Advertisement

The Genus Micrococcus

  • Miloslav Kocur
  • Wesley E. Kloos
  • Karl-Heinz SCHLEIFER
Firmicutes with High GC Content of DNA

The genus Micrococcus consists of Gram-positive spheres occurring in tetrads and in irregular clusters that are usually nonmotile and nonsporeforming. They are catalase positive and usually aerobic with strictly respiratory metabolism. Most species produce carotenoid pigments. The GC content of the DNA ranges from 65 to 75 mol%. There are nine species recognized in the genus (see later, Table 2). The data on GC content of the DNA, chemical cell wall analysis, and a comparative analysis of 16S rRNA sequences indicate that the genus Micrococcus is more closely related to the genus Arthrobacter than it is to other coccoid genera such as Staphylococcus and Planococcus (Keddie, 1974; Kloos et al., 1974; Kocur et al., 1971; Stackebrandt and Woese, 1979). For these reasons it cannot be included with the genera Staphylococcus and Planococcus in the same family Micrococcaceae. Therefore, both the genus Micrococcus and the genus Arthrobacter should be regarded as closely related, but separate genera.

Table 2.

Abbreviated scheme for the differentiation of species of the genus Micrococcus.a

Species

Major pigmentb

Water-soluble exopigment

Growth on Simmons citrate agar

Growth on inorganic nitrogen agar

Acetoin

Nitrate reduction

Oxidase

Aerobic acid from

Lysozyme susceptibilityc

Arginine dihydrolase

β-Galactosidase

Growth at 37°C

Peptidoglycan type

Amino sugar in cell wall polysaccharide

Glucose

Glycerol

M. luteus

Y>CW

+>±,−

−>+

S

+

L-Lys-peptide subunit

Mannosamineuronic acid

M. lylae

CW, U

−>±

−>+

+,±

SR

+

L-Lys-Asp

Galactosamine

M. varians

Y

+>±,−

−>±

±,−

+>±

−±

+

R

+

L-Lys-L-Ala3–4

Galactosamine

M. roseus

PR>OR

−>±

±>−

+>±

−±

+,±

SR-R

+

L-Lys-L-Ala3–4

Galactosamine

M. agilis

R

ND

ND

+

R

+

L-Lys-Thr-L-Ala3

Glucosamine

M. kristinae

PO

+

−>±

+,±

++

++

R

−+

+

L-Lys-L-Ala3

Glucosamine

M. nishino miyaensis

O

−>+

±,−

−>±

+,±,−

+,±

−>±

SR-R

+

L-Lys-L-Ser2-D-Glu

Galactosamine

M. sedentarius

CW>BY

+,±

−>±

S-SR

+

+

Uncertain

M. halobius

U

ND

ND

+

+

R

+

+

ND

ND

A single listed symbol denotes a character frequency of about 70–100%; the notation > denotes “a frequency greater than” a comma between symbols denotes nearly equal frequency.

CW, cream-white; U, unpigmented; PR, pastel red; OR, orange red; R, red; PO, pale orange; O, orange; BY, buttercup yellow; Y, yellow.

S, susceptible (minimal inhibitory concentration, MIC: below 5 µg/ml); SR, slightly resistant (MIC: 5–50 µg/ml); R, resistant (MIC: above 100 µg/ml).

++, strong positive; +, positive; ±, weak; −, negative; ND, not determined.

