The Genus Azospirillum

  • Anton Hartmann
  • Jose Ivo Baldani

Literature Cited

  1. Abdel-Salam, M. S., and W. Klingmüller. 1987 Transposon Tn5 mutagenesis in Azospirillum lipoferum: Isolation of indole acetic acid mutants Molec. Gen. Genet. 210 165–170CrossRefGoogle Scholar
  2. Alexandre, G., C. Jacoud, D. Faure, and R. Bally. 1996 Population dynamics of a motile and a non-motile Azospirillum lipoferum strain during rice root colonization and motility variation in the rhizosphere FEMS Microbiol. Ecol. 19 271–278CrossRefGoogle Scholar
  3. Alexandre, G., and R. Bally. 1999 Emergence of a laccase-negative variant of Azospirillum lipoferum occurs via a two-step phenotypic switching process FEMS Microbiol. Lett. 174 371–378PubMedCrossRefGoogle Scholar
  4. Alvarez, M. I., R. J. Sueldo, and C. A. Barassi. 1996 Effect of Azospirillum on coleoptile growth in wheat seedlings under water stress Cereal Res. Commun. 24 101–107Google Scholar
  5. Amann, R. I., W. Ludwig, and K.-H. Schleifer. 1995 Phylogenetic identification and in situ detection of individual microbial cells without cultivation Microbiol. Rev. 59 143–169PubMedGoogle Scholar
  6. Antonyuk, L. P., O. R. Fomina, M. A. Galkin, and V. V. Ignatov. 1993 The effect of wheat germ agglutinin on nitrogen fixation, glutamine synthetase activity and ammonium excretion in Azospirillum brasilense Sp245 FEMS Microbiol. Lett. 110 285–290CrossRefGoogle Scholar
  7. Aßmus, B., P. Hutzler, G. Kirchhof, R. Amann, J. R. Lawrence, and A. Hartmann. 1995 In situ localization of Azospirillum brasilense in the rhizosphere of wheat with fluorescently labeled, rRNA-targeted oligonucleotide probes and scanning confocal laser microscopy Appl. Environ. Microbiol. 61 1013–1019PubMedGoogle Scholar
  8. Aßmus, B., M. Schloter, G. Kirchhof, P. Hutzler, and A. Hartmann. 1997 Improved in situ tracking of rhizosphere bacteria using dual straining with fluorescent-labeled antibodies and rRNA-targeted oligonucleotides Microb. Ecol. 33 32–40PubMedCrossRefGoogle Scholar
  9. Bachhawat, A. K., and S. Ghosh. 1987a Iron transport in Azospirillum brasilense: Role of the siderophore spirilobactin J. Gen. Microbiol. 133 1759–1765Google Scholar
  10. Bachhawat, A. K., and S. Ghosh. 1987b Isolation and characterization of the outer membrane proteins of Azospirillum brasilense J. Gen. Microbiol. 133 1751–1759Google Scholar
  11. Baldani, J. I., and J. Döbereiner. 1980 Host-plant specificity in the infection of cereals with Azospirillum spp Soil Biol. Biochem. 12 433–439CrossRefGoogle Scholar
  12. Baldani, V. L. D., M. A. B. Alvarez, J. I. Baldani, and J. Döbereiner. 1986 Establishment of inoculated Azospirillum spp. in the rhizosphere and in roots of field grown wheat and sorghum Plant Soil 90 35–45CrossRefGoogle Scholar
  13. Baldani, V. L. D., J. I. Baldani, and J. Döbereiner. 1987 Inoculation of field grown wheat with Azospirillum spp. in Brazil Biol. Fert. Soils 4 37–40Google Scholar
  14. Bally, R., D. Thomas-Bauzon, T. Heulin, J. Balandreau, C. Richard, and J. De Ley. 1983 Determination of the most frequent N2-fixing bacteria in a rice rhizosphere Can. J. Microbiol. 29 881–887CrossRefGoogle Scholar
  15. Bar, T., and Y. Okon. 1993 Tryptophan conversion to indole-3-acetic acid via indole-3-acetamide in Azospirillum brasilense Sp7 Can. J. Microbiol. 42 294–298Google Scholar
  16. Barbieri, P., T. Zanelli, E. Galli, and G. Zanetti. 1986 Wheat inoculation with Azospirillum brasilense Sp6 and some mutants altered in nitrogen fixation and indole-3-acetic acid production FEMS Microbiol. Lett. 36 87–90CrossRefGoogle Scholar
  17. Bashan, Y., H. Levanony, and G. Mitiku. 1989 Changes in proton efflux of infected wheat roots induced by Azospirillum brasilense Cd Can. J. Microbiol. 35 691–697CrossRefGoogle Scholar
  18. Bashan, Y., and G. Holguin. 1997 Azospirillum-plant relationships: Environmental and physiological advances Can. J. Microbiol. 43 103–121CrossRefGoogle Scholar
  19. Bashan, Y. 1999 Interactions of Azospirillum spp. in soils: A review Biol. Fertil. Soils 29 246–256CrossRefGoogle Scholar
  20. Becking, J. H. 1963 Fixation of molecular nitrogen by an aerobic vibrio or spirillum J. Microbiol. Serol. 29 326Google Scholar
  21. Beijerinck. M. W. 1925 über ein Spirillum, welches freien Stickstoff binden kann? Centralbl. Bakt. II Abt. 63 353–357Google Scholar
  22. Berg, R. H., V. Vasil, and I. K. Vasil. 1979 The biology of Azospirillum sugarcane association. II: Ultrastructure Protoplasma 101 143–163CrossRefGoogle Scholar
  23. Boddey, R. M., and R. L. Victoria. 1986a Estimation of biological nitrogen fixation associated with Brachiaria and Paspalum grasses using 15N labelled organic matter and fertilizer Plant Soil 90 265–292CrossRefGoogle Scholar
  24. Boddey, R. M., V. L. D. Baldani, J. I. Baldani, and J. Döbereiner. 1986 Effect of inoculation of Azospirillum spp. on the nitrogen assimilation of field grown wheat Plant Soil 95 109–121CrossRefGoogle Scholar
  25. Bossier, P., M. Hofte, and W. Verstraete. 1988 Ecological significance of siderophores in soil In: K. C. Marshall (Ed.) Advances in Microbial Ecology Plenum Press New York, NY 10 385–403CrossRefGoogle Scholar
  26. Bothe, H., B. Klein, M. P. Stephan, and J. Döbereiner. 1981 Transformations of inorganic nitrogen by Azospirillum spp Arch. Microbiol. 130 96–100CrossRefGoogle Scholar
  27. Bottini, R., M. Fulchieri, D. W. Pearce, and R. P. Pharis. 1989 Identification of gibberellins A1, A3 and iso-A3 in cultures of Azospirillum lipoferum Plant Physiol. 90 45–47PubMedCrossRefGoogle Scholar
  28. Braun, V., K. Hantke, and W. Köstner. 1998 Iron transport and storage in microorganisms, plants, and animals In: A. Siegel and H. Siegel (Eds.) Metal Ions in Biological Systems Marcel Dekker New York, NY 67–145Google Scholar
  29. Burdman, S., H. Volpin, L. Kigel, Y. Kapulnik, and Y. Okon. 1996 Promotion of nod-gene inducers and nodulation in common bean (Phaseolus vulgaris) roots inoculated with Azospirillum brasilense Cd Appl. Environ. Microbiology 62 3030–3033Google Scholar
