The Genus Zymomonas

  • Hermann Sahm
  • Stephanie Bringer-Meyer
  • Georg A. Sprenger


Zymomonas mobilis has been reported mainly from tropical and subtropical habitats, e.g., sugar-rich, plant saps from agave (Mexico; Lindner, 1928), sugar cane (Brazil and Fiji Islands; reviewed in Falcao de Morais et al., 1993), and palm wine from central Africa (Swings and De Ley, 1977). Other sources of this organism include fermenting sugarcane juice (Goncalves de Lima et al., 1970), fermenting cocoa beans (Ostovar and Keeney, 1973), and bees and ripening honey (Ruiz-Argueso and Rodriguez-Navarro, 1975). In Europe, Z. mobilis also appeared in spoiled beer and cider. One of the first written descriptions of “cider sickness” was presented by Lloyd (1903), in which he noted the presence of “sulphuretted hydrogen” in spoiled ciders. Barker and Hillier (1912)were the first to study cider sickness extensively and gave a description of the responsible bacterium. Cider sickness is recognized by frothing and abundant gas formation, a typical change in the aroma and flavor,...


Sugar Uptake Ethanol Tolerance Zymomonas Mobilis Pyruvate Decarboxylase Palm Wine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Aitabdelkader, N., G. Pencreach, F. Joset, and J. C. Baratti. 1996 Isolation and properties of mutants of Zymomonas mobilis deficient in sugar assimilation Appl. Environ. Microbiol. 62 1096–1098Google Scholar
  2. Aldrich, H. C., L. McDowell, M. de F. S. Barbosa, L. P. Yomano, R. K. Scopes, and L. O. Ingram. 1992 Immunocytochemical localization of glycolytic and fermentative enzymes in Zymomonas mobilis J. Bacteriol. 174 4504–4508PubMedGoogle Scholar
  3. Algar, E. M., and R. K. Scopes. 1985 Studies on cell-free metabolism: Ethanol production by extracts of Zymomonas mobilis J. Biotechnol. 2 275–28CrossRefGoogle Scholar
  4. An, H., R. K. Scopes, M. Rodriguez, K. F. Keshav, and L. O. Ingram. 1991 Gel electrophoretic analysis of Zymomonas mobilis glycolytic and fermentative enzymes: identification of alcohol dehydrogenase II as a stress protein J. Bacteriol. 173 7227–7240Google Scholar
  5. Arfman, N., V. Worrell, and L. Ingram. 1992 Use of the tac promotor and lacIq for the controlled expression of Zymomonas mobilis fermentative genes in Escherichia coli and Zymomonas mobilis J. Bacteriol. 174 7370–7378PubMedGoogle Scholar
  6. Ault, R. G. 1965 Spoilage bacteria in brewing—a review J. Inst. Brew. London 71 376–391Google Scholar
  7. Baratti, J. C., and J. D. Bu’Lock. 1986 Zymomonas mobilis: A bacterium for ethanol production Biotech. Adv. 4 95–115CrossRefGoogle Scholar
  8. Barbosa, M. F. S., L. P. Yomano, and L. O. Ingram. 1994 Cloning, sequencing, and expression of stress genes from the ethanol-producing bacterium Zymomonas mobilis: The groESL operon Gene 12851–12857Google Scholar
  9. Barker, B. T. P., and V. F. Hillier. 1912 Cider sickness J. Agric. Sci. 5 67–85CrossRefGoogle Scholar
  10. Barnell, W. O., K. C. Yi, and T. Conway. 1990 Sequence and genetic organization of a Zymomonas mobilis gene cluster that encodes several enzymes of glucose metabolism J. Bacteriol. 172 7227–7240PubMedGoogle Scholar
  11. Barnell, W. O., J. Liu, T. L. Hesman, M. C. O’Neill, and T. Conway. 1992 The Zymomonas mobilis glf, zwf, edd, and glk genes form an operon: Localization of the promoter and identification of a conserved sequence in the regulatory region J. Bacteriol. 174 2816–2823PubMedGoogle Scholar
  12. Belaich, J. P., and J. C. Senez. 1965 Influence of aeration and pantothenate on growth yields of Zymomonas mobilis J. Bacteriol. 89 1195–1200Google Scholar
  13. Berks, B. C. 1996 A common export pathway for proteins binding complex redox cofactors? Molec. Microbiol. 22 393–404CrossRefGoogle Scholar
  14. Berks, B. C. 2000 The tat protein export pathway Molec. Microbiol. 35 260–274CrossRefGoogle Scholar
  15. Bornemann, S., D. H. G. Crout, H. Dalton, V. Kren, M. Lobell, G. Dean, N. Thomson, and M. M. Turner. 1995 Stereospecific formation of R-aromatic acyloins by Zymomonas mobilis pyruvate decarboxylase J. Chem. Soc. Perkin Trans. 1 425–430Google Scholar
  16. Bräu, B., and H. Sahm. 1986 Cloning and expression of the structural gene for pyruvate decarboxylase of Zymomonas mobilis in Escherichia coli Arch. Microbiol. 144 296–301CrossRefGoogle Scholar
  17. Brestic-Goachet, N., P. Gunasekaran, B. Cami, and J. Baratti. 1987 Transfer and expression of broad host range plasmids in Zymomonas mobilis Biotechnol. Lett. 9 13–18CrossRefGoogle Scholar
  18. Bringer, S., R. K. Finn, and H. Sahm. 1984 Effect of oxygen on the metabolism of Zymomonas mobilis Arch. Microbiol. 139 176–381CrossRefGoogle Scholar
  19. Bringer, S., H. Sahm, and W. Swyzen. 1984 Ethanol production by Zymomonas mobilis and its application on an industrial scale Biotechnol. Bioeng. Symp. 14 311–319Google Scholar
  20. Bringer-Meyer, S., M. Scollar, and H. Sahm. 1985 Zymomonas mobilis mutants blocked in fructose utilization Appl. Microbiol. Biotechnol. 23 134–139Google Scholar
  21. Bringer-Meyer, S., K.-L. Schimz, and H. Sahm. 1986 Pyruvate decarboxylase from Zymomonas mobilis: Isolation and characterization Arch. Microbiol. 146 105–110CrossRefGoogle Scholar
  22. Bringer-Meyer, S., and H. Sahm. 1988 Acetoin and phenylacetylcarbinol formation by the pyruvate decarboxylases of Zymomonas mobilis and Saccharomyces carlsbergensis Biocatalysis 1 321–331CrossRefGoogle Scholar
  23. Bringer-Meyer, S., and H. Sahm. 1988 Metabolic shifts in Zymomonas mobilis in response to growth conditions FEMS Microbiol. Rev. 54 131–142CrossRefGoogle Scholar
  24. Bringer-Meyer, S., and H. Sahm. 1993 Formation of acetyl-CoA in Zymomonas mobilis by a pyruvate dehydrogenase complex Arch. Microbiol. 159 197–199CrossRefGoogle Scholar
  25. Broers, S. T. J. 1994 Dissertation no.10978 Eidgenössische Technische Hochschule ZurichGoogle Scholar
  26. Browne, G. M., M. L. Skotnicki, A. E. Goodman, and P. L. Rogers. 1984 Transformation of Zymomonas mobilis by a hybrid plasmid Plasmid 12 211–214PubMedCrossRefGoogle Scholar
  27. Bruhn, H., M. Pohl, J. Grötzinger, and M. R. Kula. 1995 The replacement of Trp392 by alanine influences the decarboxylase/carboligase activity and stability of pyruvate decarboxylase from Zymomonas mobilis Eur. J. Biochem. 234 650–655PubMedCrossRefGoogle Scholar
  28. Buchholz, S. E., M. M. Dooley, and D. E. Eveleigh. 1987 Zymomonas—an alcoholic enigma Tibtech 5 199–204CrossRefGoogle Scholar
  29. Buchholz, S. E., P. O’Mullan, and D. E. Eveleigh. 1988 Growth of Zymomonas mobilis CP4 on mannitol Appl. Microbiol. Biotechnol. 29 275–281Google Scholar