Keywords

Micrococcus Luteus Anterior Nare Hexose Monophosphate Uridine Phosphorylase Mammalian Skin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Aaronson, S. 1955 Biotin assay with a coccus, Micrococcus sodonensis, nov. sp J. Bacteriol. 69 67–70PubMedPubMedCentralGoogle Scholar
  2. Abd-el-Malek, Y., Gibson, T. 1948 Studies in the bacteriology of milk. II. The staphylococci and micrococci of milk J. Dairy Res. 15 249–260CrossRefGoogle Scholar
  3. Albertson, D., Natsions, G. A., Gleckman, R. 1978 Septic shock with Micrococcus luteus Arch. Intern. Med. 138 487–488PubMedCrossRefGoogle Scholar
  4. Anderson, J. I. W. 1962 Studies on micrococci isolated from the North Sea J. Appl. Bacteriol. 25 362–368CrossRefGoogle Scholar
  5. Auling, G., Moss, B. 1984 Metabolism of pyrimidine bases and nucleosides in the coryneform bacteria Brevibacterium ammoniagenes and Micrococcus luteus J. Bacteriol. 158 733–736PubMedPubMedCentralGoogle Scholar
  6. Auling, G., Prelle, H., Diekmann, H. 1982 Incorporation of deoxyribonucleosides into DNA of coryneform bacteria and the relevance of deoxyribonucleoside kinases Eur. J. Biochem. 121 365–370PubMedCrossRefGoogle Scholar
  7. Back, W. 1980 Taxonomische Untersuchungen an beerschädlichen Bakterien. Habilitationschrift Technische Universität MunichGoogle Scholar
  8. Baird-Parker, A. C. 1962 The occurrence and enumeration, according to a new classification, of micrococci and staphylococci in bacon and on human and pig skin J. Appl. Bacteriol. 25 352–361CrossRefGoogle Scholar
  9. Blevins, W. T., Perry, J. J., Evans, J. B. 1969 Growth and macromolecular biosynthesis by Micrococcus sodonensis during the utilization of glucose and lactate Can. J. Microbiol. 15 383–388PubMedCrossRefGoogle Scholar
  10. Bouvet, P., Chatelain, R., Riou, J. Y. 1982 Intéret du composé vibriostatique 0/129 pour différencier les genres Staphylococcus et Micrococcus Ann. Inst. Pasteur 113 B 449–453Google Scholar
  11. Bowman, F. W. 1957 Test organisms for antibiotic microbial assays Antibiot. Chemother. 7 639–640Google Scholar
  12. Brisou, J. 1955 La microbiologie de milieu marin Editions Médicales Flammarion ParisGoogle Scholar
  13. Brooks, B. W., Murray, R. G. E., Johnson, J. L., Stackebrandt, E., Woese, C. R., Fox, G. E. 1980 Red-pigmented micrococci: A basis for taxonomy Int. J. Syst. Bacteriol. 30 627–646CrossRefGoogle Scholar
  14. Carr, D. L., Kloos, W. E. 1977 Temporal study of the staphylococci and micrococci of normal infant skin Appl. Environ. Microbiol. 34 673–680PubMedPubMedCentralGoogle Scholar
  15. Casida, L. E. Jr. 1980a Death of Micrococcus luteus in soil Appl. Environ. Microbiol. 39 1031–1034PubMedPubMedCentralGoogle Scholar
  16. Casida, L. E. Jr. 1980b Bacterial predators of Micrococcus luteus in soil Appl. Environ. Microbiol. 39 1035–1041PubMedPubMedCentralGoogle Scholar
  17. Coates, J. H., Argoudelis, A. D. 1971 Microbial transformation of antibiotics: Phosphorylation of clindamycin by Streptomyces coelicolor Müller J. Bacteriol. 108 459–464Google Scholar
  18. Cohn, D. V. 1956 The oxidation of malic acid by Micrococcus lysodeikticus J. Biol. Chem. 221 413–420PubMedGoogle Scholar
  19. Collins, M. D., Jones, D. 1981 The distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications Microbiol. Rev. 45 316–354PubMedPubMedCentralGoogle Scholar