  30. Burdman, S., E. Jurkevitch, B. Schwartsburd, M. Hampel., and Y. Okon. 1998 Aggregation in Azospirillum brasilense: Effects of chemical and physical factors and involvement of extracellular components Microbiology 144 1989–1999PubMedCrossRefGoogle Scholar
  31. Burdman, S., E. Jurkevitch, B. Schwartsburd, and Y. Okon. 1999 Involvement of outer-membrane proteins in the aggregation of Azospirillum brasilense Microbiology 145 1145–1152PubMedCrossRefGoogle Scholar
  32. Caballero-Mellado, J., M. Carcano-Montiel, M., and M. A. Mascarua-Esparza. 1993 Field inoculation of wheat (Triticum aestivum) with Azospirillum brasilense under temperate climate Symbiosis 13 243–253Google Scholar
  33. Caballero-Mellado, J., L. Lupez-Reyes, and R. Bustillos-Cristales. 1999 Presence of 16S rRNA genes in multiple replicons in Azospirillum brasilense FEMS Microbiol.Lett 178 283–288CrossRefGoogle Scholar
  34. Castellanos, T., F. Ascencio, and Y. Bashan. 1998 Cell-surface lectins of Azospirillum spp Curr. Microbiol. 36 241–244PubMedCrossRefGoogle Scholar
  35. Chakraborty, B., and K. R. Samaddar. 1995 Evidence for the occurrence of an alternative nitrogenase system in Azospirillum brasilense FEMS Microbiol. Lett. 127 127–131CrossRefGoogle Scholar
  36. Chan, Y. K., L. M. Nelson, and R. Knowles. 1980 Hydrogen metabolism of Azospirillum brasilense in nitrogen-free medium Can. J. Microbiol. 26 1126–1131PubMedCrossRefGoogle Scholar
  37. Christiansen-Weniger, C., and J. A. Van Veen. 1991 NH4 +-excreting Azospirillum brasilense mutants enhance the nitrogen supply of a wheat host Appl. Environ. Microbiology 56 3006–3012Google Scholar
  38. Christiansen-Weniger, C. 1992 N2-fixation by ammonium-excreting Azospirillum brasilense in auxin-induced root tumours of wheat (Triticum aestivum, L.) Biol. Fertil. Soils 13 165–172Google Scholar
  39. Costacurta, A., V. Keijers, and J. Vanderleyden. 1994 Molecular cloning and sequence analysis of an Azospirillum brasilense indole-3-pyruvate decarboxylase gene Molec. Gen. Genet. 243 463–472PubMedGoogle Scholar
  40. Costacurta, A., and J. Vanderleyden. 1995 Synthesis of phytohormones by plant-associated bacteria Crit. Rev. Microbiol. 21 1–18PubMedCrossRefGoogle Scholar
  41. Creus, C. M., R. J. Sueldo, and C. A. Barassi. 1997 Shoot growth and water status in Azospirillum-inoculated wheat seedlings grown under osmotic and salt stress Plant Physiol. Biochem. 35 939–944Google Scholar
  42. Croes, C., E. Van Bastelaere, E. DeClercq, M. Eyers, J. Vanderleyden, and K. Michielis. 1991 Identification and mapping of loci involved in motility, adsorption to wheat roots, colony morphology, and growth in minimal medium on the Azospirillum brasilense Sp7 90-Mda plasmid Plasmid 26 83–93PubMedCrossRefGoogle Scholar
  43. Csonka, L. N., and A. D. Hanson. 1991 Prokaryotic osmoregulation: Genetics and physiology Ann. Rev. Microbiol. 45 569CrossRefGoogle Scholar
  44. Dekhil, S. B., M. Cahill, E. Stackbrandt, and L. I. Sly. 1997 Transfer of Conglomeromonas largomobilis subs. largomobilis to the genus Azospirillum as Azospirillum largomobile comb. nov., and elevation of Conglomeromonas largomobilis subs. parooensis to the new type species of Conglomeromonas, Conglomeromonas parooensis sp. nov Syst. Appl. Microbiol. 20 72–77CrossRefGoogle Scholar
  45. Del Gallo, M., M. Negi, and C. A. Neyra. 1989 Calcofluor-and lectin-binding exocellular polysaccharides of Azospirillum brasilense and Azospirillum lipoferum J. Bacteriol. 171 3504–3510PubMedGoogle Scholar
  46. Del Gallo, M., and I. Fendrik. 1994 The rhizosphere and Azospirillum In: Y. Okon (Ed.) Azospirillum/Plant Associations CRC Press Boca Raton, FL 57–75Google Scholar
  47. Delledonne, M., R. Porcari, and C. Fogher. 1990 Nucleotide sequence of the nodG gene of Azospirillum brasilense Nucleic Acids Res. 18 6435PubMedCrossRefGoogle Scholar
  48. De Smedt, J., M. Bauwens, R. Tytgat, and J. De Ley. 1980 Intra-and intergeneric similarities of ribosomal ribonucleic acid cistrons of free-living, nitrogen-fixing bacteria Int. J. Syst. Bacteriol. 30 106–122CrossRefGoogle Scholar
  49. De Troch, P., S. Philip-Hollingsworth, G. Orgambide, F. B. Dazzo, and J. Vanderleyden. 1992 Analysis of extracellular polysaccharides isolated from Azospirillum brasilense wild type and mutant strains Symbiosis 13 229–241Google Scholar
  50. De Troch, P., and J. Vanderleyden. 1996 Surface properties and motility of Rhizobium and Azospirillum in relation to plant root attachment Microb. Ecol. 32 149–169PubMedCrossRefGoogle Scholar
  51. De Zamaroczy, M., A. Paquelin, G. Peltre, K. Forchhammer, and C. Elmerich. 1996 Coexistence of two structurally similar but functionally different PII proteins in Azospirillum brasilense J. Bacteriol. 178 4143–4149PubMedGoogle Scholar
  52. De Zamaroczy, M. 1998 Structural homologes PII and PZ of Azospirillum brasilense provide intracellular signalling for selective regulation of variuos nitrogen dependent functions Molec. Microbiol. 29 449–463CrossRefGoogle Scholar
  53. Dobbelaere, S., A. Croonenborghs, A. Thys, A. Van de Broek, and J. Vanderleyden. 1999 Phytostimulatoty effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat Plant Soil 212 155–164CrossRefGoogle Scholar
  54. Dobbelaere, S., A. Croonenborghs, A. Thys, D. Ptacek, J. Vanderleyden, P. Dutto, C. Labandera-Gonzalez, J. Caballero-Mellado, J. F. Aguirre, Y. Kapulnik, S. Brener, S. Burdman, D. Kadouri, S. Sarig, and Y. Okon. 2001 Responses of agronomically important crops to inoculation with Azospirillum Aust. J. Plant Physiol. 28 871–879Google Scholar
  55. Döbereiner, J., and J. M. Day. 1976a Associative symbioses in tropical grasses: Characterization of microorganisms and dinitrogen fixing sites In: Newton, W. E. and C. J. Nyman. (Eds.) Proceedings of the First International Symposium on Nitrogen Fixation Washington State University Press Pullman, WA 2 518–538Google Scholar
