Skip to main content

The Genus Arthrobacter

  • Firmicutes with High GC Content of DNA
  • Reference work entry
  • First Online:

Conn (1928) described a group of bacteria, extremely numerous in certain soils, which were unusual in that they appeared as Gram-negative rods in young cultures and as Gram-positive cocci in older cultures. For these bacteria, Conn (1928) created the species Bacterium globiforme, which, as Arthrobacter globiformis, was later to become the type species of the genus Arthrobacter. The abundance in soil of bacteria similar to Conn’s organism, and of other coryneform bacteria, was confirmed later by Jensen (1933, 1934) and Topping (1937, 1938), who, however, referred to them as soil corynebacteria, and by Taylor and Lochhead (1937), who used the name Bacterium globiforme. Jensen (1934) considered that these soil bacteria should be classified in the genus Corynebacterium because of their morphological resemblance to corynebacteria of animal origin. However, Conn (1947) vigorously opposed this view and created the genus Arthrobacter (by reviving an old name), with A. globiformis as the type species and with two of Jensen’s soil corynebacteria as additional species (Conn and Dimmick, 1947).

In addition to their characteristic morphology and staining reactions, members of the genus Arthrobacter were originally described as being highly aerobic, nutritionally nonexacting, and capable of liquefying gelatin slowly (Conn and Dimmick, 1947). These features were chosen mainly to distinguish Arthrobacter from Corynebacterium as represented by C. diphtheriae and similar animal parasitic species. However, because of its poor circumscription (see Gibson, 1953; Jensen, 1952), the genus Arthrobacter was not widely accepted until it was included as a member of the family Corynebacteriaceae in the seventh edition of Bergey’s Manual of Determinative Bacteriology (Breed et al., 1957). But by that time, the genus had been extended to include the two nutritionally exacting species A. terregens (Lochhead and Burton, 1953) and A. citreus (Sacks, 1954), and shortly afterwards two others were added (Lochhead, 1958a). Indeed, one of Conn’s strains of A. globiformis was shown subsequently to require biotin for growth (Chan and Stevenson, 1962; Morris, 1960). Thus the concept had developed of Arthrobacter as a genus of soil bacteria whose major distinguishing feature was a growth cycle in which the irregular rods in young cultures were replaced by coccoid forms in older cultures; these coccoid forms, when transferred to fresh medium, produced outgrowths (“germinated”) to give irregular rods again, and so the cycle was repeated (Fig. 1).

Arthrobacter globiformis (ATCC 8010) grown on medium EYGA at 25°C; the inoculum was of coccoid cells as shown in (d). (a) After 6 h, showing outgrowth of rods from coccoid cells. (b) After 12 h. (c) After 24 h. (d) After 3 days. Bars = 10 µm.

This dependence on morphological features and habitat in the circumscription led to a great deal of confusion in the classification of the genus Arthrobacter and thus created considerable problems in the identification of new isolates as arthrobacters. Thus, isolates from soil and, more especially, those from other habitats have frequently been referred to in the literature as arthrobacters on the basis of morphological features alone, even though they were not necessarily similar to A. globiformis in other respects.

It was not surprising that when representatives of the genus were examined by more modern taxonomic methods such as numerical taxonomy (Jones, 1978), various chemotaxonomic techniques (Bowie et al., 1972; Keddie and Cure, 1977, 1978; Minnikin et al., 1978b; Schleifer and Kandler, 1972), and determinations of DNA base ratios (see Skyring and Quadling, 1970; Skyring et al., 1971), it was found to be heterogeneous.

The genus Arthrobacter as defined in the eighth edition of Bergey’s Manual (Keddie, 1974) was heterogeneous, as was noted by Keddie and Jones (1981) in the first edition of The Prokaryotes. They referred to Arthrobacter in this broad sense as Arthrobacter sensu lato (Keddie and Jones, 1981). In Bergey’s Manual of Systematic Bacteriology (Keddie et al., 1986), the genus was limited to those species which, like the type, A. globiformis, contain lysine as the cell wall diamino acid, i.e., Arthrobacter sensu stricto (Keddie and Jones, 1981). Thus some species formerly considered to be arthrobacters (Keddie, 1974) have now been removed from the genus.

The two species formerly named A. terregens and A. flavescens, which contain ornithine as the cell wall diamino acid (Schleifer and Kandler, 1972; Keddie and Cure, 1977), have been transferred to the genus Aureobacterium as Aur. terregens and Aur. flavescens (Collins et al., 1983). The species Arthrobacter radiotolerans has now been transferred to the new genus Rubrobacter as R. radiotolerans (Suzuki et al., 1988).