  20. Cooney, J. J., Thierry, O. C. 1966 A defined medium for growth and pigment synthesis of Micrococcus roseus Can. J. Microbiol. 12 83–89PubMedCrossRefGoogle Scholar
  21. Crowe, B. A., Owen, P. 1983a Immunochemical analysis of respiratory-chain components of Micrococcus luteus (lysodeikticus) J. Bacteriol. 153 498–505PubMedPubMedCentralGoogle Scholar
  22. Crowe, B. A., Owen, P. 1983b Molecular properties of succinate dehydrogenase isolated from Micrococcus luteus (lysodeikticus) J. Bacteriol. 153 1493–1501PubMedPubMedCentralGoogle Scholar
  23. Curry, J. C., Borovian, G. E. 1976 Selective medium for distinguishing micrococci from staphylococci in the clinical laboratory J. Clin. Microbiol. 4 455–457PubMedPubMedCentralGoogle Scholar
  24. Dawes, E. A., Holmes, W. H. 1958 On the quantitative evaluation of routes of glucose metabolism by the use of radioactive glucose Biophys. Acta 34 551–552CrossRefGoogle Scholar
  25. De Siervo, A. J., Salton, M. R. J. 1971 Biosynthesis of cardiolipin in the membranes of Micrococcus lysodeikticus Biochim. Biophys. Acta 239 280–292PubMedCrossRefGoogle Scholar
  26. Dickman, S. R., Proctor, C. M. 1952 Factors affecting the activity of egg white lysozyme Arch. Biochem. Biophys. 40 364–372PubMedCrossRefGoogle Scholar
  27. Dickscheit, R. 1961 Beiträge zur Physiologie und Systematik der Pediokokken des Bieres Zentralbl. Bakteriol. Parasitenkd. II. Abt 114 270–284 458–471Google Scholar
  28. Doeringer, R. H., Dugan, P. R. 1973 Growth relationship between the blue-green alga Anacystis nidulans and Sarcina flava in mixed culture Abst. Ann. Meet. Am. Soc. Microbiol. 1973 45Google Scholar
  29. Doherty, H., Condon, C., Owen, P. 1982 Resolution and in vitro glycosylation of membrane glycoproteins in Micrococcus luteus (lysodeikticus) FEMS Microbiol. Lett. 15 331–336CrossRefGoogle Scholar
  30. Erickson, S. K., Parker, G. L. 1969 The electron-transport system of Micrococcus luteus (Sarcina lutea) Biochim. Biophys. Acta 180 56–62PubMedCrossRefGoogle Scholar
  31. Evans, J. B., Kloos, W. E. 1972 Use of shake cultures in a semisolid thioglycolate medium for differentiating staphylococci from micrococci Appl. Microbiol. 23 326–331PubMedPubMedCentralGoogle Scholar
  32. Evelyn, T. P. T., McDermott, L. A. 1961 Bacteriological studies of fresh-water fish. I. Isolation of aerobic bacteria from several species of Ontario fish Can. J. Microbiol. 7 375–382PubMedCrossRefGoogle Scholar
  33. Falk, D., Guering, S. J. 1983 Differentiation of Staphylococcus and Micrococcus spp. with the taxo A bacitracin disk J. Clin. Microbiol. 18 719–721PubMedPubMedCentralGoogle Scholar
  34. Faller, A., Götz, F., Schleifer, K. H. 1980 Cytochrome patterns of staphylococci and micro cocci and their taxonomic implications Zbl. Bakteriol. I. Abt. Orig. C1 26–39Google Scholar
  35. Faller, A., Schleifer, K. H. 1981 Modified oxidase and benzidine tests for separation of staphylococci from micrococci J. Clin. Microbiol. 13 1031–1035PubMedPubMedCentralGoogle Scholar
  36. Farrior, J. W., Kloos, W. E. 1975 Amino acid and vitamin requirements of Micrococcus species isolated from human skin Int. J. Syst. Bacteriol. 25 80–82CrossRefGoogle Scholar
