Advertisement

The Order Thermococcales

  • Costanzo Bertoldo
  • Garabed Antranikian
Reference work entry

Among the hyperthermophilic archaea, representatives of order Thermococcales form the most numerous group to date. Members of this group are the most frequently isolated hyperthermophiles. They are heterotrophic and as such regarded as the major constituents of organic matter within marine hot water ecosystems (Canganella et al., 1997). They belong to the branch of Euryarchaeota that contains the methanogens, the genus Thermoplasma, and the extremely halophilic archaea. The Thermococcales order is actually represented by three genera: Pyrococcus (Fiala and Stetter, 1986), Thermococcus (Achenbach-Richter et al., 1988) and the newly described Paleococcus (Takai et al., 2000). Phylogenetic analysis based on 16 rDNA sequences indicates that the Paleococcus strains are members of an ancient lineage of Thermococcales that diverged prior to the formation of the genera Pyrococcus and Thermococcus (Takai et al., 2000). These three genera include at present 38 species: 2 belonging to the genus Paleococcus...

Keywords

Okinawa Trough Optimal Growth Temperature Shallow Marine Environment Ferredoxin Oxidoreductase Hyperthermophilic Archaea 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Achenbach-Richter, L., R. Gupta, W. Zillig, and C. R. Woese. 1988 Rooting the archaebacterial tree: The pivotal role of Thermococcus celer in archaebacterial evolution Syst. Appl. Microbiol. 10 231–240CrossRefPubMedGoogle Scholar
  2. Adams, M. W., J. F. Holden, A. L. Menon, G. J. Schut, A. M. Grunden, C. Hou, A. M. Hutchins, F. E. Jenney Jr., C. Kim, K. Ma, G. Pan, R. Roy, R. Sapra, S. V. Story, and M. F. Verhagen. 2001 Key role for sulfur in peptide metabolism and in regulation of three hydrogenases in the hyperthermophilic archaeon Pyrococcus furiosus J. Bacteriol. 183(2) 716–724CrossRefGoogle Scholar
  3. Arab, H., H. Volker, and M. Thomm. 2000 Thermococcus aegaeicus sp. nov. and Staphylothermus hellenicus sp. nov., two novel hyperthermophilic archaea isolated from geothermally heated vents off Palaeochori Bay, Milos, Greece Int. J. Syst. Evol. Microbiol. 50 Pt 6 2101–2108CrossRefPubMedGoogle Scholar
  4. Balch, W. E., G. E. Fox, L. J. Magrum, C. R. Woese, and R. S. Wolfe. 1979 Methanogens: Reevaluation of a unique biological group Microbiol. Rev. 43(2) 260–296Google Scholar
  5. Barbier, G., A. Godfroy, J. R. Meunier, J. Querellou, M. A. Cambon, F. Lesongeur, P. A. Grimont, and G. Raguenes. 1999 Pyrococcus glycovorans sp. nov., a hyperthermophilic archaeon isolated from the East Pacific Rise Int. J. Syst. Bacteriol. 49 Pt 4 1829–1837CrossRefPubMedGoogle Scholar
  6. Bertoldo, C., and G. Antranikian. 2002 Starch-hydrolyzing enzymes from thermophilic archaea and bacteria Curr. Opin. Chem Biol. 2 151–160CrossRefGoogle Scholar
  7. Biller, K. F., I. Kato, and H. Markl. 2002 Effect of glucose, maltose, soluble starch, and CO2 on the growth of the hyperthermophilic archaeon Pyrococcus furiosus Extremophiles 6(2) 161–166Google Scholar
  8. Blamey, J. M., and M. W. Adams. 1993 Purification and characterization of pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus Biochim. Biophys. Acta 1161(1) 19–27CrossRefGoogle Scholar