  30. Buchholz, S. E., M. M. Dooley, and D. E. Eveleigh. 1989 Growth of Zymomonas mobilis on lactose: gene cloning in combination with mutagenesis J. Ind. Microbiol. 4 19–27CrossRefGoogle Scholar
  31. Burnett, M. E., J. Liu, and T. Conway. 1992 Molecular characterization of the Zymomonas mobilis enolase (eno) gene J. Bacteriol. 174 6548–6553PubMedGoogle Scholar
  32. Byun, M. O.-K., J. B. Kaper, and J. B. Ingram. 1986 Construction of a new vector for the expression of foreign genes in Zymomonas mobilis J. Ind. Microbiol. 1 9–15CrossRefGoogle Scholar
  33. Cabriscol, E., J. Aguilar, and J. Ros. 1994 Metal-catalyzed oxidation of Fe2+ dehydrogenases: Consensus target sequence between propanediol oxidoreductase of Escherichia coli and alcohol dehydrogenase II of Zymomonas mobilis J. Biol. Chem. 269 6592–6597Google Scholar
  34. Calhoun, M. W., K. L. Oden, R. B. Gennis, M. J. Teixeira de Mattos, and O. Neijssel, O. M. 1993 Energetic efficiency of Escherichia coli: Effects of mutations in components of the aerobic respiratory chain J. Bacteriol. 175 3020–3025PubMedGoogle Scholar
  35. Candy, J. M., and R. G. Duggleby. 1998 Structure and properties of pyruvate decarboxylase and site-directed mutagenesis of the Zymomonas mobilis enzyme Biochim. Biophys. Acta 1385 323–338PubMedCrossRefGoogle Scholar
  36. Chabriere, E., M. H. Charon, A. Volbeda, L. Pieulle, E. C. Hatchikian, and J. C. Fontecilla-Camps. 1999 Crystal structures of the key anaerobic enzyme pyruvate: Ferredoxin oxidoreductase Nat. Struct. Biol. 6 182–190PubMedCrossRefGoogle Scholar
  37. Chang, A. K., P. F. Nixon, and R. G. Duggleby. 1999 Aspartate-27 and glutamate-473 are involved in catalysis by Zymomonas mobilis pyruvate decarboxylase Biochem. J. 339 255–260PubMedCrossRefGoogle Scholar
  38. Cho, D.-W., P. L. Rogers, and S. F. Delaney. 1989 Construction of a shuttle vector for Zymomonas mobilis Appl. Microbiol. Biotechnol. 32 50–53CrossRefGoogle Scholar
  39. Conway, T., M. O.-K. Byun, and L. O. Ingram. 1987a Expression vector for Zymomonas mobilis Appl. Environ. Microbiol. 53 235–241PubMedGoogle Scholar
  40. Conway, T., Y. A. Osman, J. J. Konnan, E. M. Hoffmann, and L. O. Ingram. 1987b Promoter and nucleotide sequences of the Zymomonas mobilis pyruvate decarboxylase J. Bacteriol. 169 949–954PubMedGoogle Scholar
  41. Conway, T., G. L. Sewell, and L. O. Ingram. 1987c Glyceraldehyde-3-phosphate dehydrogenase gene from Zymomonas mobilis: cloning, sequencing, and identification of promoter region J. Bacteriol. 169 5653–5662PubMedGoogle Scholar
  42. Conway, T., G. L. Sewell, Y. A. Osman, and L. O. Ingram. 1987d Cloning and sequencing of the alcohol dehydrogenase II gene from Zymomonas mobilis J. Bacteriol. 169 2591–2597PubMedGoogle Scholar
  43. Conway, T., and L. O. Ingram. 1988 Phosphoglycerate kinase gene from Zymomonas mobilis: Cloning, sequencing, and localization within the gap operon J. Bacteriol. 170 1926–1933PubMedGoogle Scholar
  44. Conway, T., and L. O. Ingram. 1989 Similarity of Escherichia coli propanediol oxidoreductase (fucO product) and an unusual alcohol dehydrogenase from Zymomonas mobilis and Saccharomyces cerevisiae J. Bacteriol. 171 3754–3759PubMedGoogle Scholar
  45. Conway, T., R. Fliege, D. Jones-Kilpatrick, J. Liu, W. O. Barnell, and S. E. Egan. 1991 Cloning, characterization, and expression of the Zymomonas mobilis eda gene that encodes 2-keto-3-deoxy-6-phosphogluconate aldolase of the Entner-Doudoroff pathway Molec. Microbiol. 5 2901–2911CrossRefGoogle Scholar
  46. Conway, T. 1992 The Entner-Doudoroff pathway: History, physiology and molecular biology FEMS Microbiol. Rev. 103 1–28CrossRefGoogle Scholar
  47. Daugulis, A. J., P. J. McLellan, and J. Li. 1997 Experimental investigation and modeling of oscillatory behavior in the continuous culture of Zymomonas mobilis Biotechnol. Bioeng. 56 99–105PubMedCrossRefGoogle Scholar
  48. Dawes, E. A., M. Midgley, and M. Ishaq. 1970 The endogenous metabolism of anaerobic bacteria: Final technical report (Dec 1970) for Contract no. DAJA 37-67-C-0567 European Research Office US ArmyGoogle Scholar
  49. Deanda, K., M. Zhang, C. Eddy, and S. Picataggio. 1996 Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering Appl. Environ. Microbiol. 62 4465–4470PubMedGoogle Scholar
  50. Degli-Innocenti, F., E. Ferdani, B. Pesenti-Barili, M. Dani, L. Giovanetti, and S. Ventura. 1990 Identification of microbial isolates by DNA fingerprinting: Analysis of ATCC Zymomonas strains J. Biotechnol. 13 335–346CrossRefGoogle Scholar
  51. De Graaf, A. A., K. Striegel, R. M. Wittig, B. Laufer, G. Schmitz, W. Wiechert, G. A. Sprenger, and H. Sahm. 1999 Metabolic state of Zymomonas mobilis in glucose-fructose-, and xylose-fed continuous cultures as analysed by 13C and 31P-NMR spectroscopy Arch. Microbiol. 171 371–385PubMedCrossRefGoogle Scholar
  52. De Ley, J., and J. Schell. 1959 Studies on the metabolism of Acetobacter peroxidans. II: The enzyme mechanism of lactate metabolism Biochim. Biophys. Acta 35 154–165CrossRefGoogle Scholar
  53. Delgado, O. D., C. M. Abato, and F. Sineriz. 1995 Construction of an integrative shuttle vector for Zymomonas mobilis FEMS Microbiol. Lett. 132 23–26PubMedCrossRefGoogle Scholar
  54. Diefenbach, R. J., and R. J. Duggleby. 1991 Pyruvate decarboxylase from Zymomonas mobilis. Structure and re-activation of apoenzyme by the cofactors thiamin diphosphate and magnesium ion Biochem. J. 276 439–445PubMedGoogle Scholar
  55. DiMarco, A. A., and A. H. Romano. 1985 D-glucose transport system of Zymomonas mobilis Appl. Environ. Microbiol. 49 151–157PubMedGoogle Scholar
  56. Dobritzsch, D., S. König, G. Schneider, and G. Lu. 1998 High resolution crystal structure of pyruvate decarboxylase from Zymomonas mobilis J. Biol. Chem. 273 20196–20204PubMedCrossRefGoogle Scholar
  57. Doelle, H. W. 1982 Kinetic characteristics and regulatory mechanisms of glucokinase and fructokinase from Zymomonas mobilis Eur. J. Appl. Microbiol. Biotechnol. 14 241–246CrossRefGoogle Scholar
  58. Doelle, H. W., L. Kirk, R. Crittenden, H. Toh, and M. B. Doelle. 1993 Zymomonas mobilis-science and industrial application Crit. Rev. Biotech. 13 57–98CrossRefGoogle Scholar
  59. Eddy, C. K., K. D. Noel, and O. H. Smith. 1988 Isolation of auxotrophs and analysis of regulation of tryptophan biosynthesis in Zymomonas mobilis Arch. Microbiol. 149 561–564CrossRefGoogle Scholar
  60. Eddy, C. K., J. P. Mejia, T. Conway, and L. O. Ingram. 1989 Differential expression of gap and pgk genes within the gap operon of Zymomonas mobilis J. Bacteriol. 171 6549–6554PubMedGoogle Scholar