  56. Döbereiner, J., I. E. Marriel, and M. Nery. 1976b Ecological distribution of Spirillum lipoferum Beijerinck Can. J. Microbiol. 22 1464–1473PubMedCrossRefGoogle Scholar
  57. Döbereiner, J., and V. L. D. Baldani. 1979 Selective infection of maize roots by streptomycin-resistant Azospirillum lipoferum and other bacteria Can. J. Microbiol. 25 264–269CrossRefGoogle Scholar
  58. Döbereiner, J., and F. O. Pedrosa. 1987 Nitrogen-fixing Bacteria in Nonleguminous Crop Plants Science Tech Publishers Madison, WIGoogle Scholar
  59. Döbereiner, J. 1990 The genera Azospirillum and Herbaspirillum In: A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer (Eds.) The Prokaryotes, 2nd ed Springer-Verlag Berlin, Germany 2236–2253Google Scholar
  60. Döbereiner, J. 1992 History and new perspectives of diazotrophs in association with non-leguminous plants Symbiosis 13 1–13Google Scholar
  61. Döbereiner, J. 1995 Isolation and identification of aerobic nitrogen-fixing bacteria from soil and plants In: K. Alef and P. Nannipieri (Eds.) Methods in Applied Soil Microbiology and Biochemistry Academic Press London, UK 134–141Google Scholar
  62. Eckert, B., O. B. Weber, G. Kirchhof, A. Halbritter, M. Stoffels, and A. Hartmann. 2001 Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus Int. J. Syst. Evol. Microbiol. 51 17–26PubMedGoogle Scholar
  63. Estrada-de los Santos, P., R. Bustillos-Cristales, and J. Caballero-Mellado. 2001 Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution Appl. Environ. Microbiol. 67 2790–2798CrossRefGoogle Scholar
  64. Fages, J. 1994 Azospirillum inoculants and field experiments In: Y. Okon (Ed.) Azospirillum/Plant Associations CRC Press Boca Raton, FL 87–109Google Scholar
  65. Falk, E. C., J. Döbereiner, J. L. Johnson, and N. R. Krieg. 1985 Deoxyribonucleic acid homology of Azospirillum amazonense Magalhães et al.: 1984 and emendation of the description of the genus Azospirillum Int. J. Syst. Bacteriol. 35 117–118CrossRefGoogle Scholar
  66. Falk, E. C., J. L. Johnson, V. L. D. Baldani, J. Döbereiner, and N. R. Krieg. 1986 Deoxyribonucleic and ribonucleic acid homology studies of the genera Azospirillum and Conglomeromonas Int. J. Syst. Bacteriol. 36 80–85CrossRefGoogle Scholar
  67. Fallik, E., Y. Okon, and M. Fischer. 1988 The effect of Azospirillum brasilense inoculation on metabolic enzyme activity in maize root seedlings Symbiosis 6 17–28Google Scholar
  68. Fallik, E., Y. Okon, E. Epstein, A. Goldman, and M. Fischer. 1989 Identification and quantification of IAA and IBA in Azospirillum brasilense-inoculated maize roots Soil Biol. Biochem. 21 147–153CrossRefGoogle Scholar
  69. Fallik, E., S. Sarig, and Y. Okon. 1994 Morphology and physiology of plant roots associated with Azospirillum In: Y. Okon (Ed.) Azospirillum/Plant Associations CRC Press Boca Raton, FL 77–85Google Scholar
  70. Fancelli S. M. Castaldini M. T. Ceccherini C. Di Serio, R. Fani, E. Gallori, M. Marangolo, N. Miclaus, and M. Bazzicalupo. 1998 Use of RAPD markers for the detection of Azospirillum strains in soil microcosms Appl. Microbiol. Biotechnol. 49 221–225CrossRefGoogle Scholar
  71. Favinger, J., R. Stadtwald, and H. Gest. 1989 Rhodospirillum centenum sp. nov., a thermotolerant cyst-forming anoxygenic photosynthetic bacterium Ant. van Leeuwenhoek 55 291–296CrossRefGoogle Scholar
  72. Ferreira, M. C. B., M. S. Fernandes, and J. Döbereiner. 1987 Role of Azospirillum nitrate reductase in nitrate assimilation by wheat plants Biol. Fert. Soils 4 47–53Google Scholar
  73. Fu, C., and R. Knowles. 1988 H2 supports nitrogenase activity in carbon-starved Azospirillum lipoferum and A. amazonense Can. J. Microbiol. 34 825–829CrossRefGoogle Scholar
  74. Fu, C., and R. Knowles. 1989a Intracellular location and sensitivity of uptake hydrogenase in Azospirillum spp Appl. Environ. Microbiol. 55 2315–2319PubMedGoogle Scholar
  75. Fu H.-A. A. Hartmann R. G. Lowery W. P. Fitzmaurice, G. P. Roberts, and R. H. Burris. 1989b Posttranslational regulatory system for nitrogenase activity in Azospirillum spp J. Bacteriol. 171 4679–4685PubMedGoogle Scholar
  76. Fu, H.-A., W. P. Fitzmaurice, G. P. Roberts, and R. H. Burris. 1990 Cloning and expression of draTG genes from Azospirillum lipoferum Gene 86 95–98PubMedCrossRefGoogle Scholar
  77. Fuentes-Ramirez, L. E., R. Bustillos-Cristales, A. Tapia-Hernandez, T. Jimenez-Salgado, E. T. Wang, E. Martinez-Romero, and J. Caballero-Mellado. 2001 Novel nitrogen-fixing acetic acid bacteria, Gluconacetobacter johannae sp. nov. and Gluconacetobacter azotocaptans sp. nov., associated with coffee plants Int. J. Syst. Evol. Microbiol. 51 1305–1314PubMedGoogle Scholar
  78. Fulchieri, M., C. Lucangeli, and R. Bottini. 1993 Inoculation with Azospirillum lipoferum affects growth and gibberellin status of corn seedling roots Plant Cell Physiol. 34 1305–1309Google Scholar
  79. Gillis, M., K. Kersters, B. Hoste, D. Janssens, R. M. Kroppenstedt, M. P. Stephan, K. R. S. Teixeira, J. Döbereiner, and J. De Ley. 1989 Acetobacter diazotrophicus sp. nov., a nitrogen-fixing acetic acid bacterium associated with sugarcane Int. J. Syst. Bacteriol. 39 361–364CrossRefGoogle Scholar
  80. Gillis, M., V. Tran Van, R. Bardin, M. Goor, P. Hebbar, A. Willems, P. Segers, K. Kersters, T. Heulin, and M. P. Fernandez. 1995 Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnamiensis sp. nov. for N2-fixing isolates from rice in Vietnam Int. J. Syst. Bacteriol. 45 274–289CrossRefGoogle Scholar
  81. Glick, B. R., D. M. Penrose, and J. Li. 1998 A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria J. Theor. Biol. 190 63–68PubMedCrossRefGoogle Scholar
  82. Goebel, E. M., and N. R. Krieg. 1984 Fructose catabolism in Azospirillum brasilense and Azospirillum lipoferum J. Bacteriol. 159 86–92PubMedGoogle Scholar
