Advertisement

Thermoplasmatales

  • Harald Huber
  • Karl O. Stetter
Reference work entry

Introduction

The order Thermoplasmatales (Reysenbach, 2001) is represented by facultatively anaerobic, thermoacidophilic, autotrophic or heterotrophic organisms that are unique among the Archaea both by their morphology and by their phylogenetic position. So far, the order harbors three families, each represented by one genus: the Thermoplasmaceae (genus Thermoplasma; Darland et al., 1970), the Picrophilaceae (genus Picrophilus; Schleper et al., 1995), and the recently described Ferroplasmaceae (genus Ferroplasma; Golyshina et al., 2000), formerly named Ferromonas metallovorans.

Thermoplasma spp. are devoid of a cell wall or envelope. For that reason, the genus Thermoplasma, which was for a long time (until 1995) the only member of the group, was first considered to be associated with the (bacterial) mycoplasmas (Darland et al., 1970; Masover and Hayflick, 1981). However, results of 16S rRNA sequence analyses revealed that Thermoplasma was a member of the archaeal domain (Woese and...

Keywords

Meat Extract Acidithiobacillus Ferrooxidans Tetraether Lipid Coccoid Form Sole Energy Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Balch, W. E., G. E. Fox, L. J. Magrum, C. R. Woese, and R. S. Wolfe. 1979 Methanogens: Reevaluation of a unique biological group Microbiol. Rev. 43 260–296PubMedPubMedCentralGoogle Scholar
  2. Belly, R. T., B. B. Bohlool, and T. D. Brock. 1973 The genus Thermoplasma Ann. NY Acad. Sci. 225 94–107CrossRefGoogle Scholar
  3. Black, F. T., E. A. Freundt, O. Vinther, and C. Christiansen. 1979 Flagellation and swimming motility of Thermoplasma acidophilum J. Bacteriol. 137 456–460PubMedPubMedCentralGoogle Scholar
  4. Bohlool, B. B., and T. D. Brock. 1974 Immunofluorescence approach to the study af the ecology of Thermoplasma acidophilum in coal refuse material Appl. Microbiol. 28 11–16PubMedPubMedCentralGoogle Scholar
  5. Bond, P. L., G. K. Druschel, and J. F. Banfield. 2000 Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems Appl. Microbiol. 66 4962–4971CrossRefGoogle Scholar
  6. Brierley, C. L., and J. A. Brierley. 1973 A chemolithoautotrophic and thermophilic microorganism isolated from an acidic hot spring Can. J. Microbiol. 19 183–188CrossRefPubMedGoogle Scholar
  7. Brock, T. D. 1978 Thermophilic Microorganisms and Life at High Temperatures Springer-Verlag New YorkCrossRefGoogle Scholar
  8. Budgen, N., and M. J. Danson. 1986 Metabolism of glucose via a modified Entner-Doudoroff pathway in the thermoacidophilic archaebacterium Thermoplasma acidophilum FEBS Lett. 196 207–210CrossRefGoogle Scholar
  9. Burton, N. B., and P. R. Norris. 2000 Microbiology of acidic, geothermal springs of Montserrat: Environmental rDNA analysis Extremophiles 4 315–320CrossRefPubMedGoogle Scholar
  10. Christiansen, C., E. A. Freundt, and F. T. Black. 1975 Genome size and deoxyribonucleic acid base composition of Thermoplasma acidophilum Int. J. Syst. Bacteriol. 25 99–101CrossRefGoogle Scholar
  11. Collins, M. D., and T. A. Langworthy. 1983 Respiratory quinone composition of some acidophilic bacteria Syst. Appl. Microbiol. 4 295–304CrossRefPubMedGoogle Scholar
