The Genus Paracoccus

  • Donovan P. Kelly
  • Frederick A. Rainey
  • Ann P. Wood


At the time that Henk van Verseveld and Adriaan Stouthamer (1991) described Paracoccus in the second edition of [{}The Prokaryotes], only two species were recognized: the type species (P. denitrificans) and P. halodenitrificans (Kocur, 1984). Of those two, Paracoccus halodenitrificans was subsequently excluded because it was shown to be a member of the genus Halomonas in the γ-subclass of the Proteobacteria (Dobson and Franzmann, 1996; Miller et al., 1994; Ohara et al., 1990; Urakami et al., 1990). In the past decade, a number of new species of Paracoccus have been described and a major critical review of the diverse biotypes of P. denitrificans and similar organisms was undertaken, leading to a clearer definition of the type species. At the time of writing, a total of 14 species of Paracoccus have been proposed (Table1). These include two well-studied species of facultatively chemolithoautotrophic sulfur bacteria, Thiosphaera pantotropha and Thiob...


Electron Paramagnetic Resonance Major Fatty Acid Autotrophic Growth Paracoccus Denitrificans Inorganic Sulfur Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Arts, P. A. M., L. A. Robertson, and J. G. Kuenen. 1995 Nitrification and denitrification by Thiosphaera pantotropha in aerobic chemostat cultures FEMS Microbiol. Ecol. 18 305–316CrossRefGoogle Scholar
  2. Baker, S. C., S. J. Ferguson, B. Ludwig, M. D. Page, O.-M. H. Richter, and R. J. M. van Spanning. 1998 Molecular genetics of the genus Paracoccus: Metabolically versatile bacteria with bioenergetic flexibility Microbiol. Molec. Biol. Rev. 62 1046–1078Google Scholar
  3. Bamforth, C. W., and J. R. Quayle. 1978 Aerobic and anaerobic growth of Paracoccus denitrificans on methanol Arch. Microbiol. 119 91–97PubMedCrossRefGoogle Scholar
  4. Bartosik, D., J. Baj, and M. Wlodarczyk. 1995 Construction and characterization of mini-derivatives of the large (107 kb) cryptic plasmid of Thiobacillus versutus FEMS Microbiol. Lett. 129 169–174Google Scholar
  5. Beijerinck, M., and D. C. J. Minkman. 1910 Bildung und Verbrauch von Stickoxydul durch Bakterien. Centralblatt f Bakteriologie, Abt. II 25 30–63Google Scholar
  6. Bell, L. C., and S. J. Ferguson. 1991 Nitric and nitrous oxide reductases are active under aerobic conditions in cells of Thiosphaera pantotropha Biochem. J. 273 423–427PubMedGoogle Scholar
  7. Berks, B. C., S. J. Ferguson, J. W. B. Moir, and D. J. Richardson. 1995 Enzymes and associated electron transport systems that catalyze the respiratory reduction of nitrogen oxides and oxyanions Biochim. Biophys. Acta 1232 97–173PubMedCrossRefGoogle Scholar
  8. Brosius, J., M. L. Palmer, P. J. Kennedy, and H. F. Noller. 1978 Complete nucleotide sequence of the 16S ribosomal RNA gene from Escherichia coli Proc. Natl. Acad. Sci. USA 75 4801–4805PubMedCrossRefGoogle Scholar
  9. Chandra, T. S., and C. G. Friedrich. 1986 Tn5-induced mutations affecting sulfur-oxidizing ability (Sox) of Thiosphaera pantotropha J. Bacteriol. 166 446–452PubMedGoogle Scholar
  10. Davis, D. H., M. Doudoroff, and R. Y. Stanier. 1969 Proposal to reject the genus Hydrogenomonas: Taxonomic implications Int. J. Syst. Bacteriol. 19 375–390CrossRefGoogle Scholar