  83. Grishanin, R. N., I. I. Chalmina, and I. B. Zhulin. 1991 Behaviour of Azospirillum brasilense in a spatial gradient of oxygen and “redox” gradient of an alternative electron acceptor J. Gen. Microbiol. 137 2781–2785CrossRefGoogle Scholar
  84. Gündisch, C., G. Kirchhof, M. Baur, W. Bode, and A. Hartmann. 1993 Identification of Azospirillum species by RFLP and pulsed-field gel electrophoresis Microb. Releases 2 41–45PubMedGoogle Scholar
  85. Haahtela, K., T. Wartiovaara, V. Sundman, and J. Skujins. 1981 Root associated N2 fixation (acetylene reduction) by Enterobacteriaceae and Azospirillum strains in cold-climate spodosols Appl. Environ. Microbiol. 41 203–206PubMedGoogle Scholar
  86. Hall, P. G., and N. R. Krieg. 1983 Swarming of Azospirillum brasilense on solid media Can. J. Microbiol. 29 1592–1594CrossRefGoogle Scholar
  87. Halsall, D. M., and A. H. Gibson. 1985a Cellulose decomposition and associated nitrogen fixation by mixed cultures of Cellulomonas gelida and Azospirillum species or Bacillus macerans Appl. Environ. Microbiol. 50 1021–1026PubMedGoogle Scholar
  88. Halsall, D. M., G. L. Turner, and A. M. Gibson. 1985b Straw and xylem utilization by pure cultures of nitrogen-fixing Azospirillum spp Appl. Environ. Microbiol. 49 423–428PubMedGoogle Scholar
  89. Han, S. O., and P. B. New. 1998 Variation in nitrogen fixing ability among natural isolates of Azospirillum Microb. Ecol. 36 193–201PubMedCrossRefGoogle Scholar
  90. Harari, A., J. Kigel, and Y. Okon. 1988 Involvement of IAA in the interaction between Azospirillum brasilense and Panicum miliaceum roots Plant Soil 110 275–282CrossRefGoogle Scholar
  91. Hartmann, A., and D. Kleiner. 1982 Ammonium (methylammonium) transport by Azospirillum spp FEMS Microbiol. Lett. 15 65–67CrossRefGoogle Scholar
  92. Hartmann, A., M. Singh, and W. Klingmüller. 1983 Isolation and characterization of Azospirillum mutants excreting high amounts of indoleacetic acid Can. J. Microbiol. 29 916–923CrossRefGoogle Scholar
  93. Hartmann, A., H.-A. Fu, S.-D. Song, and R. H. Burris. 1985 Comparison of nitrogenase regulation in A. brasilense, A. lipoferum and A. amazonense In: W. Klingmüller (Ed.) Azospirillum III: Genetics, Physiology and Ecology Springer-Verlag Berlin, Germany 116–126CrossRefGoogle Scholar
  94. Hartmann, A., H.-A. Fu, and R. H. Burris. 1986 Regulation of nitrogenase activity by ammonium chloride in Azospirillum spp J. Bacteriol. 165 864–870PubMedGoogle Scholar
  95. Hartmann, A., and R. H. Burris. 1987 Regulation of nitrogenase activity by oxygen in Azospirillum brasilense and Azospirillum lipoferum J. Bacteriol. 169 944–948PubMedGoogle Scholar
  96. Hartmann, A. 1988a Osmoregulatory properties of Azospirillum spp In: W. Klingmüller (Ed.) Azospirillum IV: Genetics, Physiology, and Ecology Springer-Verlag Berlin, Germany 122–130Google Scholar
  97. Hartmann A. 1988b Ecophysiological aspects of growth and nitrogen fixation in Azospirillum spp Plant Soil 110 225–238CrossRefGoogle Scholar
  98. Hartmann, A., and T. Hurek. 1988c Effect of carotenoid overproduction on oxygen tolerance of nitrogen fixation in Azospirillum brasilense Sp7 J. Gen. Microbiol. 134 2449–2455Google Scholar
  99. Hartmann, A., H.-A. Fu, and R. H. Burris. 1988d Influence of amino acids on nitrogen fixation activity and growth of Azospirillum spp Appl. Environ. Microbiol. 54 87–93PubMedGoogle Scholar
  100. Hartmann, A., S. R. Prabhu, and E. A. Galinski. 1991 Osmotolerance of diazotrophic rhizosphere bacteria Plant Soil 137 105–109CrossRefGoogle Scholar
  101. Hartmann, A., C. Gündisch, and W. Bode. 1992 Azospirillum mutans improved in iron acquisition and osmotolerance as tools for the investigation of environmental fitness traits Symbiosis 13 271–279Google Scholar
  102. Hartmann, A. 1994a Biotechnological aspects of diazotrophic bacteria associated with rice In: M. Rahman, A. K. Podder, C. Van Hove, Z. N. T. Begum, T. Heulin, and A. Hartmann (Eds.) Biological Nitrogen Fixation Associated with Rice Production Kluwer Academic Publishers Dordrecht, The Netherlands 211–223Google Scholar
  103. Hartmann, A., and W. Zimmer. 1994b Physiology of Azospirillum In: Y. Okon (Ed.) Azospirillum/Plant Associations CRC Press Boca Raton, FL 15–39Google Scholar
  104. Hartmann, A., M. Stoffels, B. Eckert, G. Kirchhof, and M. Schloter. 2000 Analysis of the presence and diversity of diazotrophic endophytes In: E. W. Triplett (Ed.) Prokaryotic Nitrogen Fixation: A Model System for Analysis of a Biological Process Horizon Scientific Press Wymondham, UK 727–736Google Scholar
  105. Hegazi, N. A., N. A. Amer, and M. Monib. 1979 Enumeration of N2-fixing spirilla Soil Biol. Biochem. 11 437–438CrossRefGoogle Scholar
  106. Hegazi, N. A., and M. Monib. 1983 Response of maize plants to inoculation with azospirilla and (or) straw amendment in eastern Egypt Can. J. Microbiol. 29 888–894CrossRefGoogle Scholar
  107. Hochman, A., I. Goldberg, V. Nadler, and A. Hartmann. 1987 The reversible inhibition in nitrogen fixation by oxygen In: W. R. Ullrich, P. J. Apaticia, P. J. Syrett, and F. Castillo (Eds.) Inorganic Nitrogen Fixation Springer-Verlag Berlin, Germany 173–176Google Scholar
  108. Holguin, G., and B. R. Glick. 2001 Expression of the ACC Deaminase gene from Enterobacter cloacae UW4 in Azospirillum brasilense Microb. Ecol. 41 281–288PubMedGoogle Scholar
  109. Iosipenko, A., and V. Ignatov. 1995 Physiological aspects of phytohormone production by Azospirillum brasilense Sp7 NATO ASI, Ser. G., 37 271–278Google Scholar
  110. Jain, D. K., and D. G. Patriquin. 1984 Root hair deformation, bacterial attachment, and plant growth in wheat-Azospirillum associations Appl. Environ. Microbiol. 48 1208–1213PubMedGoogle Scholar
  111. Kabir M. M. D. Faure J. Haurat P. Normand C. Jacoud, P. Wadoux, and R. Bally. 1995 Oligonucleotide probes based on 16S rRNA sequences for the identification of four Azospirillum species Can. J. Microbiol. 41 1081–1087PubMedCrossRefGoogle Scholar
  112. Kapulnik, Y., S. Sarig, I. Nur, Y. Okon, and Y. Henis. 1982 The effect of Azospirillum inoculation on growth and yield of corn Isr. J. Bot. 31 247–255Google Scholar