  61. Estevez, C., C. Muro, C. M. Abate, D. A. Callieri, and F. Sineriz. 1997 Improved technique for the isolation of stable mutants of Zymomonas mobilis Folia Microbiol. 42 562–564CrossRefGoogle Scholar
  62. Falcao de Morais, J. O., E. M. M. M. Rios, G. M. T. Calazans, and C. E. Lopes. 1993 Zymomonas mobilis research in the Pernambuco Federal University J. Biotechnol. 31 75–91CrossRefGoogle Scholar
  63. Fein, J. E., R. C. Charley, K. A. Hopkins, B. Lavers, and H. G. Lawford. 1983 Development of a simple defined medium for continuous ethanol production by Zymomonas mobilis Biotechnol. Lett. 5 1–6Google Scholar
  64. Feldmann, S. D., H. Sahm, and G. A. Sprenger. 1992 Pentose metabolism in Zymomonas mobilis wild-type and recombinant strains Appl. Microbiol. Biotechnol. 38 354–361CrossRefGoogle Scholar
  65. Flesch, G., and M. Rohmer. 1989 Prokaryotic triterpenoids. A novel hopanoid from the ethanol-producing bacterium Zymomonas mobilis Biochem. J. 262 673–675PubMedGoogle Scholar
  66. Gibbs, M., and R. D. DeMoss. 1954 Anaerobic dissimilation of C14-labelled glucose and fructose by Pseudomonas lindneri J. Biol. Chem. 207 689–694PubMedGoogle Scholar
  67. Glasfield, A., and S. A. Brenner. 1989 The stereospecifity of the ferrous-ion-dependent alcohol dehydrogenase from Zymomonas mobilis Eur. J. Biochem. 180 373–375CrossRefGoogle Scholar
  68. Ghommidh, C., J. Vaija, S. Bolarinwa, and J. M. Navarro. 1989 Oscillatory behavioir of Zymomonas in continuous cultures: A simple stochastic model Biotechnol. Lett. 2 659–664CrossRefGoogle Scholar
  69. Goncalves de Lima, O., J. M. De Araujo, I. E. Schumacher, and E. Cavalcanti Da Silva. 1970 Estudos de microorganismos antagonistas presentes nas bebidas fermentadas usadas pelo povo do Recife. I: Sobre uma variedade de Zymomonas mobilis (Lindner 1928, Kluyver e van Niel 1936). Zymomonas mobilis var. recifensis (Goncalves de Lima, Araujo, Schumacher, and Cavalcante 1970), isolada de bebida popular denominada “calco-de-cana picado.” Rev. Inst. Antibiot. Univ. Recife 10 3–15Google Scholar
  70. Goodman, A. E., P. L. Rogers, and M. L. Skotnicki. 1982 Minimal medium for isolation of auxotrophic Zymomonas mutants Appl. Environ. Microbiol. 44 496–498PubMedGoogle Scholar
  71. Gunasekaran, P., T. Karunakaran, B. Cami, A. G. Mukundan, L. Preziosi, and J. Baratti. 1990 Cloning and sequencing of the sacA gene: Characterization of a sucrase from Zymomonas mobilis J. Bacteriol. 172 6727–6735PubMedGoogle Scholar
  72. Gunasekaran, P., G. Mukundan, R. Kannan, S. Velmurugan, N. Ait-Abdelkader, E. Alvarez-Macarie, and J. Baratti. 1995 The sacB and sacC genes encoding levansucrase and sucrase form a gene cluster in Zymomonas mobilis Biotechnol. Lett. 17 635–642CrossRefGoogle Scholar
  73. Gunasekaran, P., and K. C. Raj. 1999 Ethanol fermentation technology—Zymomonas mobilis Curr. Sci. 77 56–68Google Scholar
  74. Halbig, D., T. Wiegert, N. Blaudeck, R. Freudl, and G. A. Sprenger. 1999 The efficient export of NADP-containing glucose-fructose oxidoreductase to the periplasm of Zymomonas mobilis depends both on an intact twin-arginine motif in the signal peptide and on the generation of a structural export signal induced by cofactor binding Eur. J. Biochem. 263 543–551PubMedCrossRefGoogle Scholar
  75. Haq, A., and E. A. Dawes. 1971 Pyruvic acid metabolism and ethanol formation in Erwinia amylovora J. Gen. Microbiol. 68 295–306PubMedCrossRefGoogle Scholar
  76. Haq, A. 1984 Occurrence of pyruvate decarboxylase in Erwinia amylovora Pakistan J. Sci. Ind. Res. 27 8–13Google Scholar
  77. Hardman, M. J., and R. K. Scopes. 1988 The kinetics of glucose-fructose oxidoreductase from Zymomonas mobilis Eur. J. Biochem. 173 203–209PubMedCrossRefGoogle Scholar
  78. Hermans, M. A., B. Neuss, and H. Sahm. 1991 Content and composition of hopanoids in Zymomonas mobilis under various growth conditions J. Bacteriol. 173 5592–5595PubMedGoogle Scholar
  79. Herz, S., J. Wungsintaweekul, C. A. Schuhr, S. Hecht, H. Lüttgen, S. Sagner, M. Fellermeier, W. Eisenreich, M. H. Zenk, A. Bacher, and F. Rodich. 2000 Biosynthesis of terpenoids: YgbB protein converts 4-diphosphocytidyl-2C-methyl-D-erythritol 2-phosphate to 2C-methyl-D-erythritol 2,4-cyclodiphosphate P.N.A.S. USA 97 2486–2490CrossRefGoogle Scholar
  80. Hesman, T. L., W. O. Barnell, and T. Conway. 1991 Cloning, characterization, and nucleotide sequence analysis of a Zymomonas mobilis phosphoglucose isomerase gene that is subject to carbon source-dependent regulation J. Bacteriol. 173 3215–3223PubMedGoogle Scholar
  81. Hoppner, T. C., and H. W. Doelle. 1983 Purification and kinetic characteristics of pyruvate decarboxylase and ethanol dehydrogenase from Zymomonas mobilis in relation to ethanol production Eur. J. Appl. Microbiol. Biotechnol. 17 152–157CrossRefGoogle Scholar
  82. Horbach, S., B. Neuss, and H. Sahm. 1991 Effect of azasqualene on hopanoid biosynthesis and ethanol tolerance of Zymomonas mobilis FEMS Microbiol. Lett. 79 347–350CrossRefGoogle Scholar
  83. Horbach, S., H. Sahm, and R. Welle. 1993 Isoprenoid biosynthesis in bacteria: Two different pathways? FEMS Microbiol. Lett. 111 135–140PubMedCrossRefGoogle Scholar
  84. Horbach, S., J. Strohhäcker, R. Welle, A. de Graaf, and H. Sahm. 1994 Enzymes involved in the formation of glycerol 3-phosphate and the by-products dihydroxyacetone and glycerol in Zymomonas mobilis FEMS Microbiol. Lett. 120 37–44CrossRefGoogle Scholar
  85. Ingram, L. O., C. K. Eddy, K. F. Mackenzie, T. Conway, and F. Alterthum. 1989 Genetics of Zymomonas mobilis and ethanol production Dev. Ind. Microbiol. 30 53–69Google Scholar
  86. Ingram, L. O., P. F. Gomez, X. Lai, M. Moniruzzaman, B. E. Wood, L. P. Yomano, and S. W. York. 1998 Metabolic engineering of bacteria for ethanol production Biotechnol. Bioeng. 58 204–214PubMedCrossRefGoogle Scholar
  87. Ingram, L. O., H. C. Alrich, A. C. C. Borges, T. B. Causey, A. Martinez, F. Morales, A. Saleh, S. A. Underwood, L. P. Yomano, S. W. York, J. Zaldivar, and S. Zhou. 1999 Enteric bacterial catalysts for fuel ethanol production Biotechnol. Prog. 15 855–866PubMedCrossRefGoogle Scholar
  88. Ishikawa, H., H. Nobayashi, and H. Tanaka. 1990 Mechanism of fermentation performance of Zymomonas mobilis under oxygen supply in batch culture J. Ferment. Bioeng. 70 34–40CrossRefGoogle Scholar
  89. Johns, M. R., P. F. Greenfield, and H. W. Doelle. 1992 Byproducts from Zymomonas mobilis Adv. Biochem. Eng. Biotechnol. 44 97–121Google Scholar
  90. Jones, C. W., and H. W. Doelle. 1991 Kinetic control of ethanol production by Zymomonas mobilis Appl. Microbiol. Biotechnol. 35 4–9CrossRefGoogle Scholar