  11. Dobson, S. J., and P. D. Franzmann. 1996 Unification of the genera Deleya (Baumann et al., 1983), Halomonas (Vreeland et al., 1980), and Halovibrio (Fendrich, 1988) and the species Paracoccus halodenitrificans (Robinson & Gibbons, 1952) into a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae Int. J. Syst. Bacteriol. 46 550–558CrossRefGoogle Scholar
  12. Doronina, N. V., Y. A. Trotsenko, V. I. Krausova, and N. E. Suzina. 1998 Paracoccus methylutens sp. nov.—a new aerobic facultatively methylotrophic bacterium utilizing dichloromethane Syst. Appl. Microbiol. 21 230–236CrossRefGoogle Scholar
  13. Doronina, N. V., Y. A. Trotsenko, B. B. Kuznetsov, and T. P. Tourova. in pressParacoccus kondratievae sp. nov.—a new thermotolerant and alkaliphilic facultative methylotroph from maize rhizosphereGoogle Scholar
  14. Egert, M., A. Hamann, R. Kömen, and C. G. Friedrich. 1993 Methanol and methylamine utilization result from mutational events in Thiosphaera pantotropha Arch. Microbiol. 159 364–371CrossRefGoogle Scholar
  15. Felsenstein, J. 1993 PHYLIP (Phylogenetic Inference Package) version 3.5.1 Department of Genetics, University of Washington Seattle, WAGoogle Scholar
  16. Forget, P., and F. Pichinoty. 1965 Le cycle tricarboxylique chez une bactérie dénitrifiante obligatoire Ann. Inst. Pasteur 108 364–377Google Scholar
  17. Friedrich, C. G., and G. Mitrenga. 1981 Oxidation of thiosulfate by Paracoccus denitrificans and other hydrogen bacteria FEMS Microbiol. Lett. 10 209–212CrossRefGoogle Scholar
  18. Friedrich, C. G. 1998 Physiology and genetics of sulfur-oxidizing bacteria Adv. Microbial Physiol. 39 235–289CrossRefGoogle Scholar
  19. Gerstenberg, C., B. Friedrich, and H. G. Schlegel. 1982 Physical evidence for plasmids in autotrophic, especially hydrogen-oxidizing bacteria Arch. Microbiol. 133 90–96CrossRefGoogle Scholar
  20. Goodhew, C. F., G. W. Pettigrew, B. Devreese, J. van Beeumen, R. J. M. van Spanning, S. C. Baker, N. Saunders, S. J. Ferguson, and I. P. Thompson. 1996 The cytochromes c-550 of Paracoccus denitrificans and Thiosphaera pantotropha: A need for re-evaluation of the history of Paracoccus cultures FEMS Microbiol. Lett. 137 95–101CrossRefGoogle Scholar
  21. Harker, M., J. Hirschberg, and A. Oren. 1998 Paracoccus marcusii sp. nov., an orange Gram-negative coccus Int. J. Syst. Bacteriol. 48 543–548PubMedCrossRefGoogle Scholar
  22. Jagusztyn-Krynicka, E. K., A. Brzescinska-Kujawa, and K. I. Wolska. 1990 Restriction map of Thiobacillus versutus plasmid pTAV1 Acta Microbiol. Polon. 39 85–89Google Scholar
  23. Jordan, S. L., A. J. Kraczkiewicz-Dowjat, D. P. Kelly, and A. P. Wood. 1995 Novel eubacteria able to grow on carbon disulfide Arch. Microbiol. 163 131–137CrossRefGoogle Scholar
  24. Jordan, S. L., I. R. McDonald, A. J. Kraczkiewicz-Dowjat, D. P. Kelly, F. A. Rainey, J. C. Murrell, and A. P. Wood. 1997 Autotrophic growth on carbon disulfide is a property of novel strains of Paracoccus denitrificans Arch. Microbiol. 168 225–236PubMedCrossRefGoogle Scholar