  9. Blamey, J., M. Chiong, C. Lopez, and E. Smith. 1999 Optimization of the growth conditions of the extremely thermophilic microorganisms Thermococcus celer and Pyrococcus woesei J. Microbiol. Meth. 38(1–2) 169–175CrossRefGoogle Scholar
  10. Blumentals, I. I., S. H. Brown, R. N. Schicho, A. K. Skaja, H. R. Costantino, and R. M. Kelly. 1990 The hyperthermophilic archaebacterium, Pyrococcus furiosus. Development of culturing protocols, perspectives on scaleup, and potential applications Ann. NY Acad. Sci. 589 301–314CrossRefPubMedGoogle Scholar
  11. Bohlke, K., F. M. Pisani, M. Rossi, and G. Antranikian. 2002 Archaeal DNA replication: Spotlight on a rapidly moving field Extremophiles 6(1) 1–14Google Scholar
  12. Britton, K. L., P. J. Baker, K. M. Borges, P. C. Engel, A. Pasquo, D. W. Rice, F. T. Robb, R. Scandurra, T. J. Stillman, and K. S. Yip. 1995 Insights into thermal stability from a comparison of the glutamate dehydrogenases from Pyrococcus furiosus and Thermococcus litoralis Eur. J. Biochem. 229(3) 688–695CrossRefGoogle Scholar
  13. Cambon-Bonavita, M. A., F. Lesongeur, P. Pignet, N. Wery, C. Lambert, A. Godfroy, J. Querellou, and G. Barbier. 2003 Extremophiles, thermophily section, species description Thermococcus atlanticus sp. nov., a hyperthermophilic Archaeon isolated from a deep-sea hydrothermal vent in the Mid-Atlantic Ridge Extremophiles 7(2) 101–109Google Scholar
  14. Canganella, F., J. M. Gonzalez, M. Yanagibayashi, C. Kato, and K. Horikoshi. 1997a Pressure and temperature effects on growth and viability of the hyperthermophilic archaeon Thermococcus peptonophilus Arch. Microbiol. 168(1) 1–7CrossRefGoogle Scholar
  15. Canganella, F., W. J. Jones, A. Gambacorta, and G. Antranikian. 1997b Biochemical and phylogenetic characterization of two novel deep-sea Thermococcus isolates with potentially biotechnological applications Arch. Microbiol. 167(4) 233–238CrossRefGoogle Scholar
  16. Canganella, F., W. J. Jones, A. Gambacorta, and G. Antranikian. 1998 Thermococcus guaymasensis sp. nov. and Thermococcus aggregans sp. nov., two novel thermophilic archaea isolated from the Guaymas Basin hydrothermal vent site Int. J. Syst. Bacteriol. 48 Pt 4 1181–1185CrossRefPubMedGoogle Scholar
  17. Cohen, G. N., V. Barbe, D. Flament, M. Galperin, R. Heilig, O. Lecompte, O. Poch, D. Prieur, J. Querellou, R. Ripp, J. C. Thierry, J. Van der Oost, J. Weissenbach, Y. Zivanovic, and P. Forterre. 2003 An integrated analysis of the genome of the hyperthermophilic archaeon Pyrococcus abyssi Molec. Microbiol. 47(6) 1495–1512CrossRefGoogle Scholar
  18. Costantino, H. R., S. H. Brown, and R. M. Kelly. 1990 Purification and characterization of an alpha-glucosidase from a hyperthermophilic archaebacterium, Pyrococcus furiosus, exhibiting a temperature optimum of 105 to 115 degrees C J. Bacteriol. 172(7) 3654–3660CrossRefGoogle Scholar
  19. De Vos, W. M., S. W. Kengen, W. G. Voorhorst, and J. Van der Oost. 1998 Sugar utilization and its control in hyperthermophiles Extremophiles 2 201–205CrossRefPubMedGoogle Scholar
  20. Diederichs, K., J. Diez, G. Greller, C. Muller, J. Breed, C. Schnell, C. Vonrhein, W. Boos, and W. Welte. 2000 Crystal structure of MalK, the ATPase subunit of the trehalose/maltose ABC transporter of the archaeon Thermococcus litoralis EMBO J. 19(22) 5951–5961CrossRefGoogle Scholar
  21. Dirmeier, R., M. Keller, D. Hafenbradl, F. J. Braun, R. Rachel, S. Burggraf, and K. O. Stetter. 1998 Thermococcus acidaminovorans sp. nov., a new hyperthermophilic alkalophilic archaeon growing on amino acids Extremophiles 2(2) 109–114Google Scholar