  91. Kalnenieks, U., A. A. de Graaf, S. Bringer-Meyer, and H. Sahm. 1993 Oxidative phosphorylation in Zymomonas mobilis Arch. Microbiol. 160 74–79Google Scholar
  92. Kalnenieks, U., N. Galinina, I. Irbe, and M. Toma. 1995 Energy coupling sites in the electron transport chain of Zymomonas mobilis FEMS Microbiol. Lett. 133 99–104CrossRefGoogle Scholar
  93. Kalnenieks, U., N. Galinina, M. Toma, and I. Skards. 1996 Electron transport chain in aerobically cultivated Zymomonas mobilis FEMS Microbiol. Lett. 143 185–189CrossRefGoogle Scholar
  94. Kalnenieks, U., N. Galinina, S. Bringer-Meyer, and R. K. Poole. 1998 Membrane D-lactate oxidase in Zymomonas mobilis: Evidence for a branched respiratory chain FEMS Microbiol. Lett. 168 91–97PubMedGoogle Scholar
  95. Kanagasundaram, V., and R. K. Scopes. 1992a Cloning, sequence analysis, and expression of the structural gene encoding glucose-fructose oxidoreductase from Zymomonas mobilis J. Bacteriol. 174 1439–1447PubMedGoogle Scholar
  96. Kanagasundaram, V., and R. K. Scopes. 1992b Isolation and characterization of the gene encoding gluconolactonase from Zymomonas mobilis Biochim. Biophys. Acta 1171 198–200PubMedCrossRefGoogle Scholar
  97. Kang, H.-L., and H.-S. Kang. 1998 A physical map of the genome of ethanol fermentative bacterium Zymomonas mobilis ZM4 and localization of genes on the map Gene 206 223–228PubMedCrossRefGoogle Scholar
  98. Kannan, T. R., G. Mukundan, N. Ait-Abdelkader, V. Augier-Magro, J. Baratti, and P. Gunasekaran. 1995 Molecular cloning and characterization of the extracellular sucrase gene (sacC) of Zymomonas mobilis Arch. Microbiol. 163 195–204PubMedCrossRefGoogle Scholar
  99. Kannan, T. R., G. Sangiliyandi, and P. Gunasekaran. 1997 Influence of intra-and extracellular sucrases of Zymomonas mobilis on the ethanol production and by-product formation Biotechnol. Lett. 19 661–664CrossRefGoogle Scholar
  100. Kannenberg, E. L., and K. Poralla. 1999 Hopanoid biosynthesis and function in bacteria Naturwissenschaften 86 168–176CrossRefGoogle Scholar
  101. Karunakaran, T., and P. Gunasekaran. 1989 Isolation and characterization of recombination deficient mutants of Zymomonas mobilis Ind. J. Microbiol. 29 331–337Google Scholar
  102. Keshav, K. F., L. P. Yomano, H. An, and L. O. Ingram. 1990 Cloning of the Zymomonas mobilis structural gene encoding alcohol dehydrogenase I (adhA): Sequence comparison and expression in Escherichia coli J. Bacteriol. 172 2491–2497PubMedGoogle Scholar
  103. Kim, C. H., and S. K. Rhee. 1993 Process development for simultaneous starch saccharification and ethanol fermentation by Zymomonas mobilis Process Biochem. 28 331–339CrossRefGoogle Scholar
  104. Kim, Y. J., K. B. Song, and S. K. Rhee. 1995 A novel aerobic respiratory chain-linked NADH oxidase system in Zymomonas mobilis J. Bacteriol. 177 5176–5178PubMedGoogle Scholar
  105. Kim, I. S., K. D. Barrow, and P. L. Rogers. 2000 Kinetic and nuclear magnetic resonance studies of xylose metabolism by recombinant Zymomonas mobilis ZM4(pZB5) Appl. Environ. Microbiol. 66 186–193PubMedCrossRefGoogle Scholar
  106. King, T. E., and V. H. Cheldelin. 1954 Pyruvic oxidase of Acetobacter suboxydans J. Biol. Chem. 208 821–831PubMedGoogle Scholar
  107. Kingston, R. L., R. K. Scopes, and E. N. Baker. 1996 The structure of glucose-fructose oxidoreductase from Zymomonas mobilis: An osmoprotective periplasmic enzyme containing nondissociable NADP Structure 4 1413–1428PubMedCrossRefGoogle Scholar
  108. Kinoshita, S., T. Kakizono, K. Kadota, K. Das, and H. Taguchi. 1985 Purification of the two alcohol dehydrogenases from Zymomonas mobilis and their properties Appl. Microbiol. Biotechnol. 22 249–254CrossRefGoogle Scholar
  109. Kirk, L. A., and H. W. Doelle. 1993 Rapid ethanol production from sucrose without by-product formation Biotechnol. Lett. 15 985–990CrossRefGoogle Scholar
  110. Kluyver, A. J., and W. J. Hoppenbrouwers. 1931 Ein merkwürdiges Gärungsbakterium: Linder’s Thermoanaerobacter mobile Archiv für Mikrobiologie 2 245–260CrossRefGoogle Scholar
  111. König, S. 1998 Subunit structure, function and organisation of pyruvate decarboxylases from various organisms Biochim. Biophys. Acta 1385 271–286PubMedCrossRefGoogle Scholar
  112. Koukkou, A. I., C. Drainas, and M. Rohmer. 1996 Towards the characterization of squalene synthase activity in extracts of Zymomonas mobilis FEMS Microbiol. Lett. 140 277–280CrossRefGoogle Scholar
  113. Krishna, S. H., K. Prasanthi, G. V. Chowdary, and C. Ayyanna. 1998 Simultaneous saccharification and fermentation of pretreated sugar cane leaves to ethanol Process Biochem. 33 825–830CrossRefGoogle Scholar
  114. Kyono, K., H. Yanase, K. Tonomura, H. Kawasaki, and T. Sakai. 1995 Cloning and characterization of Zymomonas mobilis genes encoding extracellular levansucrase and invertase Biosci. Biotechnol. Biochem. 59 289–293PubMedCrossRefGoogle Scholar
  115. Lam, C. K., P. O’Mullan, and D. E. Eveleigh. 1993 Transformation of Zymomonas mobilis by electroporation Appl. Microbiol. Biotechnol. 39 305–308CrossRefGoogle Scholar
  116. Liang, C.-C., and W.-C. Lee. 1998 Characteristics and transformation of Zymomonas mobilis with plasmid pKT230 by electroporation Bioprocess Eng. 19 81–85Google Scholar
  117. Lindner, P. 1928 Gärungsstudien über Pulque in Mexiko Bericht des Westpreussischen Botanisch-Zoologischen Vereins. 50 253–255Google Scholar
  118. Lindner, P. 1931 Termobacterium mobile, ein mexikanisches Bakterium als neues Einsäuerungsbakterium für Rübenschnitzel Z. Ver. Dsch. Zuckerind. 81 25–36Google Scholar
  119. Liu, C.-Q., Goodman, A. E., and N. W. Dunn. 1988 Expression of cloned Xanthomonas D-xylose catabolic genes in Zymomonas mobilis J. Biotechnol. 7 61–70CrossRefGoogle Scholar
  120. Lloyd, F. J. 1903 Reports on the results of investigations into cider-making HMSO for the Board of Agriculture and Fisheries London 107Google Scholar
  121. Lois, L. M., N. Campos, S. R. Putra, K. Danielsen, M. Rohmer, and A. Boronat. 1998 Cloning and characterization of a gene from Escherichia coli encoding a transketolase-like enzyme that catalyzes the synthesis of D-1-deoxyxylulose 5-phosphate, a common precursor for isoprenoid, thiamin, and pyridoxol biosynthesis P.N.A.S. USA 95 2105–2110CrossRefGoogle Scholar
  122. Loos, H., M. Völler, B. Rehr, Y.-D. Stierhof, H. Sahm, and G. A. Sprenger. 1991 Localisation of the glucose-fructose oxidoreductase in wild type and overproducing strains of Zymomonas mobilis FEMS Microbiol. Lett. 84 211–216CrossRefGoogle Scholar
  123. Loos, H., R. Krämer, H. Sahm, and G. A. Sprenger. 1994 Sorbitol promotes growth of Zymomonas mobilis in environments with high concentrations of sugar: evidence for a physiological function of glucose-fructose oxidoreductase in osmoprotection J. Bacteriol. 176 7688–7693PubMedGoogle Scholar