  113. Kapulnik, Y., Y. Okon, and Y. Henis. 1985 Changes in root morphology of wheat caused by Azospirillum inoculation Can. J. Microbiol. 31 881–887CrossRefGoogle Scholar
  114. Karpati, E., P. Kiss, T. Ponyi, I. Fendrik, M. de Zamaroczy, and L. Orosz. 1999 Interaction of Azospirillum lipoferum with wheat germ agglutinin stimulates nitrogen fixation J. Bacteriol. 181 3949–3955PubMedGoogle Scholar
  115. Katupitiya, S., J. Millet, M. Vesk, L. Viccars, A. Zeman, Z. Lidong, C. Elmerich, and I. R. Kennedy. 1995 A mutant of Azospirillum brasilense Sp7 impaired in flocculation with a modified colonization pattern and superior nitrogen fixation in association with wheat Appl. Environ. Microbiol. 61 1987–1995PubMedGoogle Scholar
  116. Kavimandan, S. K., N. S. Subba Rao, and A. Mohair. 1978 Isolation of Spirillum lipoferum from the stems of wheat and nitrogen fixation in enrichment cultures Curr. Sci. 47 96–98Google Scholar
  117. Kawasaki, H., Y. Hoshino, H. Kuraishi, and K. Yamasato. 1992 Rhodocista centenaria gen. nov., sp. nov., a cyst-forming anoxygenic photosynthetic bacterium and its phylogenetic position in the Proteobacteria alpha group J. Gen. Appl. Microbiol. 38 541–551CrossRefGoogle Scholar
  118. Khammas, K. M., E. Ageron, P. A. D. Grimont, and P. Kaiser. 1989 Azospirillum irakense sp. nov., a nitrogen-fixing bacterium associated with rice roots and rhizosphere soil Res. Microbiol. 140 679–693PubMedGoogle Scholar
  119. Khammas, K. M., and P. Kaiser. 1991 Characterization of a pectinolytic activity with Azospirillum irakense Plant Soil 137 75–79CrossRefGoogle Scholar
  120. Kirchhof, G., and A. Hartmann. 1992 Development of gene-probes for Azospirillum based on 23S-rRNA sequences Symbiosis 13 27–35Google Scholar
  121. Kirchhof, G., V. M. Reis, J. I. Baldani, B. Eckert, J. Döbereiner, and A. Hartmann. 1997a Occurrence, physiological and molecular analysis of endophytic diazotrophic bacteria in gramineous energy plants Plant Soil 194 45–55CrossRefGoogle Scholar
  122. Kirchhof, G., M. Schloter, B. Aßmus, and A. Hartmann. 1997b Molecular microbial ecology approaches applied to diazotrophs associated with non-legumes Soil Biol. Biochem. 29 853–862CrossRefGoogle Scholar
  123. Kirchhof, G., B. Eckert, M. Stoffels, J. I. Baldani, V. M. Reis, and A. Hartmann. 2001 Herbaspirillum frisingense sp. nov., a new nitrogen-fixing bacterial species that occurs in C4-fibre plants Int. J. Syst. Evol. Microbiol. 51 157–168PubMedGoogle Scholar
  124. Krieg, N. R., and J. Döbereiner. 1984 Genus Azospirillum In: J. G. Holt and N. R. Krieg (Eds.) Bergey’s Manual of Systematic Bacteriology Williams and Wilkins Baltimore, MD 1 94–104Google Scholar
  125. Kulasooriya, S. A., P. A. Roger, W. L. Barraquio, and I. Watanabe. 1981 Epiphytic nitrogen fixation in deepwater rice Soil Sci. Plant Nutr. 27 19–27CrossRefGoogle Scholar
  126. Lambrecht, M., Y. Okon, A. Vande Broek, and J. Vanderleyden. 2000 Indole-3-acetic acid: A reciprocal signalling molecule in bacteria-plant interactions Trends Microbiol. 8 298–300PubMedCrossRefGoogle Scholar
  127. Lebuhn, M., and A. Hartmann. 1993 Method for the determination of indole-3-acetic acid and related compounds of L-tryptophan catabolism in soil J. Chromatogr. 629 255–266CrossRefGoogle Scholar
  128. Lebuhn, M., and A. Hartmann. 1994 Production of auxin and L-tryptophan related indolic and phenolic compounds by Azospirillum brasilense and Azospirillum lipoferum In: M. H. Ryder, P. M. Stephens, and G. D. Bowen (Eds.) Improving Plant Productivity with Rhizosphere Bacteria CSIRO, Division of Soils Adelaide, Australia 145–147Google Scholar
  129. Liang, Y. Y., P. A. Kaminski, and C. Elmerich. 1991 Identification of a nifA-like regulatory gene of Azospirillum brasilense Sp7 expressed under conditions of nitrogen fixation and in the presence of air and ammonia Molec. Microbiol. 5 2735–2744CrossRefGoogle Scholar
  130. Liang, Y. Y., M. Pde Zamaroczy, F. Arsene, A. Paquelin, and C. Elmerich. 1992 Regulation of nitrogen fixation in Azospirillum brasilense Sp7: Involvement of nifA, glnA and glnB gene products FEMS Microbiol. Lett. 100 113–119Google Scholar
  131. Liang, Y. Y., F. Arsene, and C. Elmerich. 1993 Characterization of the ntrBC genes of Azospirillum brasilense Sp7: Their involvement in the regulation of nitrogenase synthesis and activity Molec. Gen. Genet. 240 188–196PubMedCrossRefGoogle Scholar
  132. Lin, W. Y., Y. Okon, and R. W. F. Hardy. 1983 Enhanced mineral uptake by Zea mays and Sorghum bicolor roots inoculated with Azospirillum brasilense Appl. Environ. Microbiol. 45 1775–1779PubMedGoogle Scholar
  133. Lucangeli, C., and R. Bottini. 1997 Effects of Azospirillum spp. on endogenous gibberellin content and growth of maize (Zea mays L.) treated with uniconazole Symbiosis 23 63–71Google Scholar
  134. Martinez-Drets, G., M. Del Gallpo, C. Burpee, and R. H. Burris. 1984 Catabolism of carbohydrates and organic acids and expression of nitrogenase by azospirilla J. Bacteriol. 159 80–85PubMedGoogle Scholar
  135. Mascarua-Esparza, M. A., R. Villa-Gonzalez, and J. Caballero-Mellado. 1988 Acetylene reduction and indoleacetic acid production by Azospirillum isolates from Cactaceous plants Plant Soil 106 91–95CrossRefGoogle Scholar
  136. Magalhães, F. M. M., J. I. Baldani, S. M. Souto, J. R. Kuykendall, and J. Döbereiner. 1983 A. new acid-tolerant Azospirillum species An. Acad. Bras. Cien. 55 417–430Google Scholar
  137. Michiels, K., J. Vanderleyden, A. P. Van Gool, and E. R. Signer. 1988 Isolation and characterization of Azospirillum brasilense loci that correct Rhizobium meliloti exoB and exoC mutants J. Bacteriol. 170 5401–5404PubMedGoogle Scholar
  138. Michiels, K., C. L. Croes, and J. Vanderleyden. 1991 Two different modes of attachment of Azospirillum brasilense Sp7 to wheat roots J. Gen. Microbiol. 137 2241–2246CrossRefGoogle Scholar