  22. Duffaud, G. D., O. B. d’Hennezel, A. S. Peek, A. L. Reysenbach, and R. M. Kelly. 1998 Isolation and characterization of Thermococcus barossii, sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal vent flange formation Syst. Appl. Microbiol. 21(1) 40–49CrossRefGoogle Scholar
  23. Erauso, G., Reysenbach, A. L., Godfroy, A., Meunier, J. R., Crump, B., Partensky, F., Baross, J. A., Marteinsson, V., Barbier, G., Pace, N. R., and Prieur, D. 1993 Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermalvent Arch. Microbiol. 160 338–349CrossRefGoogle Scholar
  24. Fiala, G., and K. O. Stetter. 1986 Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C Arch. Microbiol. 145 56–61CrossRefGoogle Scholar
  25. Godfroy, A., J. R. Meunier, J. Guezennec, F. Lesongeur, G. Raguénès, A. Rimbault, and G. Barbier. 1996 Thermococcus fumicolans sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent in the north Fiji Basin Int. J. Syst. Evol. Microbiol. 46(4) 1113–1119Google Scholar
  26. Godfroy, A., F. Lesongeur, G. Raguenes, J. Querellou, E. Antoine, J. R. Meunier, J. Guezennec, and G. Barbier. 1997 Thermococcus hydrothermalis sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Int J. Syst. Bacteriol. 47 622–626CrossRefGoogle Scholar
  27. Gonzalez, J. M., C. Kato, and K. Horikoshi. 1995 Thermococcus peptonophilus sp. nov., a fast-growing, extremely thermophilic archaebacterium isolated from deep-sea hydrothermal vents Arch. Microbiol. 164(3) 159–164CrossRefGoogle Scholar
  28. Gonzalez, J. M., Y. Masuchi, F. T. Robb, J. W. Ammerman, D. L. Maeder, M. Yanagibayashi, J. Tamaoka, and C. Kato. 1998 Pyrococcus horikoshii sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal vent at the Okinawa Trough Extremophiles 2(2) 123–130Google Scholar
  29. Gonzalez, J. M., D. Sheckells, M. Viebahn, D. Krupatkina, K. M. Borges, and F. T. Robb. 1999 Thermococcus waiotapuensis sp. nov., an extremely thermophilic archaeon isolated from a freshwater hot spring Arch. Microbiol. 172(2) 95–101Google Scholar
  30. Greller, G., R. Horlacher, J. DiRuggiero, and W. Boos. 1999 Molecular and biochemical analysis of MalK, the ATP-hydrolyzing subunit of the trehalose/maltose transport system of the hyperthermophilic archaeon Thermococcus litoralis J. Biol. Chem. 274(29) 20259–20264CrossRefGoogle Scholar
  31. Greller, G., R. Riek, and W. Boos. 2001 Purification and characterization of the heterologously expressed trehalose/maltose ABC transporter complex of the hyperthermophilic archaeon Thermococcus litoralis Eur. J. Biochem. 268(14) 4011–4018CrossRefGoogle Scholar
  32. Grote, R., L. Li, J. Tamaoka, C. Kato, K. Horikoshi, and G. Antranikian. 1999 Thermococcus siculi sp. nov., a novel hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent at the Mid-Okinawa Trough Extremophiles 3(1) 55–62CrossRefGoogle Scholar
  33. Gruyer, S., E. Legin, C. Bliard, S. Ball, and F. Duchiron. 2002 The endopolysaccharide metabolism of the hyperthermophilic archeon Thermococcus hydrothermalis: Polymer structure and biosynthesis Curr. Microbiol. 44(3) 206–211CrossRefGoogle Scholar
  34. Heider, J., X. Mai, and M. W. Adams. 1996 Characterization of 2-ketoisovalerate ferredoxin oxidoreductase, a new and reversible coenzyme A-dependent enzyme involved in peptide fermentation by hyperthermophilic archaea J. Bacteriol. 178(3) 780–787CrossRefGoogle Scholar