  124. Lowe, S., and J. G. Zeikus. 1992 Purification and characterization oof pyruvate decarboxylase from Sarcina ventriculi J. Gen. Microbiol. 138 803–807PubMedCrossRefGoogle Scholar
  125. Lüttgen, H., F. Rohdich, S. Herz, J. Wungsintaweekul, S. Hecht, H. Schuhr, M. Fellermeier, S. Sagner, M. H. Zenk, A. Bacher, and W., Eisenreich. 2000 Biosynthesis of terpenoids: YchB protein of Escherichia coli phosphorylates the 2-hydroxy group of 4-diphosphocytidyl-2C-methyl-D-erythritol P.N.A.S. USA 97 1062–1067CrossRefGoogle Scholar
  126. Mackenzie, K. F., C. K. Eddy, and L. O. Ingram. 1989 Modulation of alcohol dehydrogenase isoenzyme levels in Zymomonas mobilis by iron and zinc J. Bacteriol. 171 1063–1067PubMedGoogle Scholar
  127. Meija, J. P., M. E. Burnett, H. An, W. O. Barnell, K. F. Keshav, T. Conway, and L. O. Ingram. 1992 Coordination of expression of Zymomonas mobilis glycolytic and fermentative enzymes: a simple hypothesis based on mRNA stability J. Bacteriol. 174 6438–6443Google Scholar
  128. Michel, G. P. F., B. Neuss, C. H. Tappe, and J. Baratti. 1992 Isolation and characterization of Zymomonas mobilis mutants resistant to octadecyltrimethylammonium chloride, a detergent acting on hopanoid-producing bacteria Arch. Microbiol. 157 116–124Google Scholar
  129. Michel, G. P. F. 1993 Cloning and expression in Escherichia coli of the dnaK gene of Zymomonas mobilis J. Bacteriol. 175 3228–3231PubMedGoogle Scholar
  130. Millis, N. F. 1951 Some bacterial fermentations of cider (Ph.D. thesis) University of Bristol Bristol UKGoogle Scholar
  131. Misawa, N., S. Yamano, and H. Ikenaga. 1991 Production of beta-carotene in Zymomonas mobilis and Agrobacterium tumefaciens by introduction of the biosynthesis genes from Erwinia uredovora Appl. Environ. Microbiol. 57 1847–1849PubMedGoogle Scholar
  132. Montenecourt, B. S. 1985 Zymomonas, a unique genus of bacteria In: A. L. Demain and N. A. Solomon (Eds.) Biology of Industrial Microorganisms Biotechnology Series 6 261–289Google Scholar
  133. Moreau, R. A., M. J. Powell, W. F. Fett, and B. D. Whitaker. 1997 The effect of ethanol and oxygen on the growth of Zymomonas mobilis and the levels of hopanoids and other membrane lipids Curr. Microbiol. 35 124–128PubMedCrossRefGoogle Scholar
  134. Neale, A. D., R. K. Scopes, J. M. Kelly, and R. E. H. Wettenhall. 1986 The two alcohol dehydrogenases of Zymomonas mobilis Eur. J. Biochem. 154 119–124PubMedCrossRefGoogle Scholar
  135. Neale, A. D., R. K. Scopes, R. E. H. Wettenhall, and N. J. Hoogenraad. 1987 Pyruvate decarboxylase of Zymomonas mobilis: Isolation, properties, and genetic expression in Escherichia coli J. Bacteriol. 169 1024–1028PubMedGoogle Scholar
  136. Neveling, U., S. Bringer-Meyer, and H. Sahm. 1998a Gene and subunit organization of bacterial pyruvate dehydrogenase complexes Biochim. Biophys. Acta 1385 367–372PubMedCrossRefGoogle Scholar
  137. Neveling, U., R. Klasen, S. Bringer-Meyer, and H. Sahm. 1998b Purification of the pyruvate dehydrogenase multienzyme complex of Zymomonas mobilis and identification and sequence analysis of the corresponding genes J. Bacteriol. 180 1540–1548PubMedGoogle Scholar
  138. Neveling, U., S. Bringer-Meyer, and H. Sahm. 1999 Exceptional characteristics of heterotetrameric (α2β2) E1p of the pyruvate dehydrogenase complex from Zymomonas mobilis: Expression from an own promotor and a lipoyl domain in E1β FEMS Microbiol. Lett. 177 117–121PubMedGoogle Scholar
  139. Ogale, S. S., and D. N. Deobagkar. 1988 A high molecular weight plasmid of Zymomonas mobilis harbours genes for HgCl2 resistance Biotechnol. Lett. 10 43–48CrossRefGoogle Scholar
  140. Okamoto, T., and K. Nakamura. 1992 Simple and efficient transformation method for Zymomonas mobilis: electroporation Biosci. Biotechnol. Biochem. 56 833CrossRefGoogle Scholar
  141. O’Mullan, P. J., T. Chase Jr., and D. E. Eveleigh. 1992 Purification and some properties of extracellular invertase B from Zymomonas mobilis Appl. Microbiol. Biotechnol. 38 341–346Google Scholar
  142. O’Mullan, P. J., F. E. Buchholz, T. Chase Jr., and D. E. Eveleigh. 1995 Roles of alcohol dehydrogenases of Zymomonas mobilis (ZADH): Characterization of a ZADH-2-negative mutant Appl. Microbiol. Biotechnol. 43 675–678CrossRefGoogle Scholar
  143. Osman, Y. A., T. Conway, S. J. Bonetti, and L. O. Ingram. 1987 Glycolytic flux in Zymomonas mobilis: Enzyme and metabolite levels during batch fermentation J. Bacteriol. 169 3726–3736PubMedGoogle Scholar
  144. Ostovar, K., and P. G. Keeney. 1973 Isolation and characterization of microorganisms involved in the fermentation of Trinidad’s cocoa beans J. Food Sci. 38 611–617CrossRefGoogle Scholar
  145. Pankova, L. M., Y. E. Shvinka, M. E. Beker, and E. E. Slava. 1985 Effect of aeration on Zymomonas mobilis metabolism Mikrobiologiya 54 141–145Google Scholar
  146. Pappas, K.-M., I. Galani, and M. A. Typas. 1997 Transposon mutagenesis and strain construction in Zymomonas mobilis J. Appl. Microbiol. 82 379–388PubMedCrossRefGoogle Scholar
  147. Parker, C., W. O. Barnell, J. L. Snoep, L. O. Ingram, and T. Conway. 1995 Characterization of the Zymomonas mobilis glucose facilitator gene product (glf) in recombinant Escherichia coli: examination of transport mechanism, kinetics and the role of glukokinase in glucose transport Molec. Microbiol. 15 795–802CrossRefGoogle Scholar
  148. Parker, C., N. Peekhaus, X. Zhang, and T. Conway. 1997 Kinetics of sugar transport and phosphorylation influence glucose and fructose cometabolism by Zymomonas mobilis Appl. Environ. Microbiol. 63 3519–3525PubMedGoogle Scholar
  149. Pawluk, A., R. K. Scopes, and K. Griffiths-Smith. 1986 Isolation and properties of the glycolytic enzymes from Zymomonas mobilis: The five enzymes from glyceraldehyde-3-phosphate dehydrogenase through to pyruvate kinase Biochem. J. 238 275–281PubMedGoogle Scholar
  150. Peekhaus, N., B. Tolner, B. Poolman, and R. Krämer. 1995 The glutamate uptake regulatory protein (Grp) of Zymomonas mobilis and its relation to the global regulator LRP of Escherichia coli J. Bacteriol. 177 5140–5147PubMedGoogle Scholar
  151. Peekhaus, N., and R. Krämer. 1996 The gluEMP operon from Zymomonas mobilis encodes a high-affinity glutamate carrier with similarity to binding-protein-dependent transport systems Arch. Microbiol. 165 325–332PubMedCrossRefGoogle Scholar
  152. Pencreac’h, G., N. Ait-Abdelkader, F. Joset, and J. C. Baratti. 1996 D-cycloserine biases enrichment for auxotrophic mutants of Zymomonas mobilis FEMS Microbiol. Lett. 142 167–171PubMedGoogle Scholar