  25. Katayama, Y., A. Hiraishi, and H. Kuraishi. 1995 Paracoccus thiocyanatus sp. nov., a new species of thiocyanate-utilizing facultative chemolithotroph, and transfer of Thiobacillus versutus to the genus Paracoccus as Paracoccus versutus comb. nov. with emendation of the genus Microbiology (UK) 141 1469–1477CrossRefGoogle Scholar
  26. Katayama-Fujimura, Y., Y. Enokizona, T. Kaneko, and H. Kuraishi. 1983 Deoxyribonucleic acid homologies among species of the genus Thiobacillus J. Gen. Appl. Microbiol. 29 287–295CrossRefGoogle Scholar
  27. Kelly, D. P., A. P. Wood, J. C. Gottschal, and J. G. Kuenen. 1979 Autotrophic metabolism of formate by Thiobacillus A2 J. Gen. Microbiol. 114 1–13CrossRefGoogle Scholar
  28. Kelly, D. P., and A. P. Wood. 1982 Autotrophic growth of Thiobacillus A2 on methanol FEMS Microbiol. Lett. 15 229–233CrossRefGoogle Scholar
  29. Kelly, D. P., and A. P. Wood. 1984 Potential for methylotrophic autotrophy in Thiobacillus versutus (Thiobacillus sp, strain A2) In: R. L. Crawford and R. S. Hanson (Eds.) Microbial Growth on C1 Compounds American Society for Microbiology Washington DC 324–329Google Scholar
  30. Kelly, D. P. 1985 Physiology of the thiobacilli: Elucidating the sulphur oxidation pathway Microbiol. Sci. 2 105–109PubMedGoogle Scholar
  31. Kelly, D. P. 1988 Oxidation of sulphur compounds Soc. Gen. Microbiol. Symp. 42 65–98Google Scholar
  32. Kelly, D. P. 1989 Physiology and biochemistry of unicellular sulfur bacteria In: H. G. Schlegel and B. Bowien (Eds.) Biology of Autotrophic Bacteria Science Tech Publishers Madison, WI 193–217Google Scholar
  33. Kelly, D. P., J. K. Shergill. W.-P. Lu, and A. P. Wood. 1997 Oxidative metabolism of inorganic sulfur compounds by bacteria Ant. v. Leeuwenhoek 71 95–107CrossRefGoogle Scholar
  34. Kelly, D. P., and A. P. Wood. 1998 Microbes of the sulfur cycle In: R. S. Burlage, R. Atlas, D. Stahl, G. Geesey, and G. Sayler (Eds.) Techniques in Microbial Ecology Oxford University Press New York 31–57Google Scholar
  35. Kelly, D. P. 1999 Thermodynamic aspects of energy conservation by chemolithotrophic sulfur bacteria in relation to the sulfur oxidation pathways Arch. Microbiol. 171 219–229CrossRefGoogle Scholar
  36. Kelly, D. P., A. P. Wood, and E. Stackebrandt. in pressGenus Thiobacillus Beijerinck. 1904 In: N. R. Krieg, J. T. Staley, and D. Brenner (Eds.) [{}Bergey’s Manual of Systematic Bacteriology] 3 Bergey’s Manual Trust MIGoogle Scholar
  37. Kocur, M. 1984 Genus Paracoccus Davis In: N. R. Krieg (Ed.) [{}Bergey’s Manual of Systematic Bacteriology] 1 Williams & Wilkins Baltimore, MD 399–402Google Scholar
  38. Kokufuta, E., M. Shimohashi, and I. Nakamura. 1987 Continuous column denitrification using polyelectrolyte complex-entrapped P. denitrificans cells J. Ferment. Technol. 65 359–361CrossRefGoogle Scholar
  39. Kornberg, H. L., J. F. Collins, and D. Bigley. 1960 The influence of growth substrates on metabolic pathways in Micrococcus denitrificans Biochim. Biophys. Acta 39 9–24PubMedCrossRefGoogle Scholar
  40. Kuenen, J. G., and L. A. Robertson. 1989 The genus Thiosphaera In: J. T. Staley, M. P. Bryant, N. Pfennig, and J. G. Holt (Eds.) [{}{Bergey’s Manual of Systematic Bacteriology}] 3 Williams & Wilkins Baltimore, MD 1861–1862Google Scholar