  37. Farrior, J. W., Kloos, W. E. 1976 Sulfur amino acid auxotrophy in Micrococcus species isolated from human skin Can. J. Microbiol. 22 1680–1690PubMedCrossRefGoogle Scholar
  38. Fischer, S., Luczak, H., Schleifer, K. H. 1982 Improved methods for the detection of class I and class II fructose-1, 6-biphosphate aldolases in bacteria FEMS Microbiol. Lett. 15 103–108CrossRefGoogle Scholar
  39. Fischer, U., Schleifer, K. H. 1980 Zum Verkommen der Gram-positiven, katalase-positiven Kokken in Rohwurst Fleischwirtschaft. 60 1046–1051Google Scholar
  40. Fosse, T., Peloux, Y., Granthil, C., Toga, B., Bertrando, J., Sethian, M. 1986 Meningitis due to Micrococcus luteus Eur. J. Clin. Study Treat. Infect. 13 280–281Google Scholar
  41. Gillespie, N. C., Macrae, I. C. 1975 The bacterial flora of some Queensland fish and its ability to cause spoilage J. Appl. Bacteriol. 39 91–100PubMedCrossRefGoogle Scholar
  42. Girard, A. E. 1971 A comparative study of the fatty acids of some micrococci Can. J. Microbiol. 17 1503–1508PubMedCrossRefGoogle Scholar
  43. Glass, M. 1973 Sarcina species on the skin of the human forearm Trans. St. Johnߣs Hosp. Dermatol. Soc. 59 56–60Google Scholar
  44. Götz, F., Nürnberger, E., Schleifer, K. H. 1979 Distribution of class I and class II D-fructose-1, 6-biphosphate aldolase in various Gram-positive bacteria FEMS Microbiol. Lett. 5 253–257CrossRefGoogle Scholar
  45. Grove, D. C., Randall, W. A. 1955 Assay Methods of Antibiotics Medical Encyclopedia New York Antibiotics Monographs 2Google Scholar
  46. Grula, E. A., Luk, S.-K., Chu, Y.-C. 1961 Chemically defined medium for growth of Micrococcus lysodeikticus Can. J. Microbiol. 7 27–32PubMedCrossRefGoogle Scholar
  47. Hanabusa, K., Dougherty, H. W., Del Rio, C., Hashimoto, T., Handler, P. 1966 Phosphoglucomutase. II. Preparation and properties of phosphoglucomutases from Micrococcus lysodeikticus and Bacillus cereus J. Biol. Chem. 241 3930–3939PubMedGoogle Scholar
  48. Horsley, R. W. 1977 A review of the bacterial flora of teleosts and elasmobranchs, including methods for its analysis J. Fish. Biol. 10 529–553CrossRefGoogle Scholar
  49. Jantzen, E., Bergan, T., Bøvre, K. 1974 Gas chromatography of bacterial whole cell methanolysates. VI. Fatty acid composition of strains within Micrococcaceae Acta Pathol. Microbiol. Scand. Sec. B 82 785–798Google Scholar
  50. Jeffries, L. 1968 Sensitivity to novobiocin and lysozyme in the classification of Micrococcaceae J. Appl. Bacteriol. 31 436–442PubMedCrossRefGoogle Scholar
  51. Jeffries, L. 1969 Menaquinone in the classification of Micrococcaceae with observations on the application of lysozyme and novobiocin sensitivity tests Int. J. Syst. Bacteriol. 19 183–187CrossRefGoogle Scholar
  52. Jeffries, L., Cawthorne, M. A., Harris, M., Cook, B., Diplock, A. T. 1969 Menaquinone determination in the taxonomy of Micrococcaceae J. Gen. Microbiol. 54 365–380CrossRefGoogle Scholar
  53. Kane, C. M., Kloos, W. E. 1970 Transformation of Sarcina flava and Micrococcus flavocyaneus Genet. Res., Camb. 15 339–343CrossRefGoogle Scholar
  54. Kane-Falce, C. M., Kloos, W. E. 1975 A genetic and biochemical study of histidine biosynthesis in Micrococcus luteus Genetics 79 361–376PubMedPubMedCentralGoogle Scholar