  35. Higgins, D. G., J. D. Thompson, and T. J. Gibson. 1996 Using CLUSTAL for multiple sequence alignments Meth. Enzymol. 266 383–402CrossRefPubMedGoogle Scholar
  36. Holden, J. F., and J. A. Baross. 1993 Enhanced thermotolerance and temperature-induced changes in protein composition in the hyperthermophilic archaeon ES4 J. Bacteriol. 175(10) 2839–2843CrossRefGoogle Scholar
  37. Horlacher, R., K. B. Xavier, H. Santos, J. DiRuggiero, M. Kossmann, and W. Boos. 1998 Archaeal binding protein-dependent ABC transporter: Molecular and biochemical analysis of the trehalose/maltose transport system of the hyperthermophilic archaeon Thermococcus litoralis J. Bacteriol. 180(3) 680–689Google Scholar
  38. Huber, R., J. Stöhr, S. Hohenhaus, R. Rachel, S. Burggraf, H. W. Jannasch, and K. O. Stetter. 1996 Thermococcus chitonophagus sp. nov., a novel, chitin-degrading, hyperthermophilic archaeum from a deep-sea hydrothermal vent environment Arch. Microbiol. 64 255–264Google Scholar
  39. Kawarabayasi, Y., M. Sawada, H. Horikawa, Y. Haikawa, Y. Hino, S. Yamamoto, M. Sekine, S. Baba, H. Kosugi, A. Hosoyama, Y. Nagai, M. Sakai, K. Ogura, R. Otsuka, H. Nakazawa, M. Takamiya, Y. Ohfuku, T. Funahashi, T. Tanaka, Y. Kudoh, J. Yamazaki, N. Kushida, A. Oguchi, K. Aoki, and H. Kikuchi. 1998 Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3 DNA Res. 5(2) 55–76CrossRefGoogle Scholar
  40. Kawarabayasi, Y. 2001 Genome of Pyrococcus horikoshii OT3 Meth. Enzymol. 330 124–134CrossRefPubMedGoogle Scholar
  41. Keller, M., F. J. Braun, R. Dirmeier, D. Hafenbradl, S. Burggraf, R. Rachel, and K. O. Stetter. 1995 Thermococcus alcaliphilus sp. nov., a new hyperthermophilic archaeum growing on polysulfide at alkaline pH Arch. Microbiol. 164(6) 390–395CrossRefGoogle Scholar
  42. Kengen, S. W., E. J. Luesink, A. J. Stams, and A. J. Zehnder. 1993 Purification and characterization of an extremely thermostable beta-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus Eur. J. Biochem. 213(1) 305–312CrossRefGoogle Scholar
  43. Kengen, S. W., F. A. de Bok, N. D. van Loo, C. Dijkema, A. J. Stams, and W. M. de Vos. 1994 Evidence for the operation of a novel Embden-Meyerhof pathway that involves ADP-dependent kinases during sugar fermentation by Pyrococcus furiosus J. Biol. Chem. 269(26) 17537–17541Google Scholar
  44. Kobayashi, T., Y. S. Kwak, T. Akiba, T. Kudo, and K. Horikoshi. 1994 Thermococccus profundus sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent Syst. Appl. Microbiol. 17 232–236CrossRefGoogle Scholar
  45. Koning, S. M., M. G. Elferink, W. N. Konings, and A. J. Driessen. 2001 Cellobiose uptake in the hyperthermophilic archaeon Pyrococcus furiosus is mediated by an inducible, high-affinity ABC transporter J. Bacteriol. 183(17) 4979–4984CrossRefGoogle Scholar
  46. Krahe, M., G. Antranikian, and H. Märkl. 1996 Fermentation of extremophilic microorganisms FEMS Microbiol. Rev. 18 271–285CrossRefGoogle Scholar
  47. Kwak, Y. S., T. Kobayashi, T. Akiba, K. Horikoshi, and Y. B. Kim. 1995 A hyperthermophilic sulfur-reducing archaebacterium, Thermococcus sp. DT1331, isolated from a deep-sea hydrothermal vent Biosci. Biotechnol. Biochem. 59(9) 1666–1669CrossRefGoogle Scholar