  153. Perzl, M., I. G. Reipen, S. Schmitz, K. Poralla, H. Sahm, G. A. Sprenger, and E. L. Kannenberg. 1998 Cloning of conserved genes from Zymomonas mobilis and Bradyrhizobium japonicum with putative function in the biosynthesis of hopanoid lipids Biochim. Biophys. Acta 1393 108–118PubMedCrossRefGoogle Scholar
  154. Pohl, M. 1997 Protein design on pyruvate decarboxylase (PDC) by site-directed mutagenesis Adv. Biochem. Eng. Biotechnol. 58 15–43PubMedGoogle Scholar
  155. Reed, L. J., and J. Hackert. 1990 Structure-function relationships in dihydrolipoamide acetyltransferases J. Biol. Chem. 265 8971–8974PubMedGoogle Scholar
  156. Rehr, B., C. Wilhelm, and H. Sahm. 1991 Production of sorbitol and gluconic acid by permeabilized cells of Zymomonas mobilis Appl. Microbiol. Biotechnol. 35 144–148CrossRefGoogle Scholar
  157. Reid, F. M., and C. A. Fewson. 1994 Molecular characterization of microbial alcohol dehydrogenases Crit. Rev. Microbiol. 20 13–56PubMedCrossRefGoogle Scholar
  158. Reipen, I. G., K. Poralla, H. Sahm, and G. A. Sprenger. 1995 Zymomonas mobilis squalene-hopene cyclase gene (shc): Cloning, DNA sequence analysis, and expression in Escherichia coli Microbiology 141 155–161PubMedCrossRefGoogle Scholar
  159. Rellos, P., J. Ma, and R. K. Scopes. 1997 Alteration of substrate specificity of Zymomonas mobilis alcohol dehydrogenase-2 using in vitro random mutagenesis Protein Express. Purif. 9 83–90CrossRefGoogle Scholar
  160. Rellos, P., L. Pinheiro, and R. K. Scopes. 1998 Thermostable variants of Zymomonas mobilis alcohol dehydrogenase obtained using PCR-mediated random mutagenesis Protein Express. Purif. 12 61–66CrossRefGoogle Scholar
  161. Reynen, M., and H. Sahm. 1988 Comparison of the structural genes for pyruvate decarboxylase in different Zymomonas mobilis strains J. Bacteriol. 170 3310–3313PubMedGoogle Scholar
  162. Reynen, M., I. Reipen, H. Sahm, and G. A. Sprenger. 1990 Construction of expression vectors for the gram-negative bacterium Zymomonas mobilis Mol. Gen. Genet. 223 335–341PubMedCrossRefGoogle Scholar
  163. Rogers, P. L., K. J. Lee, M. L. Skotnicki, and D. E. Tribe. 1982 Ethanol production by Zymomonas mobilis Adv. Biochem. Eng. 23 27–84Google Scholar
  164. Rohdich, H., J. Wungsintaweekul, M. Fellermeier, S. Sagner, S. Herz, K. Kis, W. Eisenreich, A. Bacher, and M. H. Zenk. 1999 Cytidine 5’-triphosphate-dependent biosynthesis of isoprenoids: YgbP protein of Escherichia coli catalyzes the formation of 4-diphosphocytidyl-2C-methylerythritol P.N.A.S. USA 96 11758–11763CrossRefGoogle Scholar
  165. Rohmer, M., B. Sutter, and H. Sahm. 1989 Bacterial sterol surrogates: Biosynthesis of the side-chain of bacteriohopanetetrol and of carbocyclic pseudopentose from 13C-labelled glucose in Zymomonas mobilis J. Chem. Soc. Chem. Commun. 1471–1472Google Scholar
  166. Rohmer, M., M. Knani, P. Simonin, B. Sutter, and H. Sahm. 1993 Isoprenoid biosynthesis in bacteria: A novel pathway for the early steps leading to isopentenyl diphosphate Biochem. J. 295 517–524PubMedGoogle Scholar
  167. Rohmer, M., M. Seemann, S. Horbach, S. Bringer-Meyer, and H. Sahm. 1996 Glyceraldehyde 3-phosphate and pyruvate as precursors of isoprenic units in an alternative non-mevalonate pathway for terpenoid biosynthesis J. Am. Chem. Soc. 118 2564–2566CrossRefGoogle Scholar
  168. Rohmer, M. 1999 The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants Nat. Prod. Rep. 16 565–574PubMedCrossRefGoogle Scholar
  169. Ruiz-Argueso, T., and A. Rodriguez-Navarro. 1975 Microbiology of ripening honey Appl. Microbiol. 30 893–896PubMedGoogle Scholar
  170. Sahm, H., S. Bringer-Meyer, and G. Sprenger. 1992 The genus Zymomonas In: A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K. H. Schleifer (Eds.) [{}The Prokaryotes (2nd ed.)] III(112) Springer-Verlag New York NY 2287–2301Google Scholar
  171. Sahm, H., M. Rohmer, S. Bringer-Meyer, G. A. Sprenger, and R. Welle. 1993 Biochemistry and physiology of hopanoids in bacteria Adv. Microb. Physiol. 35 247–273PubMedCrossRefGoogle Scholar
  172. Sangiliyandi, G., K. C. Raj, and P. Gunasekaran. 1999 Elevated temperature and chemical modification selectively abolishes levan forming activity of levansucrase of Zymomonas mobilis Biotechnol. Lett. 21 179–182CrossRefGoogle Scholar
  173. Sargent, F., E. G. Bogsch, N. R. Stanley, M. Wexler, C. Robinson, B. C. Berks, and T. Palmer. 1998 Overlapping functions of components of bacterial Sec-independent protein export pathway EMBO J. 17 3640–3650PubMedCrossRefGoogle Scholar
  174. Sawers, G., and G. Watson. 1998 A glycyl radical solution: Oxygen-dependent interconversion of pyruvate formate lyase Molec. Microbiol. 29 945–954CrossRefGoogle Scholar
  175. Schoberth, S. M., and A. A. de Graaf. 1993 Use of in vivo 13C nuclear magnetic resonance spectroscopy to follow sugar uptake in Zymomonas mobilis Anal. Biochem. 210 123–128PubMedCrossRefGoogle Scholar
  176. Schoberth, S. M., B. E. Chapman, P. W. Kuchel, R. M. Wittig, J. Grotendorst, P. Jansen, and A. A. de Graaf. 1996 Ethanol transport in Zymomonas mobilis measured by using in vivo nuclear magnetic resonance spin transfer J. Bacteriol. 178 1756–1761PubMedGoogle Scholar
  177. Scopes, R. K. 1984 Use of differential dye-ligand chromatography with affinity elution for enzyme purification: 2-keto-3-desoxy-6-phosphogluconate aldolase from Zymomonas mobilis Anal. Biochem. 136 525–529PubMedCrossRefGoogle Scholar
  178. Scopes, R. K., and K. Griffiths-Smith. 1984 Use of differential dye-ligand chromatography with affinity elution for enzyme purification: 6-phosphogluconate dehydratase from Zymomonas mobilis Anal. Biochem. 136 530–534PubMedCrossRefGoogle Scholar
  179. Scopes, R. K. 1985a 6-Phosphogluconolactonase from Zymomonas mobilis: An enzyme of high catalytic efficiency FEBS Lett. 193 185–188CrossRefGoogle Scholar
  180. Scopes, R. K., V. Testolin, A. Stoter, K. Griffiths-Smith, and E. M. Algar. 1985b Simultaneous purification and characterization of glucokinase, fructokinase and glucose-6-phosphate dehydrogenase from Zymomonas mobilis Biochem. J. 228 627–634PubMedGoogle Scholar
  181. Scopes, R. K., and K. Griffiths-Smith. 1986 Fermentation capabilities of Zymomonas mobilis glycolytic enzymes Biotechnol. Lett. 8 653–656CrossRefGoogle Scholar
  182. Scopes, R. K., and D. R. Bannon. 1995 Kinetic analysis of the activation of Zymomonas mobilis glucokinase by phosphate Biochim. Biophys. Acta 1249 173–179PubMedCrossRefGoogle Scholar
  183. Scopes, R. K. 1997 Allosteric control of Zymomonas mobilis glucose-6-phosphate dehydrogenase by phosphoenolpyruvate Biochem. J. 326 731–735PubMedGoogle Scholar