  41. Lipski, A., S. Klatte, B. Bendinger, and K. Altendorf. 1992 Differentiation of Gram-negative, nonfermentative bacteria isolated from biofilters on the basis of fatty acid composition, quinone system, and physiological reaction profiles Appl. Environ. Microbiol. 58 2053–2065PubMedGoogle Scholar
  42. Lipski, A., K. Reichert, B. Reuter, C. Spröer, and K. Altendorf. 1998 Identification of bacterial isolates from biofilters as Paracoccus alkenifer sp. nov. and Paracoccus solventivorans with emended description of Paracoccus solventivorans Int. J. Syst. Bacteriol. 48 529–536PubMedCrossRefGoogle Scholar
  43. Lu, W.-P., and D. P. Kelly. 1983 Purification and some properties of two principal enzymes of the thiosulphate–oxidizing system from Thiobacillus A2 J. Gen. Microbiol. 129 3549–3564Google Scholar
  44. Lu, W.-P., and D. P. Kelly. 1984 Purification and characterization of two essential cytochromes of the thiosulphate-oxidizing multi-enzyme system from Thiobacillus versutus (A2) Biochim. Biophys. Acta 765 106–117CrossRefGoogle Scholar
  45. Lu, W.-P., and D. P. Kelly. 1984 Properties and role of sulphite cytochrome c oxido-reductase purified from Thiobacillus versutus J. Gen. Microbiol. 130 1683–1692Google Scholar
  46. Lu, W.-P., R. K. Poole, and D. P. Kelly. 1984 Oxidation–reduction potentials and spectral properties of some cytochromes from Thiobacillus versutus Biochim. Biophys. Acta 767 326–334PubMedCrossRefGoogle Scholar
  47. Lu, W.-P., B. E. P. Swoboda, and D. P. Kelly. 1985 Properties of the thiosulphate-oxidizing multi-enzyme system from Thiobacillus versutus Biochim. Biophys. Acta 828 116–122CrossRefGoogle Scholar
  48. Lu, W.-P. 1986 A periplasmic location for the thiosulphate-oxidizing multi-enzyme system from Thiobacillus versutus FEMS Microbiol. Lett. 34 313–317CrossRefGoogle Scholar
  49. Ludwig, W., G. Mittenhuber, and C. G. Friedrich. 1993 Transfer of Thiosphaera pantotropha to Paracoccus denitrificans Int. J. Syst. Bacteriol. 43 363–367PubMedCrossRefGoogle Scholar
  50. Maidak. 1996 The Ribosomal Database Project (PDP). Nucleic Acids Res. 24 82–85Google Scholar
  51. Miller, J. M., S. J. Dobson, P. D. Franzmann, and T. A. McKeekin. 1994 Reevaluating the classification of Paracoccus halodenitrificans with sequence comparisons of 16S ribosomal DNA Int. J. Syst. Bacteriol. 44 360–361PubMedCrossRefGoogle Scholar
  52. Mittenhuber, G., K. Sonomoto, M. Egert, and C. G. Friedrich. 1991 Identification of the DNA region responsible for sulfur-oxidizing ability of Thiosphaera pantotropha J. Bacteriol. 173 7340–7344PubMedGoogle Scholar
  53. Neef, A., A. Zaglauer, H. Meier, R. Amann, H. Lemmer, and K.-H. Schleifer. 1996 Population analysis in a denitrifying sand filter: Conventional and in situ identification of Paracoccus spp. in methanol-fed biofilms Appl. Environ. Microbiol. 62 4329–4339PubMedGoogle Scholar
  54. Nishida, Y., K. Nakamichi, K. Nabe, and T. Tosa. 1987 Continuous production of L-phenylalanine from acetamidocinnamic acid using co-immobilized cells of a Corynebacterium and Paracoccus denitrificans Int. J. Syst. Bacteriol. 33 26–37Google Scholar
  55. Ohara, M., Y. Katayama, M. Tsuzaki, S. Nakamoto, and H. Kuraishi. 1990 Paracoccus kocurii sp. nov., a tetramethylammonium-assimilating bacterium Int. J. Syst. Bacteriol. 40 292–296PubMedCrossRefGoogle Scholar