  12. Darland, G., T. D. Brock, W. Samsonoff, and S. F. Conti. 1970 A thermophilic acidophilic Mycoplasma isolated from a coal refuse pile Science 170 1416–1418CrossRefPubMedGoogle Scholar
  13. Darland, G., and T. D. Brock. 1971 Bacillus acidocaldarius sp. nov., an acidophilic, thermophilic sporeforming bacterium J. Gen. Microbiol. 67 9–15CrossRefGoogle Scholar
  14. DeLange, R. J., L. C. Williams, and D. G. Searcy. 1981 A histone-like protein (HTa) from Thermoplasma acidophilum. II: Complete amino acid sequence J. Biol. Chem. 256 905–911PubMedGoogle Scholar
  15. Ditzel, L., J. Löwe, D. Stock, K. O. Stetter, H. Huber, R. Huber, and S. Steinbacher. 1998 Crystal structure of the thermosome, the archael chaperonin and homolog of CCT Cell 93 125–138CrossRefPubMedGoogle Scholar
  16. Edwards, K. J., M. O. Schrenk, R. Hamers, and J. F. Banfield. 1998 Microbial oxidation of pyrite: Experiments using microorganisms from an extreme acidic enviroment Am. Mineral. 83 1444–1453CrossRefGoogle Scholar
  17. Edwards, K. J., P. L. Bond, T. M. Gihring, and J. F. Banfield. 2000 An archaeal iron-oxidizing extreme acidophile important in acid mine drainage Science 287 1796–1799CrossRefPubMedGoogle Scholar
  18. Geitler, L., and F. Ruttner. 1936 Die Cyanophyceen der Deutschen Limnologischen Sunda-Expedition Arch. Hydrobiol. Suppl. XIV 308–481Google Scholar
  19. Golyshina, O. V., T. A. Pivovarova, G. I. Karavaiko, T. F. Kondrat’eva, E. R. B. Moore, W.-R. Abraham, H. Lünsdorf, K. N. Timmis, M. M. Yakimov, and P. N Golyshin. 2000 Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea Int. J. System. Evol. Microbiol. 50 997–1006CrossRefGoogle Scholar
  20. Grossebüter, W., and H. Görisch. 1985 Partial purification and properties of citrate synthases from the thermoacidophilic archaebacteria Thermoplasma acidophilum and Sulfolobus acidocaldarius Syst. Appl. Microbiol. 6 119–124CrossRefGoogle Scholar
  21. Grossebüter, W., T. Hartl, H. Görisch, and J. J. Stezowski. 1986 Purification and properties of malate dehydrogenase from the thermoacidophilic archaebacterium Thermoplasma acidophilum Biol. Chem. Hoppe-Seyler 367 457–463CrossRefPubMedGoogle Scholar
  22. Gutsche, I., O. Mihalache, and W. Baumeister. 2000 ATPase cycle of an archaeal chaperonin J. Molec. Biol. 300 187–196CrossRefPubMedGoogle Scholar
  23. Holländer, R., G. Wolf, and W. Mannheim. 1977 Lipo-quinones of some bacteria and mycoplasmas, with consideration an their functional significance Ant. v. Leeuwenhoek 43 177–185CrossRefGoogle Scholar
  24. Holländer, R. 1978 The cytochromes of Thermoplasma acidophilum J. Gen. Microbiol. 108 165–168CrossRefGoogle Scholar
  25. Hsung, J. C., and A. Haug. 1975 Intracellular pH of Thermoplasma acidophila Biochim. Biophys. Acta 389 477–482CrossRefPubMedGoogle Scholar
  26. Huber, R., S. Burggraf, T. Mayer, S. M. Barns, P. Rossnagel, and K. O. Stetter. 1995 Isolation of a hyperthermophilic archaeum predicted by in situ RNA analysis Nature 367 57–58CrossRefGoogle Scholar
  27. Kawashima, T., N. Amano, H. Koike, S. Makino, S. Higuchi, Y. Kawashima-Ohya, K. Watanabe, M. Yamazaki, K. Kanehori, T. Kawamoto, T. Nunoshiba, Y. Yamamoto, H. Aramaki, K. Makino, and M. Suzuki. 2000 Archael adaptation to higher temperatures revealed by genomic sequence of Thermoplasma volcanium Proc. Natl. Acad. Sci. USA 97 14257–14262CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kelly, D. P., and A. P. Wood. 2000 Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halobacillus gen. nov. and Thermithiobacillus gen. nov Int. J. Syst. Evol. Microbiol. 50 511–516CrossRefPubMedGoogle Scholar