  55. Keddie, R. M. 1974 Arthrobacter 618–625 R. E. Buchanan and N. E. Gibbons (ed.) Bergey’s manual of determinative bacteriology, 8th ed Williams and Wilkins BaltimoreGoogle Scholar
  56. Kirshbaum, A., Arret, B. 1959 Outline of details for assaying the commonly used antibiotics Ant. Chem. 9 613–617Google Scholar
  57. Kirsop, B. E., Snell, J. J. S. (ed.). 1984 Maintenance of micro-organisms Academic Press LondonGoogle Scholar
  58. Kitchell, A. G. 1962 Micrococci and coagulase negative staphylococci in cured meats and meat products J. Appl. Bacteriol. 25 416–431CrossRefGoogle Scholar
  59. Klesius, P. H., Schuhardt, V. T. 1968 Use of lysostaphin in the isolation of highly polymerized deoxyribonucleic acid and in the taxonomy of aerobic Micrococcaceae J. Bacteriol. 95 739–743PubMedPubMedCentralGoogle Scholar
  60. Kloos, W. E. 1968 Evidence of genetic exchange in Micrococcus lysodeikticus Bacteriol. Proc. 1968 55Google Scholar
  61. Kloos, W. E. 1969a Transformation of Micrococcus lysodeikticus by various members of the family Micrococcaceae J. Gen. Microbiol. 59 247–255PubMedCrossRefGoogle Scholar
  62. Kloos, W. E. 1969b Factors affecting transformation of Micrococcus lysodeikticus J. Bacteriol 98 1397–1399PubMedPubMedCentralGoogle Scholar
  63. Kloos, W. E., Musselwhite, M. S. 1975 Distribution and persistence of Staphylococcus and Micrococcus species and other aerobic bacteria on human skin Appl. Microbiol. 30 381–395PubMedPubMedCentralGoogle Scholar
  64. Kloos, W. E., Rose, N. E. 1970 Transformation mapping of tryptophan loci in Micrococcus luteus Genetics 66 595–605PubMedPubMedCentralGoogle Scholar
  65. Kloos, W. E., Schultes, L. M. 1969 Transformation in Micrococcus lysodeikticus J. Gen. Microbiol. 55 307–317PubMedCrossRefGoogle Scholar
  66. Kloos, W. E., Tornabene, T. G., Schleifer, K. H. 1974 Isolation and characterization of micrococci from human skin, including two new species: Micrococcus lylae and Micrococcus kristinae Int. J. Syst. Bacteriol. 24 79–101CrossRefGoogle Scholar
  67. Kloos, W. E., Zimmerman, R. J., Smith, R. F. 1976 Preliminary studies on the characterization and distribution of Staphylococcus and Micrococcus species on animal skin Appl. Environ. Microbiol. 31 53–59PubMedPubMedCentralGoogle Scholar
  68. Kocur, M., Bergan, T., Mortensen, N. 1971 DNA base composition of Gram-positive cocci J. Gen. Microbiol. 69 167–183PubMedCrossRefGoogle Scholar
  69. Komura, I., Yamada, K., Komagata, K. 1975 Taxonomic significance of phospholipid composition in aerobic Gram-positive cocci J. Gen. Appl. Microbiol. 21 97–107CrossRefGoogle Scholar
  70. Leifson, E. 1963 Determination of carbohydrate metabolism of marine bacteria J. Bacteriol. 85 1183–1184PubMedPubMedCentralGoogle Scholar
  71. Mahler, I., Grossman, L. 1968 Transformation of radiation sensitive strains of Micrococcus lysodeikticus Biochem. Biophys. Res. Commun. 32 776–781PubMedCrossRefGoogle Scholar
  72. Marples, M. J. 1965 The ecology of the human skin Charles C. Thomas Springfield IllinoisGoogle Scholar
  73. Mathis, J. N., Kloos, W. E. 1984 Isolation and characterization of Micrococcus plasmids Curr. Microbiol. 10 163–171CrossRefGoogle Scholar