  139. Milcamps, A., A. Van Dommelen, J. Stigter, J. Vanderleyden, and F. J. de Bruijn. 1996 The Azospirillum brasilense rpoN gene is involved in nitrogen fixation, nitrate assimilation, ammonium uptake and flagellar biosynthesis Can. J. Microbiol. 42 467–478PubMedCrossRefGoogle Scholar
  140. Moens, S., K. Michiels, V. Keijers, F. Van Leuven, and J. Vanderleyden. 1995a Cloning, sequencing, and phenotypic analysis of laf1, encoding the flagella of Azospirillum brasilense Appl. Environ. Microbiol. 47 433–435Google Scholar
  141. Moens, S., K. Michiels, and J. Vanderleyden. 1995b Glycosylation of the flagellin of the polar flagellum of Azospirillum brasilense, a Gram-negative nitrogen-fixing bacterium Microbiology 141 2651–2657CrossRefGoogle Scholar
  142. Moens, S., M. Schloter, and J. Vanderleyden. 1996 Expression of the structural gene lafl encoding the flagellin of the lateral flagella in Azospirillum brasilense Sp7 J. Bacteriol. 178 5017–5019PubMedGoogle Scholar
  143. Mori, E., R. Fani, E. Gallori, O. Fantappié, and M. Bazzicalupo. 1992 Mutants of Azospirillum brasilense altered in the uptake of iron Symbiosis 13 115–122Google Scholar
  144. Mori, E., M. Fulchieri, C. Indorato, and M. Bazzicalupo. 1996 Cloning, nucleotide sequencing, and expression of the Azospirillum brasilense lon gene: Involvement in iron uptake J. Bacteriol. 178 3440–3446PubMedGoogle Scholar
  145. Nayak, D. N., and V. R. Rao. 1977 Nitrogen fixation by Spirillum sp. from rice roots Arch. Microbiol. 115 359–360PubMedCrossRefGoogle Scholar
  146. Nayak, D. N., A. Swain, and V. R. Rao. 1979 Nitrogen-fixing Azospirillum lipoferum from common weeds associated with rice and aquatic ecosystems Curr. Sci. 48 866–867Google Scholar
  147. Nelson, L. M., and R. Knowles. 1978 Effect of oxygen and nitrate on nitrogen fixation and denitrification by Azospirillum brasilense grown in continous culture Can. J. Microbiol. 24 1395–1403PubMedCrossRefGoogle Scholar
  148. Okon, Y., S. L. Albrecht, and R. H. Burris. 1976 Factors affecting growth and nitrogen fixation of Spirillum lipoferum J. Bacteriol. 127 1248–1254PubMedGoogle Scholar
  149. Okon, Y. 1982 Azospirillum: Physiology, properties, mode of association with roots and its application for the benefit of cereal and forage grass crops Isr. J. Bot. 31 214–220Google Scholar
  150. Okon, Y. 1985 Azospirillum as a potential inoculant for agriculture Trends Biotechnol. 3 223–228CrossRefGoogle Scholar
  151. Okon, Y., and Y. Kapulnik. 1986 Development and function of Azospirillum-inoculated roots Plant Soil 90 63–71CrossRefGoogle Scholar
  152. Okon, Y. 1994a Azospirillum/Plant Associations CRC Press Boca Raton, FLGoogle Scholar
  153. Okon, Y., and C. A. Labandera-Gonzalez. 1994b Agronomic application of Azospirillum: An evaluation of 20 years worldwide field inoculation Soil Biol. Biochem. 26 1591–1601CrossRefGoogle Scholar
  154. Onyeocha, I., C. Vieille, W. Zimmer, B. E. Baca, M. Flores, R. Palacios, and C. Elmerich. 1990 Physical map and properties of a 90-Mda plasmid of Azospirillum brasilense Sp7 Plasmid 23 169–182PubMedCrossRefGoogle Scholar
  155. Patriquin, D. G., and J. Döbereiner. 1978 Light microscopy obersvations of tetrazolium-reducing bacteria in the endorhizosphere of maize and other grasses in Brazil Can. J. Microbiol. 24 734–742PubMedCrossRefGoogle Scholar
  156. Patriquin, D. G., J. Döbereiner, and D. K. Jain. 1983 Sites and processes of association between diazotrophs and grasses Can. J. Microbiol. 29 900–915CrossRefGoogle Scholar
  157. Pedrosa, F. O., M. P. Stephan, J. Döbereiner, and M. G. Yates. 1982 Hydrogen-uptake hydrogenase activity in nitrogen-fixing Azospirillum brasilense J. Gen. Microbiol. 128 161–166Google Scholar
  158. Pereg-Gerk, L., A. Paquelin, P. Gounon, I. R. Kennedy, and C. Elmerich. 1998 A transcriptional regulator of the LuxR-UhpA family, FlcA, controls flocculation and wheat root surface colonization by Azospirillum brasilense Sp7 Molec. Plant-Microbe Interact. 11 177–187CrossRefGoogle Scholar
  159. Pereg-Gerk, L., K. Gilchrist, and I. R. Kennedy. 2000 Mutants with enhanced nitrogenase activity in hydroponic Azospirillum brasilense-wheat associations Appl. Environ. Microbiol. 66 2175–2184PubMedCrossRefGoogle Scholar
  160. Prinsen, E., A. Costacurta, K. Michiels, J. Vanderleyden, and H. Van Onckelen. 1993 Azospirillum brasilense indole-3-acetic acid biosynthesis: Evidence for a non-tryptophan dependent pathway Molec. Plant-Microbe Interact. 6 609–615CrossRefGoogle Scholar
  161. Quiviger, B., C. Franche, G. Lutfalla, D. Rice, R. Haselkorn, and C. Elmerich. 1982 Cloning of a nitrogen fixation (nif) gene cluster of Azospirillum brasilense Biochimie 64 495–502PubMedCrossRefGoogle Scholar
  162. Raina, S., R. Raina, T. V. Venkatesh, and H. K. Das. 1995 Isolation and characterization of a locus from Azospirillum brasilense Sp7 that complements the tumorigenic defect of Agrobacterium tumefaciens chvB mutant Molec. Plant-Microbe Interact. 8 322–326CrossRefGoogle Scholar
  163. Reinhold, B., T. Hurek, I. Fendrik, B. Pot, M. Gillis, K. Kertsers, D. Thielemans, and J. De Ley. 1987 Azospirillum halopraeferans sp. nov., a nitrogen fixing organism associated with roots of kallar grass [Leptochloa fusca (L.) Kunth.] Int. J. Syst. Bacteriol. 37 43–51CrossRefGoogle Scholar
  164. Reinhold, B., T. Hurek, and I. Fendrik. 1988 Plant-bacteria interactions with special emphasis on the kallar grass Plant Soil 110 249–257CrossRefGoogle Scholar
  165. Reinhold, B., T. Hurek, M. Gillis, B. Hoste, M. Vancanneyt, K. Kersters, and J. De Ley. 1993 Azoarcus gen.nov., nitrogen-fixing Proteobacteria associated with roots of Kallar grass (Leptochloa fusca (L) Kunth), and description of two species, Azoarcus indigens sp. nov. and Azoarcus communis sp. nov Int. J. Syst. Bacteriol. 43 574–584CrossRefGoogle Scholar
  166. Riou, N., and D. Le Rudulier. 1990 Osmoregulation in Azospirillum brasilense: Glycine betaine transport enhances growth and nitrogen fixation under salt stress J. Gen. Microbiol. 136 1455–1462PubMedCrossRefGoogle Scholar