  29. Langworthy, T. A. 1977 Long-chain diglycerol tetraethers from Thermoplasma acidophilum Biochim. Biophys. Acta 487 37–50CrossRefPubMedGoogle Scholar
  30. Langworthy, T. A., T. G. Tornabene, and G. Holzer. 1982 Lipids of archaebacteria Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1, Orig. Reihe C3 228–244Google Scholar
  31. Langworthy, T. A. 1985 Lipids of archaebacteria In: C. R. Woese and R. S. Wolfe (Eds.) The Bacteria Academic Press Orlando, FL 8 459–497Google Scholar
  32. Langworthy, T. A., and J. L. Pond. 1986 Archaebacterial ether lipids and chemotaxanomy Syst. Appl. Microbiol. 7 253–275CrossRefGoogle Scholar
  33. Langworthy, T. A., and P. F. Smith. 1989 Group IV: Cell wall-less archaeobacteria In: J. T. Staley, M. P. Bryant, N. Pfennig, and J. G. Holt (Eds.) Bergey’s Manual of Systematic Bacteriology Williams and Wilkins Baltimore, MD 3 2233–2236Google Scholar
  34. Lin, X.-L., and R. H. White. 1986 Occurrence of coenzyme F420 and its γ-monoglutamyl derivative in nonmethanogenic archaebacteria J. Bacteriol. 168 444–448CrossRefPubMedPubMedCentralGoogle Scholar
  35. Londei, P., S. Altamura, P. Cammarano, and L. Petrucci. 1986 Differential features of ribosomes and of poly(U)-programmed cell-free systems derived from sulphur-dependent archaebacterial species Eur. J. Biochem. 157 455–462CrossRefPubMedGoogle Scholar
  36. Ludwig, W, and O. Strunk. 1997 ARB: A software environment for sequence dataGoogle Scholar
  37. Masover, G., and L. Hayflick. 1981 The genera Mycoplasma, Ureaplasma, and Acholeplasma, and associated organisms (Thermoplasmas and Anaeroplasmas) In: M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel (Eds.) Springer-Verlag Berlin 2 2247–2270Google Scholar
  38. Mayberry-Carson, K. J., T. A. Langworthy, W. R. Mayberry, and P. F. Smith. 1974 A new class of lipopolysaccharide from Thermoplasma acidophilum Biochim. Biophys. Acta 360 217–229CrossRefPubMedGoogle Scholar
  39. Nitsch, M., M. Klumpp, A. Lupas, and W. Baumeister. 1997 The thermosome: Alternating alpha and beta-subunits within the chaperonin of the archaeon Thermoplasma acidophilum J. Molec. Biol. 267 142–149CrossRefPubMedGoogle Scholar
  40. Ohba, M., and T. Oshima. 1982 Some biochemical properties of the DNA synthesizing machinery of acidothermophilic archaebacteria isolated from Japanese hot springs In: O. Kandler (Ed.) Archaebacteria G. Fischer Verlag Stuttgart, Germany 353Google Scholar
  41. Reysenbach, A.-L. 2001 Order “Thermoplasmatales”; ord. nov In: G. Garrity (Ed.) Bergey’s Manual of Systematic Bacteriology, 2nd ed. Springer-Verlag New York, NY 1 35Google Scholar
  42. Ruepp, A., W. Graml, M.-L. Santos-Martinez, K. K. Koretke, C. Volker, H. W. Mewes, D. Frishman, S. Stocker, A. N. Lupas, and W. Baumeister. 2000 The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum Nature 407 508–513CrossRefPubMedGoogle Scholar
  43. Schleifer, K.-H., and E. Stackebrandt. 1983 Molecular systematics of prokaryotes Ann. Rev. Microbiol. 37 143–187CrossRefGoogle Scholar
