar
  300. Trek, J., P. Raspor, and M. Teuber. 2000 Molecular identification of Acetobacter isolates from submerged vinegar production, sequence analysis of plasmid pJK2-1 and application in the development of a cloning vector Appl. Microbiol. Biotechnol. 53 289–295CrossRefGoogle Scholar
  301. Trek, J., and M. Teuber. 2002 Genetic and restriction analysis of the 16S-23S rDNA internal transcribed spacer regions of the acetic acid bacteria FEMS Microbiol. Lett. 208 69–75Google Scholar
  302. Turtura, G. C., F. Casaliccio, and B. Biavati. 1973 Isolamento e identificazione di acetobatteri Annali di Microbiologia ed Enzimologia 23 157–164Google Scholar
  303. Uhlig, H., K. Karbaum, and A. Steudel. 1986 Acetobacter methanolicus sp. nov., an acidophilic facultatively methylotrophic bacterium Int. J. Syst. Bacteriol. 36 317–322CrossRefGoogle Scholar
  304. Urakami, T., J. Tamaoka, K. Suzuki, and K. Komagata. 1989 Acidomonas gen. nov., incorporating Acetobacter methanolicus as Acidimonas methanolica comb. nov Int. J. Syst. Bacteriol. 39 50–55CrossRefGoogle Scholar
  305. Urbance, J. W., B. J. Bratina, S. F. Stoddard, and T. M. Schmidt. 2001 Taxonomic characterization of Ketogulonigenium vulgare gen. nov., sp. nov. and Ketogulonigenium robustum sp. nov., which oxidize L-sorbose to 2-keto-L-gulonic acid Int. J. Syst. Evol. Microbiol. 51 1059–1070PubMedCrossRefGoogle Scholar
  306. Ureta, A., and S. Nordlund. 2002 Evidence for conformational protection of nitrogenase against oxygen in Gluconacetobacter diazotrophicus by a putative FeSII protein J. Bacteriol. 184 5805–5809PubMedCrossRefGoogle Scholar
  307. Valla, S., D. H. Coucheron, and J. Kjosbakken. 1985 Conjugative transfer of the naturally occurring plasmids of Acetobacter xylinum by IncP-plasmid-mediated mobilization J. Bacteriol. 165 336–339Google Scholar
  308. Valla, S., D. H. Coucheron, and J. Kjosbakken. 1987 The plasmids of Acetobacter xylinum and their interaction with the host chromosome Molec. Gen. Genet. 208 76–83PubMedCrossRefGoogle Scholar
  309. Vallery-Radot, P. 1924 Oelig;uvres de Pasteur. Tome III: études sur le vinaigre et le vin Masson & Co. Paris, FranceGoogle Scholar
  310. Vandamme, E. J., S. De Baets, A. Vanbaelen, K. Joris, and P. De Wulf. 1998 Improved production of bacterial cellulose and its application potential Polym. Degrad. Stabil. 59 93–99CrossRefGoogle Scholar
  311. Vanden Abeele, P., C. Van Keer, J. Swings, F. Gosselé, and J. De Ley. 1980 Browning and rotting of apples caused by acetic acid bacteria Mededelingen van de Faculteit van de Landbouwwetenschappen van de Rijksuniversiteit Gent 45 391–397Google Scholar
  312. Van Keer, C., M. Claeys, G. De Smet, F. Gosselé, J. Swings, and J. De Ley. 1981a Bacterial rot of apples and pears Mededelingen van de Faculteit van de Landbouwwetenschappen van de Rijksuniversiteit Gent 46 729–735Google Scholar
  313. Van Keer, C., P. Vanden Abeele, J. Swings, F. Gosselé, and J. De Ley. 1981b Acetic acid bacteria as causal agents of browning and rot of apples and pears Zentralbl. Bakteriol. Mikrobiol. Hyg.; 1 Abt. Orig. C 2 197–204Google Scholar