  167. Rodrigues Neto, J., J. R. Malavolta, and O. Victot. 1986 Meio simples para isolamento e cultivo de Xanthomonas campestris pv. citri Tipo B Suma Phytopath. 12 16Google Scholar
  168. Römheld, V., and H. Marscher. 1986 Evidence for a specific uptake system for iron phytosiderophores in roots of grasses Plant Physiol. 80 175–180PubMedCrossRefGoogle Scholar
  169. Sadasivan, L., and C. A. Neyra. 1985 Flocculation of Azospirillum brasilense and Azospirillum lipoferum: Exopolysaccarides and cyst formation J. Bacteriol. 163 716–723PubMedGoogle Scholar
  170. Sarig, S., A. Blum, and Y. Okon. 1988 Improvement of the water status and yield of field-grown grain sorghum (Sorghum bicolor) by inoculation with Azospirillum brasilense J. Agric. Sci. Camb. 110 271–277CrossRefGoogle Scholar
  171. Sarig, S., Y. Okon, and A. Blum. 1990 Promotion of leaf area development and yield in Sorghum bicolor inoculated with Azospirllum brasilense Symbiosis 9 235–245Google Scholar
  172. Sarig, S., A. Blum, and Y. Okon. 1992 Effect of Azospirillum brasilense inoculation on growth dynamics and hydraulic conductivity of Sorghum bicolor roots J. Plant Nutr. 15 805–819CrossRefGoogle Scholar
  173. Saxena, B., M. Modi, and V. V. Modi. 1986 Isolation and characterization of siderophores from Azospirillum lipoferum D-2 J. Gen. Microbiol. 132 219–224Google Scholar
  174. Schloter, M., and A. Hartmann. 1998 Endophytic and surface colonization of wheat roots (Triticum aestivum) by different Azospirillum brasilense strains studied with strain-specific monoclonal antibodies Symbiosis 25 159–179Google Scholar
  175. Schröder, M. 1932 Die Assimilation des Luftstickstoffs durch einige Bakterien Zentralbl. Bakt. Parasitenkd. 85 178–212Google Scholar
  176. Scott, D. B., C. A. Scott, and J. Döbereiner. 1979 Nitrogenase activity and nitrate respiration in Azospirillum spp Arch. Microbiol. 121 141–145CrossRefGoogle Scholar
  177. Skerman, V. B. D., L. I. Sly, and M. L. Williamson. 1983 Conglomeromonas largomobilis gen. nov., sp. nov., a sodium-sensitive, mixed-flagellated organism from fresh waters Int. J. Syst. Bacteriol. 33 300–308CrossRefGoogle Scholar
  178. Sly, L. I., and E. Stackebrandt. 1999 Description of Skermanella parooensis gen. nov., sp. nov. to accommodate Conglomeromonas largomobilis subsp. parooensis following the transfer of Conglomeromonas largomobilis subsp. largomobilis to the genus Azospirillum Int. J. Syst. Bacteriol. 49 541–544CrossRefGoogle Scholar
  179. Smith, R. L., S. C. Schank, J. R. Milam, and A. A. Baltensperger. 1984 Responses of Sorghum and Pennisetum species to the N2 fixing bacterium Azospirillum brasilense Appl. Environ. Microbiol. 47 1331–1336PubMedGoogle Scholar
  180. Song, S. D., A. Hartmann, and R. H. Burris. 1985 Purification and properties of the nitrogenase of Azospirillum amazonense J. Bacteriol. 164 1271–1276PubMedGoogle Scholar
  181. Sriskandarajah, S., I. R. Kennedy, D. Yu, and Y. T. Tchan. 1993 Effects of plant growth regulation on acetylene-reducung associations between Azospirillum brasilense and wheat Plant Soil 153 165–178CrossRefGoogle Scholar
  182. Steenhoudt, O., and J. Vanderleyden. 2000 Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: Genetic, biochemical and ecological aspects FEMS Microbiol. Rev. 24 487–506PubMedCrossRefGoogle Scholar
  183. Stephan, M. P., W. Zimmer, and H. Bothe. 1984 Denitrification by Azospirillum brasilense Sp7. II: Growth with nitrous oxide as respiratory electron acceptor Arch. Microbiol. 138 212–216CrossRefGoogle Scholar
  184. Stoffels, M., T. Castellanos, and A. Hartmann. 2001 Design and application of new 16S rRNA-targeted oligonucleotide probes for the Azospirillum-Skermanella-Rhodocista-Cluster Syst. Appl. Microbiol. 24 83–97PubMedCrossRefGoogle Scholar
  185. Strunk, O., and W. Ludwig. 1997 ARB: A software environment for sequence data [{}].Google Scholar
  186. Subba Rao, N. S. 1981 Response of crops to Azospirillum inoculation in India In: P. B. Vose and A. P. Ruschel (Eds.) Associative N2-fixation CRC Press Boca Raton, FL 1 137–144Google Scholar
  187. Subba Rao, N. S. 1983 Nitrogen-fixing bacteria associated with plantation and orchard plants Can. J. Microbiol. 29 863–873CrossRefGoogle Scholar
  188. Tapia-Hernandez, A., M. A. Mascarua-Esparza, and J. Caballero-Mellado. 1990 Production of bacteriocin and siderophore-like activity by Azospirillum brasilense Microbios 64 73–83PubMedGoogle Scholar
  189. Tarrand, J. J., N. R. Krieg, and J. Döbereiner. 1978 A taxonomic study of the Spirillum lipoferum group with description of a new genus. Azospirillum gen. nov. and two species. Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov Can. J. Microbiol. 24 967–980PubMedCrossRefGoogle Scholar
  190. Tien, T. M., M. H. Gaskins, and D. H. Hubbell. 1979 Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.) Appl. Environ. Microbiol. 37 1016–1024PubMedGoogle Scholar
  191. Tripathi, A. K., R. Tripathi, A. Ganguli, and M. Bazzicalupo. 1998 Duplication of insertion element IS50 associated with Tn5 transposition in Azospirillum brasilense Can. J. Microbiol. 44 1110–1113PubMedGoogle Scholar
  192. Turbanti, L., M. Bazzicalupo, E. Canalone, R. Fani, E. Galori, and M. Polsinelli. 1988 Mutants of Azospirillum brasilense resistant to methylammonium Arch. Microbiol. 150 421–425CrossRefGoogle Scholar
  193. Tyler M. E. J. R. Milam R. L. Smith, S. C. Schank, and D. A. Zuberer. 1979 Isolation of Azospirillum from diverse geographic regions Can. J. Microbiol. 25 693–697PubMedCrossRefGoogle Scholar
  194. Umali-Garcia, M., D. H. Hubbel, H. Gaskins, and F. B. Dazzo. 1980 Association of Azospirillum with grass roots Appl. Environ. Microbiol. 39 219–226PubMedGoogle Scholar
  195. Urquiaga, S., K. H. S. Cruz, and R. M. Boddey. 1992 Contribution of nitrogen fixation to sugar cane: Nitrogen-15 and nitrogen balance estimates Soil Sci. Soc. Am. J. 56 105–113CrossRefGoogle Scholar