  44. Schleper, C., G. Puehler, I. Holz, A. Gambacorta, D. Janekovic, U. Santarius, H.-P. Klenk, and W. Zillig. 1995 Picrophilus gen. nov., fam. nov.: A novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0 Int. J. Syst. Bacteriol. 177 7050–7059CrossRefGoogle Scholar
  45. Schleper, C., G. Pühler, H.-P. Klenk, and W. Zillig. 1996 Picrophilus oshimae and Picrophilus torridus fam. nov., gen. nov., sp. nov., two species of hyperacidophilic, thermophilic, heterotrophic, aerobic archaea Int. J. Syst. Bacteriol. 46 814–816CrossRefGoogle Scholar
  46. Searcy, D. G. 1975a Histon.e-like protein in the prokaryote Thermoplasma acidophilum Biochim. Biophys. Acta 395 535–547CrossRefPubMedGoogle Scholar
  47. Searcy, D. G., and E. K. Doyle. 1975b Characterization of Thermoplasma acidophilum deoxyribonucleic acid Int. J. Syst. Bacteriol. 25 286–289CrossRefGoogle Scholar
  48. Searcy, D. G. 1976 Thermoplasma acidophilum: Intracellular pH and potassium concentration Biochim. Biophys. Acta 451 278–286CrossRefPubMedGoogle Scholar
  49. Searcy, D. G., and R. J. DeLange. 1980 Thermoplasma acidophilum histone like protein: Partial amino acid sequence suggestive of homology to eukaryotic histones Biochim. Biophys. Acta 609 197–200CrossRefPubMedGoogle Scholar
  50. Searcy, D. G., and F. R. Whatley. 1982 Thermoplasma acidophilum cell membrane: Cytochrome b and sulfate-stimulated ATPase Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1, Orig. Reihe C3 245–247Google Scholar
  51. Searcy, D. G., and F. R. Whatley. 1984 Thermoplasma acidophilum: Glucose degradative pathways and respiratory activities Syst. Appl. Microbiol. 5 30–40CrossRefGoogle Scholar
  52. Seemüller, E., A. Lupas, D. Stock, J. Löwe, R. Huber, and W. Baumeister. 1995 Proteasome from Thermoplasma acidophilum: A threonine protease Science 268 579–582CrossRefPubMedGoogle Scholar
  53. Segerer, A., A. Neuner, J. K. Kristjansson, and K. O. Stetter. 1986b Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov.: Facultatively aerobic, extremely acidophilic, thermophilic sulfur-metabolizing archaebacteria Int. J. Syst. Bacteriol. 36 559–564CrossRefGoogle Scholar
  54. Segerer, A., K. O. Stetter, and F. Klink. 1986b Novel facultatively aerobic sulfur-dependent archaebacteria In: O. Kandler and W. Zillig (Eds.) Archaebacteria G. Fischer Verlag Stuttgart, Germany 430Google Scholar
  55. Segerer, A., T. A. Langworthy, and K. O. Stetter. 1988 Thermoplasma acidophilum and Thermoplasma volcanium sp. nov. from solfatara fields Syst. Appl. Microbiol. 10 161–171CrossRefGoogle Scholar
  56. Segerer, A. H., and K. O. Stetter. 1992a The genus Thermoplasma In: A. Balows, H. G. Trüper, M. Dvorkin, W. Harder, and K.-H. Schleifer (Eds.) The Prokaryotes, 2nd ed. Springer-Verlag New York, NY 712–718Google Scholar
  57. Segerer, A. H., and K. O. Stetter. 1992b The order Sulfolobales In: A. Balows, H. G. Trüper, M. Dvorkin, W. Harder, and K.-H. Schleifer (Eds.) The Prokaryotes, 2nd ed. Springer-Verlag New York, NY 684–701Google Scholar
  58. Shimada, H., Y. Shida, N. Nemoto, T. Oshima, and A. Yamagishi. 2001 Quinone profiles of Thermoplasma acidophilum HO-62 J. Bacteriol. 183 1462–1465CrossRefPubMedPubMedCentralGoogle Scholar
  59. Silverman, M. P., and D. G. Lundgren. 1959 Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans. 1: An improved medium and harvesting procedure for securing high cell yields J. Bacteriol. 77 642–647PubMedPubMedCentralGoogle Scholar