Although now resolved, the position of the two species A. simplex and A. tumescens has been more problematical. They were shown by Cummins and Harris (1959) to differ from A. globiformis in containing LL-diaminopimelic acid (LL-A2pm) as the cell wall diamino acid, and many other taxonomic differences were detected subsequently (see Keddie et al., 1986, for further details). In the case of A. simplex, 16S rRNA cataloging studies showed this species to be only distantly related to A. globiformis (Stackebrandt et al., 1980). Conversely, 5S rRNA sequencing indicated that Pimelobacter simplex (A. simplex—see below) clearly belonged to an “ArthrobacterMicrococcusCellulomonas” subgroup of the coryneform bacteria (Park et al., 1987). While there was general agreement that A. simplex and A. tumescens should be removed from Arthrobacter, there was disagreement about where they should be accommodated. Suzuki and Komagata (1983) created the genus Pimelobacter for the LL-A2pm-containing coryneform bacteria and distinguished three species by use of DNA-DNA base-pairing techniques. The first species, Pimelobacter simplex, contained most strains of A. simplex (and also strains named “Brevibacterium lipolyticum”), the second, P. tumescens, was for strains formerly called A. tumescens, and a third species, P. jensenii, was created for a single strain originally identified as an A. simplex strain (Gundersen and Jensen, 1956). The same authors also concluded from their DNA homology studies that A. simplex and A. tumescens were only distantly related to Nocardioides albus, a nocardioform organism. However, O’Donnell et al. (1982) considered that A. simplex (but not A. tumescens) closely resembled Nocardioides species in chemotaxonomic (particularly lipid) characters and proposed that it be transferred to that genus as Nocardioides simplex. This view received support from other studies (reviewed by Keddie et al., 1986). In an attempt to resolve the problem, Collins et al. 1989 made a comparative study of the 16S rRNA from the type strains of Nocardioides albus, N. luteus, Pimelobacter simplex, P. tumescens, and P. jensenii by reverse transcriptase sequencing and compared the results with those from 18 previously studied actinomycetes from 14 different genera. The study confirmed the reclassification of P. (Arthrobacter) simplex in the genus Nocardioides as N. simplex as proposed by O’Donnell et al. (1982) and also showed that P. jensenii should be transferred to that genus as N. jensenii (Collins et al., 1989). However, P. (Arthrobacter) tumescens was so distinct from all the other actinomycete taxa that Collins et al. (1989) proposed its reclassification in a new genus, Terrabacter, as T. tumescens. The taxonomic status of the single strain of the species A. duodecadis remains unresolved. Details of this and some other species named Arthrobacter, but now excluded from the genus, are given by Keddie et al. 1986 and for A. siderocapsulatus and A. viscosus by Collins (1986).

However, Collins (1986) has shown that the lipid composition of “A. sialophilus” (Tanenbaum and Flashner, 1977) and the phytopathogen Agrobacterium pseudotsugae is consistent with their being members of Arthrobacter sensu stricto (Keddie and Jones, 1981), but no formal proposal has been made to include them in the genus.

As presently circumscribed, the genus Arthrobacter contains two “groups of species” referred to as the A. globiformis/A. citreus group and the A. nicotianae group. These groups differ in their peptidoglycan structure, teichoic acid content, and lipid composition (see “Further Identification of Arthrobacters” and Tables 2 and 3 for details). It has been suggested that the genus should be restricted to those bacteria that exhibit the characteristics of the A. globiformis/A. citreus group (Minnikin et al., 1978a; Collins and Kroppenstedt, 1983). However, on the basis of DNA-DNA homology studies of representative arthrobacters (Stackebrandt and Fiedler, 1979) and later 16S rRNA cataloging studies, Stackebrandt et al. (1983) concluded that the genus Arthrobacter contained two “nuclei,” one represented by the A. globiformis/A. citreus group of species and the other by the A. nicotianae group. This view was adopted by Keddie et al. (1986) and is the one accepted here.