  74. Meers, P. D., Whyte, W., Sandys, G. 1975 Coagulase-negative staphylococci and micrococci in urinary tract infections J. Clin. Pathol. 28 270–273PubMedPubMedCentralCrossRefGoogle Scholar
  75. Mohapatra, N., Kloos, W. E. 1974 Biochemical and genetic studies of laboratory purine auxotrophic strains Micrococcus luteus Can. J. Microbiol. 20 1751–1754PubMedCrossRefGoogle Scholar
  76. Mohapatra, N., Kloos, W. E. 1975 Biochemical characterization and genetic mapping of purine genes in Micrococcus luteus Genet. Res., Camb. 26 163–171CrossRefGoogle Scholar
  77. Morrison, S. J., Tornabene, T. G., Kloos, W. E. 1971 Neutral lipids in the study of the relationships of members of the family Micrococcaceae J. Bacteriol. 108 353–358PubMedPubMedCentralGoogle Scholar
  78. Naylor, H. B., Burgi, E. 1956 Observations on abortive infections of Micrococcus lysodeikticus with bacteriophage Virology 2 577–593PubMedCrossRefGoogle Scholar
  79. Niinivaara, F. P., Pohja, M. S. 1957 Erfahrungen über die Herstellung von Rohwurst mittels einer Bakterienreinkultur Fleischwirtschaft 9 789–790Google Scholar
  80. Noble, W. C., Somerville, D. A. 1974 Microbiology of human skin W. B. Saunders LondonGoogle Scholar
  81. Nordstrom, K. M., McGinley, K. J., Zechman, J. M., Leyden, J. J. 1987 Similarities between Dermatophilus congolensis and Micrococcus sedentarius: Identity of the etiologic agent of pitted keratolysis Abstr. Ann. Meet. Amer. Soc. Microbiol. 244Google Scholar
  82. Ogasawara-Fujita, N., Sakahuchi, K. 1976 Classification of micrococci on the basis of deoxyribonucleic acid homology J. Gen. Microbiol. 94 97–106PubMedCrossRefGoogle Scholar
  83. Okubo, S., Nakayama, H. 1968 Evidence of transformation in Micrococcus lysodeikticus Biochem. Biophys. Res. Commun. 32 825–830PubMedCrossRefGoogle Scholar
  84. Onishi, H., Kamekura, H. 1972 Micrococcus halobius sp. n Int. J. Syst. Bacteriol. 22 233–236CrossRefGoogle Scholar
  85. Owen, P., Salton, M. R. J. 1975 A succinylated mannan in the membrane system of Micrococcus lysodeikticus Biochem. Biophys. Res. Comm. 63 875–880PubMedCrossRefGoogle Scholar
  86. Pachtman, E. A., Vicher, E. E., Brunner, M. J. 1954 The bacteriologic flora in seborrhoeic dermatitis J. Invest. Dermatol. 22 389–397PubMedCrossRefGoogle Scholar
  87. Park, W., Matsuhashi, M. 1984 Staphylococcus aureus and Micrococcus luteus peptidoglycan transglycosylases that are not penicillin-binding proteins J. Bacteriol. 157 538–544PubMedPubMedCentralGoogle Scholar
  88. Perry, J. J., Evans, J. B. 1960 Oxidative metabolism of lactate and acetate by Micrococcus sodonensis J. Bacteriol. 79 113–118PubMedPubMedCentralGoogle Scholar
  89. Perry, J., Evans, J. B. 1966 Oxidation and assimilation of carbohydrates by Micrococcus sodonensis J. Bacteriol. 91 33–38PubMedPubMedCentralGoogle Scholar
  90. Pohja, M. S. 1960 Micrococci in fermented meat products Classification and description of 171 different strains. Acta Agralia Fennica 96 1–80Google Scholar
  91. Regensburger, A., Ludwig, W., Frank, R., Blöcker, H., Schleifer, K.-H. 1988a Complete nucleotide sequence of a 23S ribosomal RNA gene from Micrococcus luteus Nucl. Acids, Res. 16 2344CrossRefGoogle Scholar
  92. Regensburger, A., Ludwig, W., Schleifer, K.-H. 1988b DNA probes with different specificities from a cloned 23S rRNA gene of Micrococcus luteus J. Gen. Microbiol. 134 1197–1204PubMedGoogle Scholar