  60. Smith, P. F., T. A. Langworthy, and M. R. Smith. 1975 Polypeptide nature of growth requirement in yeast extract for Thermoplasma acidophilum J. Bacteriol. 124 884–892PubMedPubMedCentralGoogle Scholar
  61. Smith, P. F. 1980 Sequence and glycosidic bond arrangement of sugars in lipopolysaccharide from Thermoplasma acidophilum Biochim. Biophys. Acta 619 367–373CrossRefPubMedGoogle Scholar
  62. Stetter, K. O., and W. Zillig. 1985 Thermoplasma and the sulfur-dependent archaebacteria In: C. R. Woese and R. S. Wolfe (Eds.) The Bacteria Academic Press Orlando, FL 8 85–170Google Scholar
  63. Sturm, S., V. Schönefeld, W. Zillig, D. Janekovic, and K. O. Stetter. 1980 Structure and function of the DNA-dependent RNA polymerase of the archaebacterium Thermoplasma acidophilum Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1, Orig. Reihe C1 12–25Google Scholar
  64. Tansey, M. R., and T. D. Brock. 1973 Dactylaria gallopava, a cause of avian encephalitis, in hot spring effluents, thermal soils and self-heated coal waste piles Nature 242 202–203CrossRefPubMedGoogle Scholar
  65. Uda, I., A. Sugai, K. Kon, S. Ando, Y. H. Itoh, and T. Itoh. 1999 Isolation and characterization of novel neutral glycolipids from Thermoplasma acidophilum Biochim. Biophys. Acta 1439 363–370CrossRefPubMedGoogle Scholar
  66. van de Vossenberg, J. L. C. M., A. J. M. Driessen, W. Zillig, and W. N. Konings. 1998 Bioenergetics and cytoplasmic membrane stability of the extremely acidophilic, thermophilic archaeon Picrophilus oshimae Extremophiles 2 67–74CrossRefPubMedGoogle Scholar
  67. Vásquez, M., E. R. B. Moore, R. T. Espejo. 1999 Detection by polymerase chain reaction-amplification and sequencing of an archaeon in a commercial-scale copper bioleaching plant FEMS Microbiol. Lett. 173 183–187CrossRefGoogle Scholar
  68. Woese, C. R., and G. E. Fox. 1977 Phylogenetic structure of the prokaryotic domain: The primary kingdoms Proc. Natl. Acad. Sci. USA 74 5088–5090CrossRefPubMedPubMedCentralGoogle Scholar
  69. Woese, C. R., J. Maniloff, and L. B. Zablen. 1980 Phylogenetic analysis of the mycoplasmas Proc. Natl. Acad. Sci. USA 77 494–498CrossRefPubMedPubMedCentralGoogle Scholar
  70. Woese, C. R., O. Kandler, and M. L. Wheelis. 1990 Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria and Eucarya Proc. Natl. Acad. Sci. USA 87 4576–4579CrossRefPubMedPubMedCentralGoogle Scholar
  71. Wolf, S., F. Lottspeich, and W. Baumeister. 1993 Ubiquitin found in the archaebacterium Thermoplasma acidophilum FEBS Lett. 326 42–44CrossRefPubMedGoogle Scholar
  72. Yang, L. L., and A. Haug. 1979 Purification and partial characterization of a prokaryote glycoprotein from the plasma membrane of Thermoplasma acidophilum Biochim. Biophys. Acta 556 265–277CrossRefPubMedGoogle Scholar
  73. Yang, D., B. P. Kaine, and C. R. Woese. 1985 The phylogeny of archaebacteria Syst. Appl. Microbiol. 6 251–256CrossRefGoogle Scholar
  74. Zillig, W., R. Schnabel, J. Tu, and K. O. Stetter. 1982 The phylogeny of archaebacteria, including novel anaerobic thermoacidophiles, in the light of RNA polymerase structure Naturwissenschaften 69 197–204CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Harald Huber
  • Karl O. Stetter

There are no affiliations available

Personalised recommendations