  184. Scordaki, A., and C. Drainas. 1987 Analysis of natural plasmids of Zymomonas mobilis ATCC 10988 J. Gen. Microbiol. 133 2547–2556Google Scholar
  185. Shigeri, Y., T. Nishino, N. Yumoto, and M. Tokushige. 1991 Hopanoid biosynthesis of Zymomonas mobilis Agric. Biol. Chem. 55 589–591CrossRefGoogle Scholar
  186. Shimwell, J. L. 1937 Study of a new type of beer disease bacterium (Achromobacter anaerobium sp. nov.) producing alcoholic fermentation of glucose J. Inst. Brew. London 43 501–509Google Scholar
  187. Silveira, M. M., E. Wisbeck, C. Lemmel, G. Erzinger, J. P. Lopes da Costa, M. Bertasso, and R. Jonas. 1999 Bioconversion of glucose and fructose to sorbitol and gluconic acid by untreated cells of Zymomonas mobilis J. Biotechnol. 75 99–103PubMedCrossRefGoogle Scholar
  188. Skotnicki, M. L., K. J. Lee, D. E. Tribe, and P. L. Rogers. 1982 Genetic alteration of Zymomonas mobilis for ethanol production In: A. Hollaender (Ed.) Genetic Engineering of Microorganisms for Chemicals Basic Life Science 19 271–290Google Scholar
  189. Snoep, J. L., N. Arfman, L. P. Yomano, R. K. Fliege, T. Conway, and L. O. Ingram. 1994 Reconstitution of glucose uptake and phosphorylation in a glucose-negative mutant of Escherichia coli by using Zymomonas mobilis genes encoding the glucose facilitator protein and glucokinase J. Bacteriol. 176 2133–2135PubMedGoogle Scholar
  190. Snoep, J. L., L. P. Yomano, H. V. Westerhoff, and L. O. Ingram. 1995 Protein burden in Zymomonas mobilis: negative flux and growth control due to the overproduction of glycolytic enzymes Microbiology 141 2329–2337CrossRefGoogle Scholar
  191. Snoep, J. L., N. Arfman, L. P. Yomano, H. V. Westerhoff, T. Conway, and L. O. Ingram. 1996 Control of glycolytic flux in Zymomonas mobilis by glucose 6-phosphate dehydrogenase activity Biotech. Bioeng. 51 190–197CrossRefGoogle Scholar
  192. Song, K.-B., H.-K. Joo, and S.-K. Rhee. 1993 Nucleotide sequence of levansucrase gene (levU) of Zymomonas mobilis ZM1 (ATCC10988) Biochim. Biophys. Acta 1173 320–324PubMedCrossRefGoogle Scholar
  193. Song, K.-B., J.-W. Seo, and S.-K. Rhee. 1999 Transcriptional analysis of levU operon encoding saccharolytic enzymes and two apparent genes involved in amino acid biosynthesis in Zymomonas mobilis Gene 232 107–114PubMedCrossRefGoogle Scholar
  194. Sprenger, G. A. 1993 Approaches to broaden the substrate and product range of the ethanologenic bacterium Zymomonas mobilis by genetic engineering J. Biotechnol. 27 225–237CrossRefGoogle Scholar
  195. Sprenger, G. A., M. A. Typas, and C. Drainas. 1993 Genetics and genetic engineering of Zymomonas mobilis World J. Microbiol. Biotechnol. 9 17–24CrossRefGoogle Scholar
  196. Sprenger, G. A. 1996 Carbohydrate metabolism in Zymomonas mobilis: A catabolic highway with some scenic routes FEMS Microbiol. Lett. 145 301–307CrossRefGoogle Scholar
  197. Sprenger, G. A., U. Schörken, T. Wiegert, S. Grolle, A. de Graaf, S. V. Taylor, T. P. Begley, S. Bringer-Meyer, and H. Sahm. 1997 Identification of a thiamin-dependent synthase in Escherichia coli required for the formation of the 1-deoxy-D-xylulose 5-phosphate precursor to isoprenoids, thiamin, and pyridoxol P.N.A.S. USA 94 12857–12862CrossRefGoogle Scholar
  198. Sprenger, G. A., and J. Swings. in press Genus Zymomonas In: G. M. Garrity (Ed.) [{}Bergey’s Manual of Systematic Bacteriology] 2Google Scholar
  199. Steiner, P., M. Fussenegger, J. E. Bailey, and U. Sauer. 1998 Cloning and expression of the Zymomonas mobilis pyruvate kinase gene in Escherichia coli Gene 220 31–38PubMedCrossRefGoogle Scholar
  200. Stephenson, M. P., and E. A. Dawes. 1971 Pyruvic acid and formic acid metabolism in Sarcina ventriculi and the role of ferredoxin J. Gen. Microbiol. 69 331–343PubMedCrossRefGoogle Scholar
  201. Stokes, H. W., E. L. Dally, M. D. Yablonsky, and D. E. Eveleigh. 1983 Comparison of plasmids in strains of Zymomonas mobilis Plasmid 9 138–146PubMedCrossRefGoogle Scholar
  202. Strohdeicher, M., B. Schmitz, S. Bringer-Meyer, and H. Sahm. 1988 Formation and degradation of gluconate by Zymomonas mobilis Appl. Microbiol. Biotechnol. 27 378–382CrossRefGoogle Scholar
  203. Strohdeicher, M., B. Neuß, S. Bringer-Meyer, and H. Sahm. 1990 Electron transport chain of Zymomonas mobilis Arch. Microbiol. 154 536–543CrossRefGoogle Scholar
  204. Strohhäcker, J., A. A. de Graaf, S. M. Schoberth, R. M. Wittig, and H. Sahm. 1993 31P nuclear magnetic resonance studies of ethanol inhibition in Zymomonas mobilis Arch. Microbiol. 159 484–490CrossRefGoogle Scholar
  205. Struch, T., B. Neuss, S. Bringer-Meyer, and H. Sahm. 1991 Osmotic adjustment of Zymomonas mobilis to concentrated glucose solutions Appl. Microbiol. Biotechnol. 34 518–523CrossRefGoogle Scholar
  206. Strzelecki, A. T., A. E. Goodman, J. M. Watson, and P. L. Rogers. 1993 Stability and expression of a cloned α-glucosidase gene in Zymomonas mobilis grown in batch and continuous culture Biotechnol. Lett. 15 679–684CrossRefGoogle Scholar
  207. Su, P., and A. E. Goodman. 1987 High frequency transformation of Zymomonas mobilis by plasmid DNA J. Biotechnol. 6 247–258CrossRefGoogle Scholar
  208. Sun, S., R. G. Duggleby, and R. L. Schowen. 1995 Linkage of catalysis and regulation in enzyme action: Carbon isotope effects, solvent isotope effects, and proton inventories for the unregulated pyruvate decarboxylase of Zymomonas mobilis J. Am. Chem. Soc. 117 7317–7322CrossRefGoogle Scholar
  209. Suntinanalert, P., J. P. Pemberton, and H. W. Doelle. 1986 The production of ethanol plus fructose sweetener using fructose utilization negative mutants of Zymomonas mobilis Biotechnol. Lett. 8 351–356CrossRefGoogle Scholar
  210. Swings, J. 1974 Taxonomie van het bakteriengeslacht Zymomonas Kluyver and van Niel 1936 (Doktoraatsthesis) Fak. Landbouwwetenschappen, Katholieke Universiteit Leuven Leuven BelgiumGoogle Scholar
  211. Swings, J., and J. De Ley. 1977 The biology of Zymomonas Bacteriol. Rev. 41 1–46PubMedGoogle Scholar
  212. Tahara, Y., and M. Kawazu. 1994 Isolation of glucuronic acid-containing glycosphingolipid from Zymomonas mobilis Biosci. Biotechnol. Biochem. 58 586–587CrossRefGoogle Scholar
  213. Takahashi, S., T. Kuzuyama, H. Watanabe, and H. Seto. 1998 A 1-deoxy-D-xylulose 5-phosphate reductoisomerase catalyzing the formation of 2-C-methyl-D-erythritol 4-phosphate in an alternative nonmevalonate pathway for terpenoid biosynthesis P.N.A.S. USA 95 9879–9884CrossRefGoogle Scholar
  214. Tamarit, J., E. Cabiscol, J. Aguilar, and J. Ros. 1997 Differential inactivation of alcohol dehydrogenase isoenzymes in Zymomonas mobilis by oxygen J. Bacteriol. 179 1102–1104PubMedGoogle Scholar