  93. Rheinbaben, K. E. v., Hadlok, R. M. 1981 Rapid distinction between micrococci and staphylococci with furazolidone agars Antonie van Leeuwenhoek 47 41–51CrossRefGoogle Scholar
  94. Roberts, A. P. 1967 Micrococcaceae from the urinary tract in pregnancy J. Clin. Pathol. 20 631–632PubMedPubMedCentralCrossRefGoogle Scholar
  95. Rosypal, S., Kocur, M. 1963 The taxonomic significance of the oxidation of carbon compounds by different strains of Micrococcus luteus Antonie van Leeuwenhoek 29 313–318PubMedCrossRefGoogle Scholar
  96. Rupprecht, M., Schleifer, K. H. 1977 Comparative immunological study of catalases in the genus Micrococcus Arch. Microbiol. 114 61–66PubMedCrossRefGoogle Scholar
  97. Salton, M. R. J. 1964 Requirements of dehydroxyphenols for the growth of Micrococcus lysodeikticus in synthetic media Biochim. Biophys. Acta 86 421–422PubMedCrossRefGoogle Scholar
  98. Salton, M. R. J. 1987 Bacterial membrane proteins Microbiol. Sciences 4 100–105Google Scholar
  99. Salton, M. R. J., Schor, M. T. 1974 Release and purification of Micrococcus lysodeikticus ATPase from membranes extracted with n-butanol Biochim. Biophys. Acta 345 74–82PubMedCrossRefGoogle Scholar
  100. Saz, H. J., Krampitz, L. O. 1954 The oxidation of acetate by Micrococcus lysodeikticus J. Bacteriol. 67 409–418PubMedPubMedCentralGoogle Scholar
  101. Schleifer, K. H. 1973 Chemical composition of staphylococcal cell walls 13–23 Jeljaszewicz (ed.) Staphylococci and staphylococcal infections. Recent progress S. Karger BaselGoogle Scholar
  102. Schleifer, K. H. 1986 Section 12. Gram-positive cocci 999–1003 P. H. A. Sneath, N. S. Mair, M. E. Sharpe, J. G. Holt (ed.) Bergey’s manual of systematic bacteriology, vol. 2 Williams and Wilkins BaltimoreGoogle Scholar
  103. Schleifer, K. H., Heise, W., Meyer, S. A. 1979 Deoxyribonucleic acid hybridization studies among soms micrococci FEMS Lett. 6 33–36CrossRefGoogle Scholar
  104. Schleifer, K. H., Kloos, W. E. 1975 A simple test system for the separation of staphylococci from micrococci J. Clin. Microbiol. 1 337PubMedPubMedCentralGoogle Scholar
  105. Schleifer, K. H., Kloos, W. E., Kocur, M. 1981 The genus Micrococcus 1539–1547 M. P. Starr, H. Stolp, H. G. Trüper, A. Balows and H. C. Schlegel (ed.) The prokaryotes: a handbook on habitats, isolation and identification of bacteria Springer-Verlag BerlinGoogle Scholar
  106. Schleifer, K. H., Krämer, E. 1980 Selective medium for isolating staphylococci Zentralbl. Bakteriol. Mikrobiol. Hyg. Abt. I Orig. C1 270–280Google Scholar
  107. Schmitt, M., Rittinghaus, K., Scheurich, P., Schwulera, U., Dose, K. 1978 Immunological properties of membrane-bound adenosine triphosphatiase Biochim. Biophys. Acta 509 410–418PubMedCrossRefGoogle Scholar
  108. Sellin, M. A., Cooke, D. I., Gillespie, W. A., Sylvester, D. G. H., Anderson, J. D. 1975 Micrococcal urinary tract infections in young women Lancet ii 570–572CrossRefGoogle Scholar
  109. Simon, H. J., Yin, E. J. 1970 Microbioassay of antimicrobial agents Appl. Microbiol. 19 573–579PubMedPubMedCentralGoogle Scholar
  110. Smith, R. F. 1970 Comparative enumeration of lipophilic and nonlipophilic cutaneous diphtheroids and cocci Appl. Microbiol. 19 254–258PubMedPubMedCentralGoogle Scholar