  314. Vaughn, R. H. 1942 The Acetic Acid Bacteria Wallerstein Laboratories, Wallerstein Laboratories Communications New York, NY. 5 5–26Google Scholar
  315. Vecchi, A. 1959 La microflora dell’ape mellifica Annali di Microbiologia ed Enzimologia 9 73Google Scholar
  316. Villanueva, L. J. 1937 The effects of varying amounts of sugar added to pineapple pulp mash on acidity and yield of nata de piña Philippine Agric. 26 508–514Google Scholar
  317. Visser’t Hooft, F. 1925 Biochemische Onderzoekingen over het geslacht Acetobacter [dissertation] Techn. Univ. Delft. Meinema, Delft, The Netherlands 1–129Google Scholar
  318. Watanabe, K., M. Tabuchi, A. Ishikawa, H. Takemura, T. Tsuchida, Y. Morinaga, and F. Yoshinaga. 1998 Acetobacter xylinum mutant with high cellulose productivity and an ordered structure Biosci. Biotechnol. Biochem. 62 1290–1292CrossRefGoogle Scholar
  319. Weinhouse, H., S. Sapir, D. Amikam, Y. Shilo, G. Volman, P. Ohana, and M. Benziman. 1997 c-di-GMP-binding protein, a new factor regulating cellulose synthesis in Acetobacter xylinum FEBS Lett. 416 207–211PubMedCrossRefGoogle Scholar
  320. Wermischeff, M. 1893 Recherches sur les microbes acétifiants Ann. Inst. Pasteur 7 213–217Google Scholar
  321. Wiame, J. M., and R. Lambion. 1951a Cultures pures d’Acetobacter dans les conditions d’acétification rapide Bulletin Technique de la Vinaigrerie 7 195Google Scholar
  322. Wiame, J. M., and R. Lambion. 1951b La culture pure en vinaigrerie du type “rapide.” Bulletin Technique de la Vinaigrerie 7 203–207Google Scholar
  323. Wiame, J. M., R. Harpigny, and R. G. Dothey. 1959 A new type of Acetobacter: Acetobacter acidophilum nov. sp J. Gen. Microbiol. 20 165–172PubMedCrossRefGoogle Scholar
  324. Williams, W. S., and R. E. Cannon. 1989 Alternative environmental roles for cellulose produced by Acetobacter xylinum Appl. Environ. Microbiol. 55 2448–2452PubMedGoogle Scholar
  325. Wong, H. C., A. L. Fear, R. D. Calhoon, G. H. Eichinger, R. Mayer, D. Amikam, M. Benziman, D. H. Gelfand, J. H. Meade, A. W. Emerick, R. Bruner, A. Ben-Bassat, and R. Tal. 1990 Genetic organization of the cellulose synthase operon in Acetobacter xylinum Proc. Natl. Acad. Sci. USA 87 8130–8134PubMedCrossRefGoogle Scholar
  326. Yamada, Y. 1983 Taxonomic studies on acetic acid bacteria and allied organisms. 6: Acetobacter xylinus sp. nov., nom. rev., for the cellulose-forming and cellulose-less, acetate oxidizing acetic acid bacteria with the Q-10 system J. Gen. Appl. Microbiol. 29 417–420CrossRefGoogle Scholar
  327. Yamada, Y., and M. Akita. 1984a An electrophoretic comparison of enzymes in strains of Gluconobacter species J. Gen. Appl. Microbiol. 30 115–126CrossRefGoogle Scholar
  328. Yamada, Y., and K. Kondo. 1984b Gluconoacetobacter, a new subgenus comprising the acetate-oxidizing acetic acid bacteria with ubiquinone-10 in the genus Acetobacter J. Gen. Appl. Microbiol. 30 297–303CrossRefGoogle Scholar
  329. Yamada, Y., N. Itakura, M. Yamashita, and Y. Tahara. 1984c Deoxyribonucleic acid homologies in strains of Gluconobacter species J. Ferment. Technol. 62 595–600Google Scholar