  215. Toh, H., and H. Doelle. 1997 Changes in the growth and enzyme level of Zymomonas mobilis under oxygen-limited conditions at low glucose concentration Arch. Microbiol. 168 46–52PubMedCrossRefGoogle Scholar
  216. Tonomura, K., N. Kurose, S. Konishi, and H. Kawasaki. 1982 Occurrence of plasmids in Zymomonas mobilis Agric. Biol. Chem. 46 2851–2853CrossRefGoogle Scholar
  217. Tornabene, T. G., G. Holzer, A. S. Bittner, and K. Grohmann. 1982 Characterization of the total extractable lipids of Zymomonas mobilis var. mobilis Can. J. Microbiol. 28 1107–1118CrossRefGoogle Scholar
  218. Typas, M. A., and I. Galani. 1992 Chemical and UV mutagenesis in Zymomonas mobilis Genetica 87 37–45CrossRefGoogle Scholar
  219. Uhlenbusch, I., H. Sahm, and G. A. Sprenger. 1991 Expression of an L-alanine dehydrogenase gene in Zymomonas mobilis and excretion of L-alanine Appl. Environ. Microbiol. 57 1360–1366PubMedGoogle Scholar
  220. Vaija, H. J., C. Ghommidh, and J. M. Navarro. 1993 Zymomonas mobilis cell viability: measurement method comparison Ant. v. Leeuwenhoek 64 57–66CrossRefGoogle Scholar
  221. Viikari, L. 1988 Carbohydrate metabolism in Zymomonas CRC Crit. Rev. Biotech. 7 237–261CrossRefGoogle Scholar
  222. Walia, S. K., V. C. Carey, B. P. All 3rd, and L. O. Ingram. 1984 Self-transmissible plasmid in Zymomonas mobilis carrying antibiotic resistance Appl. Environ. Microbiol. 47 198–200PubMedGoogle Scholar
  223. Wecker, M. S. A., and R. R. Zall. 1987 Production of acetaldehyde by Zymomonas mobilis Appl. Environ. Microbiol. 53 2815–2820PubMedGoogle Scholar
  224. Weisser, P., R. Krämer, H. Sahm, and G. A. Sprenger. 1995 Functional expression of the glucose transporter of Zymomonas mobilis leads to restoration of glucose and fructose uptake in Escherichia coli mutants and provides evidence for its facilitator action J. Bacteriol. 177 3351–3354PubMedGoogle Scholar
  225. Weisser, P., R. Krämer, and G. A. Sprenger. 1996 Expression of the Escherichia coli pmi gene encoding phosphomannose-isomerase in Zymomonas mobilis leads to utilization of mannose as a novel growth substrate which can be used as a selective marker Appl. Environ. Microbiol. 62 4155–4161PubMedGoogle Scholar
  226. Weuster-Botz, D. 1993 Continuous ethanol production by Zymomonas mobilis in a fluidized bed reactor. Part I: kinetic studies of immobilization in macroporous glass beads Appl. Microbiol. Biotechnol. 39 679–684CrossRefGoogle Scholar
  227. Weuster-Botz, D., A. Aivasides, and C. Wandrey. 1993 Continuous ethanol production by Zymomonas mobilis in a fluidized bed reactor. Part II: process development for the fermentation of hydrolysed B-starch without sterilization Appl. Microbiol. Biotechnol. 39 685–690CrossRefGoogle Scholar
  228. White, D. C., S. D. Sutton, and D. B. Ringelberg. 1993 The genus Sphingomonas: Physiology and ecology Curr. Opin. Biotechnol. 7 301–306CrossRefGoogle Scholar
  229. Wiegert, T., H. Sahm, and G. A. Sprenger. 1996 Export of the periplasmic NADP-containing glucose-fructose oxidoreductase of Zymomonas mobilis Arch. Microbiol. 166 32–41PubMedCrossRefGoogle Scholar
  230. Wiegert, T., H. Sahm, and G. A. Sprenger. 1997 Expression of the Zymomonas mobilis gfo gene for NADP-containing glucose-fructose oxidoreductase (GFOR) in Escherichia coli Eur. J. Biochem. 244 107–112PubMedCrossRefGoogle Scholar
  231. Wills, C., P. Kratofil, D. Londo, and T. Martin. 1981 Characterization of the two alcohol dehydrogenases of Zymomonas mobilis Arch. Biochem. Biophys. 210 775–785PubMedCrossRefGoogle Scholar
  232. Yablonsky, M. D., A. E. Goodman, N. Stevnsborg, O. Goncalves de Lima, J. O. Falcao de Morais, H. G. Lawford, P. L. Rogers, and D. E. Eveleigh. 1988 Zymomonas mobilis CP4: A clarification of strains via plasmid profiles J. Biotechnol. 9 71–80CrossRefGoogle Scholar
  233. Yanase, H., T. Kotani, and K. Tonomura. 1986 Transformation of Zymomonas mobilis with plasmid DNA Agric. Biol. Chem. 50 3139–3144CrossRefGoogle Scholar
  234. Yanase, H., H. Fukushi, N. Ueda, Y. Maeda, A. Toyoda, and K. Tonomura. 1991 Cloning, sequencing, and characterization of the intracellular invertase gene in Zymomonas mobilis Agric. Biol. Chem. 55 1383–1390PubMedCrossRefGoogle Scholar
  235. Yanase, H., M. Iwata, R. Nakahigashi, K. Kita, N. Kato, and K. Tonomura. 1992 Purification, crystallization, and properties of the extracellular levansucrase from Zymomonas mobilis Biosci. Biotechnol. Biochem. 56 1335–1337CrossRefGoogle Scholar
  236. Yanase, H., and N. Kato. 1994 Strain improvement of Zymomonas mobilis for ethanol production Bioprocess Technology 19 723–739PubMedGoogle Scholar
  237. Yanase, H., M. Iwata, K. Kita, N. Kato, and K. Tonomura. 1995 Purification, crystallization, and properties of the extracellular invertase from Zymomonas mobilis J. Ferment. Bioeng. 79 367–369CrossRefGoogle Scholar
  238. Yanase, H., J. Fujimoto, M. Maeda, K. Okamoto, K. Kita, and K. Tonumura. 1998 Expression of the extracellular levansucrase and invertase genes from Zymomonas mobilis in Escherichia coli cells Biosci. Biotechnol. Biochem. 62 1802–1805PubMedCrossRefGoogle Scholar
  239. Yomano, L. P., R. K. Scopes, and L. O. Ingram. 1993 Cloning, sequencing, and expression of the Zymomonas mobilis phosphoglycerate mutase gene (pgm) in Escherichia coli J. Bacteriol. 175 3926–3933PubMedGoogle Scholar
  240. Zachariou, M., and R. K. Scopes. 1986 Glucose-fructose oxidoreductase, a new enzyme isolated from Zymomonas mobilis that is responsible for sorbitol production J. Bacteriol. 167 863–869PubMedGoogle Scholar
  241. Zembrzuski, B., P. Chilco, X.-L. Liu, J. Liu, T. Conway, and R. K. Scopes. 1992 Cloning, sequencing, and expression of the Zymomonas mobilis fructokinase gene and structural comparison of the enzyme with other hexose kinases J. Bacteriol. 174 3455–3460PubMedGoogle Scholar
  242. Zhang, M., C. Eddy, K. Deanda, M. Finkelstein, and S. Picataggion. 1995 Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis Science 267 240–243PubMedCrossRefGoogle Scholar
  243. Zikmanis, P., R. Kruce, and L. Auzina. 1997 An elevation of the molar growth yield of Zymomonas mobilis during aerobic exponential growth Arch. Microbiol. 167 167–171CrossRefGoogle Scholar
  244. Zikmanis, P., R. Kruce, and L. Auzina. 1999 Molar growth yields of Zymomonas mobilis on glucose after the transition from anaerobic to aerobic continuous growth Acta Biotechnol. 19 69–75CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Hermann Sahm
  • Stephanie Bringer-Meyer
  • Georg A. Sprenger

There are no affiliations available

Personalised recommendations