  111. Souhami, L., Feld, R., Tuffnell, P. G., Feller, T. 1979 Micrococcus luteus pneumonia: A case report and review of the literature Med. Pediatr. Oncol. 7 309–314PubMedCrossRefGoogle Scholar
  112. Sreenivasan, A. 1959 A note on the bacteriology of prawns and their preservation by freezing J. Sci. Ind. Res. 18C 119Google Scholar
  113. Stackebrandt, E., Woese, C. R. 1979 A phylogenetic dissection of the family Micrococcaceae Curr. Microbiol. 2 317–322CrossRefGoogle Scholar
  114. Streby-Andrews, M. E., Kloos, W. E. 1971 Amino acid auxotrophy in natural strains of Micrococcus luteus Bacteriol. Proc. 1971 27Google Scholar
  115. Telander, B., Wallmark, G. 1975 Micrococcus subgroup 3-a common cause of acute urinary tract infection in women Lakartidningen 72 1967Google Scholar
  116. Thirkell, D., Gray, E. M. 1974 Variation in the lipid fatty acid composition in purified membrane fractions from Sarcina aurantiaca in relation to growth phase Antonie van Leeuwenhoek. J. Microbiol. Serol. 40 71–78CrossRefGoogle Scholar
  117. Tornabene, T. G., Morrison, S. J., Kloos, W. E. 1970 Aliphatic hydrocarbon contents of various members of the family Micrococcaceae Lipids 5 929–937PubMedCrossRefGoogle Scholar
  118. Traxler, C. I., Goustin, A. S., Anderson, J. S. 1982 Elongation of teichuronic acid chains by a wall-membrane preparation from Micrococcus luteus J. Bacteriol. 150 649–656PubMedPubMedCentralGoogle Scholar
  119. Venkataraman, R., Sreenivasan, A. 1953 The bacteriology of freshwater fish Ind. J. Med. Res. 41 385–392Google Scholar
  120. Venkataraman, R., Sreenivasan, A. 1955 Bacterial flora of fresh shark Curr. Sci. 11 380–381Google Scholar
  121. Walsh, B. L., O’Dor, J., Warren, R. A. J. 1971 Chelating agents and the growth of Micrococcus lysodeikticus Can. J. Microbiol. 17 593–597PubMedCrossRefGoogle Scholar
  122. Williams, O. B., Rees, H. B., Campbell, L. L. 1952 The bacteriology of Gulf Coast shrimp. I. Experimental procedures and quantitative results Texas J. Sci. 4 49–52Google Scholar
  123. Williamson, P. 1965 Quantitative estimation of cutaneous bacteria 3–11 Maibach, H. I., and Hildick-Smith, G. (ed.) Skin bacteria and their role in infection McGraw-Hill New YorkGoogle Scholar
  124. Williamson, P., Kligman, A. M. 1965 A new method for the quantitative investigation of cutaneous bacteria J. Invest. Dermatol. 45 498–503PubMedCrossRefGoogle Scholar
  125. Wolin, H. L., Naylor, H. B. 1957 Basic nutritional requirements of Micrococcus lysodeikticus J. Bacteriol. 74 163–167PubMedPubMedCentralGoogle Scholar
  126. Wood, E. J. F. 1952 The micrococci in marine environments J. Gen. Microbiol. 6 205PubMedCrossRefGoogle Scholar
  127. Yamada, H., Uwajima, T., Kumagai, H., Watanabe, M., Ogata, K. 1967 Crystalline tyramine oxidase from Sarcina lutea Biochem. Biophys. Res. Commun. 27 350–355PubMedCrossRefGoogle Scholar
  128. ZoBell, C. E., Upham, C. 1944 A list of marine bacteria including descriptions of sixty new species Bulletin of Scripps Institute of Oceanography, University of California 5 239–292Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Miloslav Kocur
  • Wesley E. Kloos
  • Karl-Heinz SCHLEIFER

There are no affiliations available

Personalised recommendations