  330. Yamada, Y., K.-I. Hoshino, and T. Ishikawa. 1997 The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: The elevation of the subgenus Gluconoacetobacter to the generic level Biosci. Biotechnol. Biochem. 61 1244–1251PubMedCrossRefGoogle Scholar
  331. Yamada, Y., K.-I. Hoshino, and T. Ishikawa. 1998 Validation of publication of new names and new combinations previously effectively published outside the IJSB. List No. 64: Gluconacetobacter nom. corrig. (Gluconoacetobacter [sic]) Int. J. Syst. Bacteriol. 48 327–328CrossRefGoogle Scholar
  332. Yamada, Y., R. Hosono, P. Lisdiyanti, Y. Widyastuti, S. Saono, T. Uchimura, and K. Komagata. 1999 Identification of acetic acid bacteria isolated from Indonesian sources, especially of isolates classified in the genus Gluconobacter J. Gen. Appl. Microbiol. 45 23–28PubMedCrossRefGoogle Scholar
  333. Yamada, Y. 2000a Transfer of Acetobacter oboediens Sokollek et al. 1998 and Acetobacter intermedius Boesch et al. 1998 to the genus Gluconacetobacter as Gluconacetobacter oboediens comb. nov. and Gluconacetobacter intermedius comb. nov Int. J. Syst. Evol. Microbiol. 50 2225–2227PubMedCrossRefGoogle Scholar
  334. Yamada, Y., K. Katsura, H. Kawasaki, Y. Widyastuti, S. Saono, T. Seki, T. Uchimura, and K. Komagata. 2000b Asaia bogorensis gen. nov., sp. nov., an unusual acetic acid bacterium in the alpha-Proteobacteria Int. J. Syst. Evol. Microbiol. 50 823–829PubMedCrossRefGoogle Scholar
  335. Yamashita, S., T. Uchimura, and K. Komagata. 2004 Emendation of the genus Acidomonas Urakami, Tamaoka, Suzuki and Komagata 1989 Int. J. Syst. Evol. Microbiol. 54 865–870PubMedCrossRefGoogle Scholar
  336. Yukphan, P., W. Potacharoen, Y. Nakagawa, M. Tanticharoen, and Y. Yamada. 2004a Identification of strains assigned to the genus Gluconobacter Asai 1935 based on the sequence and the restriction analyses of the 16S-23S rDNA internal transcribed spacer regions J. Gen. Appl. Microbiol. 50 9–15PubMedCrossRefGoogle Scholar
  337. Yukphan P., W. Potacharoen, S. Tanasupawat, M. Tanticharoen, and Y. Yamada. 2004b Asaia krungthepensis sp. nov., an acetic acid bacterium in the α-Proteobacteria Int. J. Syst. Evol. Microbiol. 54 313–316PubMedCrossRefGoogle Scholar
  338. Yurkov, V., E. Stackebrandt, A. Holmes, J. A. Fuerst, P. Hugenholtz, J. Golecki, N. Gadon, V. M. Gorlenko, E. I. Kompantseva, and G. Drews. 1994 Phylogenetic positions of novel aerobic, bacteriochlorophyll alpha-containing bacteria and description of Roseococcus thiosulfatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov Int. J. Syst. Bacteriol. 44 427–434PubMedCrossRefGoogle Scholar
  339. Zaar, K. 1977 Biogenesis of cellulose by Acetobacter xylinum Cytobiol. 16 1–15Google Scholar
  340. Zaar, K. 1979 Visualisation of pores (export sites) correlated with cellulose production in the envelope of Gram negative bacterium Acetobacter xylinum J. Cell. Biol. 80 773–777PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Karel Kersters
  • Puspita Lisdiyanti
  • Kazuo Komagata
  • Jean Swings

There are no affiliations available

Personalised recommendations