  48. Lattuati, A., J. Guezennec, P. Metzger, and C. Largeau. 1998 Lipids of Thermococcus hydrothermalis, an archaea isolated from a deep-sea hydrothermal vent Lipids 33(3) 319–326CrossRefGoogle Scholar
  49. Lecompte, O., R. Ripp, V. Puzos-Barbe, S. Duprat, R. Heilig, J. Dietrich, J. C. Thierry, and O. Poch. 2001 Genome evolution at the genus level: Comparison of three complete genomes of hyperthermophilic archaea Genome Res. 11(6) 981–993CrossRefGoogle Scholar
  50. Lévêque, E., S. Janeek, and H. B. Belarbi. 2000 Thermophilic archaeal amylolytic enzymes Enz. Microb. Technol. 1 3–14CrossRefGoogle Scholar
  51. Maeder, D. L., R. B. Weiss, D. M. Dunn, J. L. Cherry, J. M. Gonzalez, J. DiRuggiero, and F. T. Robb. 1999 Divergence of the hyperthermophilic archaea Pyrococcus furiosus and P. horikoshii inferred from complete genomic sequences Genetics 152(4) 1299–1305Google Scholar
  52. Mai, X., and M. W. Adams. 1994 Indolepyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus. A new enzyme involved in peptide fermentation J. Biol. Chem. 269(24) 16726–16732Google Scholar
  53. Mai, X., and M. W. Adams. 1996 Purification and characterization of two reversible and ADP-dependent acetyl coenzyme A synthetases from the hyperthermophilic archaeon Pyrococcus furiosus J. Bacteriol. 178(20) 5897–5903CrossRefGoogle Scholar
  54. Marteinsson, V. T., J. L. Birrien, A. L. Reysenbach, M. Vernet, D. Marie, A. Gambacorta, P. Messner, U. B. Sleytr, and D. Prieur. 1999 Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent Int. J. Syst. Bacteriol. 49 Pt 2 351–359CrossRefPubMedGoogle Scholar
  55. Miroshnichenko, M. L., E. A. Bonch-Osmolovskaya, A. Neuner, N. A. Kostrikina, N. A. Chernych, and V. A. Alekseev. 1989 Thermococcus stetteri sp. nov., a new extremely thermophilic marine sulfur-metabolizing archaebacterium Syst. Appl. Microbiol. 12 257–262CrossRefGoogle Scholar
  56. Miroshnichenko, M. L., G. M. Gongadze, F. A. Rainey, A. S. Kostyukova, A. M. Lysenko, N. A. Chernyh, and E. A. Bonch-Osmolovskaya. 1998 Thermococcus gorgonarius sp. nov. and Thermococcus pacificus sp. nov.: Heterotrophic extremely thermophilic archaea from New Zealand submarine hot vents Int. J. Syst. Bacteriol. 48 Pt 1 23–29CrossRefPubMedGoogle Scholar
  57. Miroshnichenko, M. L., H. Hippe, E. Stackebrandt, N. A. Kostrikina, N. A. Chernyh, C. Jeanthon, T. N. Nazina, S. S. Belyaev, and E. A. Bonch-Osmolovskaya. 2001 Isolation and characterization of Thermococcus sibiricus sp. nov. from a Western Siberia high-temperature oil reservoir Extremophiles 5(2) 85–91CrossRefGoogle Scholar
  58. Morikawa, M., Y. Izawa, N. Rashid, T. Hoaki, and T. Imanaka. 1994 Purification and characterization of a thermostable thiol protease from a newly isolated hyperthermophilic Pyrococcus sp Appl. Environ. Microbiol. 60(12) 4559–4566Google Scholar
  59. Neuner, A., H. W. Jannasch, S. Belkinn, and K. O. Stetter. 1990 Thermococcus litoralis sp. nov.: S new species of extremely thermophilic marine archaebacterium Arch. Microbiol. 153 205–207CrossRefGoogle Scholar
  60. Niehaus, F., C. Bertoldo, M. Kahler, and G. Antranikian. 1999 Extremophiles as a source of novel enzymes for industrial application Appl. Microbiol. Biotechnol. 51(6) 711–729CrossRefGoogle Scholar
  61. Ronimus, R. S., A. Reysenbach, D. R. Musgrave, and H. W. Morgan. 1997 The phylogenetic position of the Thermococcus isolate AN1 based on 16S rRNA gene sequence analysis: A proposal that AN1 represents a new species, Thermococcus zilligii sp. nov Arch. Microbiol. 168(3) 245–258CrossRefGoogle Scholar