  196. Van Bastelaere, E., M. Lambrecht, H. Vermeiren, A. Van Dommelen, V. Keijers, P. Proost, and J. Vanderleyden. 1999 Characterization of a sugar-binding protein from Azospirillum brasilense mediating chemotaxis to and uptake of sugars Molec. Microbiol. 32 703–714CrossRefGoogle Scholar
  197. Van de Broek, A., J. Michiels, A. Van Gool, and J. Vanderleyden. 1993 Spatial-temporal colonization patterns of Azospirillum brasilense on the wheat root surface and expression of the bacterial nifH-gene during association Molec. Plant-Microbe Interact. 6 592–600CrossRefGoogle Scholar
  198. Van de Broek, A., and J. Vanderleyden. 1995 The role of bacterial motility, chemotaxis, and attachment in bacteria-plant interactions Molec. Plant-Microbe Interact. 8 800–810CrossRefGoogle Scholar
  199. Van de Broek, A., M. Lambrecht, and J. Vanderleyden. 1998 Bacterial chemotactic motility is important for the initiation of wheat root colonization by Azospirillum brasilense Microbiology 144 2599–2606CrossRefGoogle Scholar
  200. Van de Broek, A., M. Lambrecht, K. Eggermont, and J. Vanderleyden. 1999 Auxins upregulate expression of the indole-3-pyruvate decarboxylase gene in Azospirillum brasilense J. Bacteriol. 181 1338–1342Google Scholar
  201. Van Dommelen, A., V. Keijers, J. Vanderleyden, and M. de Zamaroczy. 1998 (Methyl)ammonium transport in the nitrogen-fixing bacterium Azospirillum brasilense J. Bacteriol. 180 2652–2659PubMedGoogle Scholar
  202. Vedder-Weiss, D., E. Jukevitch, S. Burdman, D. Weiss, and Y. Okon. 1999 Root growth, respiration and β-glucosidase activity in maize (Zea mays) and common bean (Phaseolus vulgaris) inoculated with Azospirillum brasilense Symbiosis 26 363–377Google Scholar
  203. Vielle, C., and C. Elmerich. 1990 Characterization of two Azospirillum brasilense Sp7 plasmid genes homologous to Rhizobium meliloti nod PQ Molec. Plant-Microbe Interact. 3 389–400CrossRefGoogle Scholar
  204. Vielle, C., and C. Elmerich. 1992 Characterization of an Azospirillum brasilense Sp7 gene homologous to Alcaligenes eutrophus phbB and to Rhizobium meliloti nod. G Molec. Gen. Genet. 231 375–384CrossRefGoogle Scholar
  205. Vincent, J. M. 1970 A Manual for the Practical Study of Root-Nodule Bacteria Blackwell Scientific Publications IBP Handbook 15.Google Scholar
  206. Volpin, H., S. Burdman, S. Castro-Sowinski, Y. Kapulnik, and Y. Okon. 1996 Inoculation with Azospirillum increased exudation of rhizobial nod-gene inducers by alfalfa roots Molec. Plant-Microbe Interact. 9 388–394CrossRefGoogle Scholar
  207. Volpon, A. G. T., H. De-Polli, and J. Döbereiner. 1981 Physiology of nitrogen fixation in Azospirillum lipoferum BR 17 (ATCC29709) Arch. Microbiol. 128 371–375CrossRefGoogle Scholar
  208. Watanabe, I., W. L. Barraquio, M. R. Guzman, and D. A. Cabrera. 1979 Nitrogen-fixing (acetylene reduction) activity and population of aerobic heterotrophic nitrogen-fixing bacteria associated with wetland rice Appl. Environ. Microbiol. 37 813–815PubMedGoogle Scholar
  209. Weber, O. B., V. L. D. Baldani, K. R. S. Teixeira, G. Kirchhof, J. I. Baldani, and J. Döbereiner. 1999 Isolation and characterization of diazotrophic bacteria from banana and pineapple plants Plant Soil 210 103–113CrossRefGoogle Scholar
  210. Weier, K. L., I. C. MaCrae, and J. Whittle. 1981 Seasonal variation in the nitrogenase activity of a Panicum maximum var. Trichoglume pasture and identification of associated bacteria Plant Soil 63 189–198CrossRefGoogle Scholar
  211. Winkelmann, G., K. Schmidtkunz, and F. Rainey. 1996 Characterization of a novel Spirillum-like bacterium that degrades ferrioxamine-type siderophores BioMetals 9 78–83PubMedCrossRefGoogle Scholar
  212. Winkelmann, G., B. Busch, A. Hartmann, G. Kirchhof, R. Süßmuth, and G. Jung. 1999 Degradation of desferrioxamines by Azospirillum irakense: Assignment of metabolites by HPLC/electrospray mass spectrometry BioMetals 12 255–264PubMedCrossRefGoogle Scholar
  213. Wright, A. D., M. B. Sampson, M. G. Neuffer, L. Michalczuk, J. P. Slovin, and J. D. Cohen. 1991 Indole-3-acetic acid biosynthesis in mutant maize orange pericarp, a tryptophan auxotroph Science 254 998–1000PubMedCrossRefGoogle Scholar
  214. Xia, Y., T. M. Embley, and A. G. O’Donell. 1994 Phylogenetic analysis of Azospirillum by direct sequencing of PCR-amplified 16S rDNA Syst. Appl. Microbiol. 17 197–201CrossRefGoogle Scholar
  215. Zhang, Y., R. H. Burris, and G. P. Roberts. 1992 Cloning, sequencing, mutagenesis, and functional characterization of draT and draG genes from Azospirillum brasilense J. Bacteriol. 174 3364–3369PubMedGoogle Scholar
  216. Zhang, Y., R. H. Burris, P. W. Ludden, and G. P. Roberts. 1993 Posttranslational regulation of nitrogenase activity by anaerobiosis and ammonium in Azospirillum brasilense J. Bacteriol. 175 6781–6788PubMedGoogle Scholar
  217. Zhang, Y., R. H. Burris, P. W. Ludden, and G. P. Roberts. 1994 Posttranslational regulation of nitrogenase activity in Azospirillum brasilense ntrBC mutants: Ammonium and anaerobic switch-off occurs through independent signal transduction pathways J. Bacteriol. 176 5780–5787PubMedGoogle Scholar
  218. Zhang, Y., R. H. Burris, P. W. Ludden, and G. P. Roberts. 1996 Presence of a second mechanism for the posttranslational regulation of nitrogenase activity in Azospirillum brasilense in response to ammonium J. Bacteriol. 178 2948–2953PubMedGoogle Scholar
  219. Zhulin, I. B., and J. P. Armitage. 1993 Motility, chemokinesis, and methylation-independent chemotaxis in Azospirillum brasilense J. Bacteriol. 175 952–958PubMedGoogle Scholar
  220. Zhulin, I. B., V. A. Bespalow, M. S. Johnson, and B. L. Taylor. 1996 Oxygen taxis and proton motive force in Azospirillum brasilense J. Bacteriol. 178 5199–5204PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Anton Hartmann
  • Jose Ivo Baldani

There are no affiliations available

Personalised recommendations