  56. Pichinoty, F., M. Mandel, and J.-L. Garcia. 1977 étude physiologique et taxonomique de Paracoccus denitrificans Ann. Microbiol. (Institut Pasteur) 128B 243–251Google Scholar
  57. Pichinoty, F., M. Mandel, B. Greenway, and J.-L. Garcia. 1977 étude de. 14 bactéries dénitrifiantes appartenant au groupe Pseudomonas stutzerii isolées du sol par culture en présence d’oxyde nitreux Ann. Microbiol. (Institut Pasteur) 128A 75–89Google Scholar
  58. Rainey, F. A., D. P. Kelly, E. Stackebrandt, J. Burghardt, A. Hiraishi, Y. Katayama, and A., P. Wood. 1999 A re-evaluation of the taxonomy of Paracoccus denitrificans and a proposal for the combination Paracoccus pantotrophus comb. nov Int. J. Syst. Bacteriol. 49 645–651PubMedCrossRefGoogle Scholar
  59. Robertson, L. A., and J. G. Kuenen. 1983 Thiosphaera pantotropha gen. nov., sp. nov., a facultatively anaerobic, facultatively autotrophic sulphur bacterium J. Gen. Microbiol. 129 2847–2855Google Scholar
  60. Robertson, L. A., E. W. J. van Niel, R. A. M. Torremans, and J. G. Kuenen. 1988 Simultaneous nitrification and denitrification in chemostat cultures of Thiosphaera pantotropha Appl. Environ. Microbiol. 54 2812–2818PubMedGoogle Scholar
  61. Siller, H., F. A. Rainey, E. Stackebrandt, and J. Winter. 1996 Isolation and characterization of a new Gram-negative, acetone-degrading, nitrate-reducing bacterium from soil, Paracoccus solventivorans sp. nov Int. J. Syst. Bacteriol. 46 1125–1130PubMedCrossRefGoogle Scholar
  62. Slabas, A. R., and L. R. Whatley. 1977 Metabolic regulation of pyruvate kinase isolated from autotrophically and heterotrophically grown Paracoccus denitrificans Arch. Microbiol. 115 67–71PubMedCrossRefGoogle Scholar
  63. Smith, A. L., D. P. Kelly, and A. P. Wood. 1980 Metabolism of Thiobacillus A2 grown under autotrophic, mixotrophic and heterotrophic conditions in chemostat culture J. Gen. Microbiol. 121 127–138Google Scholar
  64. Stouthamer, A. H. 1992 Metabolic pathways in Paracoccus denitrificans and closely related bacteria in relation to the phylogeny of prokaryotes Ant. v. Leeuwenhoek 61 1–33CrossRefGoogle Scholar
  65. Stouthamer, S. C., A. P. N. de Boer, J. van der Oost, and R. J. M. van Spanning. 1997 Emerging principles of inorganic nitrogen metabolism in Paracoccus denitrificans and related bacteria Ant. v. Leeuwenhoek 71 33–41CrossRefGoogle Scholar
  66. Taylor, B. F., and D. S. Hoare. 1969 New facultative Thiobacillus and a reevaluation of the heterotrophic potential of Thiobacillus novellus J. Bacteriol. 100 487–497PubMedGoogle Scholar
  67. Taylor, B. F., D. S. Hoare, and S. L. Hoare. 1971 Thiobacillus denitrificans as an obligate chemolithotroph: Isolation and growth studies Arch. Microbiol. 78 193–204Google Scholar
  68. Tsubokura, A., H. Yoneda, and H. Mizuta. 1999 Paracoccus carotinifaciens sp. nov., a new aerobic Gram-negative astaxanthin-producing bacterium Int. J. Syst. Bacteriol. 49 277–282PubMedCrossRefGoogle Scholar
  69. Urakami, T., J. Tamaoka, K.-I. Suzuki, and K. Komagata. 1989 Paracoccus alcaliphilus sp. nov., an alkaliphilic and facultatively methylotrophic bacterium Int. J. Syst. Bacteriol. 39 116–121CrossRefGoogle Scholar