  62. Ronimus, R. S., J. Koning, and H. W. Morgan. 1999 Purification and characterization of an ADP-dependent phosphofructokinase from Thermococcus zilligii Extremophiles 3(2) 121–129CrossRefGoogle Scholar
  63. Ronimus, R. S., E. de Heus, and H. W. Morgan. 2001 Sequencing, expression, characterisation and phylogeny of the ADP-dependent phosphofructokinase from the hyperthermophilic, euryarchaeal Thermococcus zilligii Biochim. Biophys. Acta 1517(3) 384–391CrossRefGoogle Scholar
  64. Roy, R., S. Mukund, G. J. Schut, D. M. Dunn, R. Weiss, and M. W. Adams. 1999 Purification and molecular characterization of the tungsten-containing formaldehyde ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus: The third of a putative five-member tungstoenzyme family J. Bacteriol. 181(4) 1171–1180Google Scholar
  65. Schönheit, P., and T. Schäfer. 1995 Metabolism of hyperthermophiles World J. Microbiol. Biotechnol. 11 26–57CrossRefPubMedGoogle Scholar
  66. Selig, M., K. B. Xavier, H. Santos, and P. Schonheit. 1997 Comparative analysis of Embden-Meyerhof and Entner-Doudoroff glycolytic pathways in hyperthermophilic archaea and the bacterium Thermotoga Arch. Microbiol. 167(4) 217–232CrossRefGoogle Scholar
  67. Southworth, M. W., H. Kong, R. B. Kucera, J. Ware, H. W. Jannasch, and P. F. B. 1996 Cloning of thermostable DNA polymerases from hyperthermophilic marine Archaea with emphasis on Thermococcus sp. 9°N-7 and mutations affecting 3’-5’ exonuclease activity PNAS 93 5281–5285CrossRefPubMedPubMedCentralGoogle Scholar
  68. Stetter, K. O. 1996 Hyperthermophiles in the history of life CIBA Found. Symp. 202 1–10; discussion 11–8PubMedGoogle Scholar
  69. Sunna, A., M. Moracci, M. Rossi, and G. Antranikian. 1997 Glycosyl hydrolases from hyperthermophiles Extremophiles 1(1) 2–13CrossRefGoogle Scholar
  70. Takahata, Y., T. Hoaki, and T. Maruyama. 2001 Starvation survivability of Thermococcus strains isolated from Japanese oil reservoirs Arch. Microbiol. 176(4) 264–270CrossRefGoogle Scholar
  71. Takai, K., A. Sugai, T. Itoh, and K. Horikoshi. 2000 Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney Int. J. Syst. Evol. Microbiol. 50 Pt 2 489–500CrossRefPubMedGoogle Scholar
  72. Verhagen, M. F., A. L. Menon, G. J. Schut, and M. W. Adams. 2001 Pyrococcus furiosus: Large-scale cultivation and enzyme purification Meth. Enzymol. 330 25–30CrossRefPubMedGoogle Scholar
  73. Xavier, K. B., R. Peist, M. Kossmann, W. Boos, and H. Santos. 1999 Maltose metabolism in the hyperthermophilic archaeon Thermococcus litoralis: Purification and characterization of key enzymes J. Bacteriol. 181(11) 3358–3367Google Scholar
  74. Zillig, W., I. Holtz, D. Janecovic, W. Schäfer, and W. D. Reiter. 1983 The archaebacterium Thermococcus celer represents a novel genus within the thermophilic branch of the archaebacteria Syst. Appl. Microbiol. 4 88–94CrossRefPubMedGoogle Scholar
  75. Zillig, W., I. Holz, H. P. Klenk, J. Trent, S. Wunderl, D. Janekovic, E. Imsel, and B. Haas. 1987 Pyrococcus woesei, sp. nov., an ultra-thermophilic marine Archaebacterium, representing a novel order, Thermococcales Syst. Appl. Microbiol. 9 62–70CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Costanzo Bertoldo
  • Garabed Antranikian

There are no affiliations available

Personalised recommendations