  70. Urakami, T., H. Araki, H. Oyanagi, K.-I. Suzuki, and K. Komagata. 1990 Paracoccus aminophilus sp. nov., which utilize N,N-dimethylformamide Int. J. Syst. Bacteriol. 40 287–291PubMedCrossRefGoogle Scholar
  71. Van Spanning, R. J. M., A. H. Stouthamer, S. C. Baker, and H. W. van Verseveld. in pressGenus Paracoccus Davis. 1969 In: [{}Bergey’s Manual of Systematic Bacteriology] Bergey’s Manual Trust MIGoogle Scholar
  72. Van Verseveld, H. W., and A. H. Stouthamer. 1978 Growth yields and the efficiency of oxidative phosphorylation during autotrophic growth of Paracoccus denitrificans on methanol and formate Arch. Microbiol. 118 21–26PubMedCrossRefGoogle Scholar
  73. Van Verseveld, H. W., and R. K. Thauer. 1987 Energetics of C1-compound metabolism In: H. W. van Verseveld and J. A. Duine (Eds.) Microbial Growth on C1 Compounds Martinus Nijhoff, Kluwer Dordrecht 177–185CrossRefGoogle Scholar
  74. Van Verseveld, H. W., and A. H. Stouthamer. 1991 The genus Paracoccus In: A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer (Eds.) [{}The Prokaryotes] 3 Springer-Verlag New York, NY 2321–2334Google Scholar
  75. Vogt, M. 1965 Wachstumphysiologische Untersuchungen an Micrococcus denitrificans Beij Arch. Mikrobiol. 50 256–281PubMedCrossRefGoogle Scholar
  76. Winterstein, C., and B. Ludwig. 1998 Genes coding for respiratory complexes map on all three chromosomes of the Paracoccus denitrificans genome Arch. Microbiol. 169 275–281PubMedCrossRefGoogle Scholar
  77. Wlodarczyk, M., and E. Piechuka. 1995 Conjugal transfer of plasmid and chromosomal markers between strains of Thiobacillus versutus Acta Microbiol. Polon. 43 223–227Google Scholar
  78. Wodara, C., S. Kostka, M. Egert, D. P. Kelly, and C. G. Friedrich. 1994 Identification and sequence analysis of the soxB gene essential for sulfur oxidation of Paracoccus denitrificans GB-17 J. Bacteriol. 176 6188–6191PubMedGoogle Scholar
  79. Wodara, C., F. Bardichewsky, and C. G. Friedrich. 1997 Cloning and characterization of sulfite dehydrogenase, two c-type cytochromes, and a flavoprotein of Paracoccus denitrificans GB17—essential role of sulfite dehydrogenase in lithotrophic sulfur oxidation J. Bacteriol. 179 5014–5023PubMedGoogle Scholar
  80. Wood, A. P., D. P. Kelly, and C. F. Thurston. 1977 Simultaneous operation of three catabolic pathways in the metabolism of glucose by Thiobacillus A2 Arch. Microbiol. 113 265–274PubMedCrossRefGoogle Scholar
  81. Wood, A. P., and D. P. Kelly. 1978 Triple catabolic pathways for glucose in a fast-growing strain of Thiobacillus A2 Arch. Microbiol. 117 309–310CrossRefGoogle Scholar
  82. Wood, A. P., and D. P. Kelly. 1979 Glucose catabolism by Thiobacillus A2 grown in chemostat culture under carbon or nitrogen limitation Arch. Microbiol. 122 307–312CrossRefGoogle Scholar
  83. Wood, A. P., and D. P. Kelly. 1980 Carbohydrate degradation pathways in Thiobacillus A2 grown on various sugars J. Gen. Microbiol. 120 333–345Google Scholar
  84. Wood, A. P., and D. P. Kelly. 1983 Autotrophic, mixotrophic and heterotrophic growth with denitrification by Thiobacillus A2 under anaerobic conditions FEMS Microbiol. Lett. 16 363–370CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Donovan P. Kelly
  • Frederick A. Rainey
  • Ann P. Wood

There are no affiliations available

Personalised recommendations