Table 2. Charactersa most useful in differentiating the Arthrobacter species which have peptidoglycans of the A4α variationb and MK-8c (or MK-9d) as major menaquinones—the A. nicotianae group.e, f
Table 3. Charactersa differentiating Arthrobacter from similar genera which either have a rod-coccus growth cycle or have lysine as the cell wall diamino acid.b

The results of 16S rRNA cataloging studies (Stackebrandt et al., 1980; Stackebrandt and Woese, 1981) indicate that the genus Arthrobacter is related to the other coryneform genera, Aureobacterium, Cellulomonas, Curtobacterium, and Microbacterium, and is more distantly related to Brevibacterium. All of these genera are members of the high GC “actinomycete” branch of the Gram-positive eubacteria (Stackebrandt and Woese, 1981). The studies of Stackebrandt et al. (1980) also showed that on a phylogenetic basis the Arthrobacter species could not be separated from members of the genus Micrococcus. While accepting that the genera Arthrobacter and Micrococcus are very closely related phylogenetically, we treat them here as distinct taxa for practical purposes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   700.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literature Cited

  • Adamse, A. D. 1968 Formation and final composition of the bacterial flora of a dairy waste activated sludge Water Research 2 665–671

    Article  Google Scholar 

  • Akiba, T., Ueyama, H., Seki, M., Fukimbara, T. 1970 Identifications of lower alcohol-utilizing bacteria Journal of Fermentation Technology 48 323–328

    Google Scholar 

  • Antheunisse, J. 1972 Decomposition of nucleic acids and some of their degradation products by microorganisms Antonie van Leeuwenhoek Journal of Microbiology and Serology 38 311–327

    Article  CAS  Google Scholar 

  • Austin, B., Goodfellow, M., Dickinson, C. H. 1978 Numerical taxonomy of phylloplane bacteria from Lolium perenne Journal of General Microbiology 104 139–155

    Article  Google Scholar 

  • Barea, J. M., Navarro, E., Montoya, E. 1976 Production of plant growth regulators by rhizosphere phosphate-solubilizing bacteria Journal of Applied Bacteriology 40 129–134

    Article  CAS  PubMed  Google Scholar 

  • Bousfield, I. J. 1978 The taxonomy of coryneform bacteria from the marine environment 217–233 Bousfield, I. J., and Callely, A. G. (ed.) Special publications of the Society for General Microbiology I Coryneform bacteria. London Academic Press

    Google Scholar 

  • Bousfield, I. J., Keddie, R. M., Dando, T. R., Shaw, S. 1985 Simple rapid methods of cell wall analysis as an aid in the identification of aerobic coryneform bacteria 221–236 Goodfellow, M., and Minnikin, D. E. (ed.) Chemical methods in bacterial systematics Society for Applied Bacteriology, Technical Series No. 20. London Academic Press

    Google Scholar 

  • Bowie, I. S., Grigor, M. R., Dunckley, G. G., Loutit, M. W., Loutit, J. S. 1972 The DNA base composition and fatty acid constitution of some Gram-positive pleomorphic soil bacteria Soil Biology and Biochemistry 4 397–412

    Article  CAS  Google Scholar 

  • Boylen, C. W. 1973 Survival of Arthrobacter crystallopoietes during prolonged periods of extreme desiccation Journal of Bacteriology 113 33–37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boylen, C. W., Ensign, J. C. 1970 Long-term starvation survival of rod and spherical cells of Arthrobacter crystallopoietes Journal of Bacteriology 103 569–577

    Google Scholar 

  • Boylen, C. W., Mulks, M. H. 1978 The survival of coryneform bacteria during periods of prolonged nutrient starvation Journal of General Microbiology 105 323–334

    Article  CAS  Google Scholar 

  • Breed, R. S., Murray, E. G. D., Smith, N. R. (ed.). 1957 Bergey’s manual of determinative bacteriology, 7th ed Baltimore, MD Williams & Wilkins

    Google Scholar 

  • Cacciari, I., Giovannozzi-Sermanni, G., Grappelli, A., Lippi, D. 1971 Nitrogen fixation by Arthrobacter sp. I-Taxonomic study and evidence of nitrogenase activity of two new strains Annali di Microbiologia ed Enzymologia 21 97–105

    CAS  Google Scholar 

  • Chai, T. J., Levin, R. E. 1975 Characteristics of heavily mucoid bacterial isolates from fish pen slime Applied Microbiology 30 450–455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chan, E. C. S., Stevenson, I. L. 1962 On the biotin requirement of Arthrobacter globiformis Canadian Journal of Microbiology 8 403–405

    Article  CAS  PubMed  Google Scholar 

  • Chen, M., Alexander, M. 1973 Survival of soil bacteria during prolonged desiccation Soil Biology and Biochemistry 5 213–221

    Article  Google Scholar 

  • Clark, J. B. 1972 Morphogenesis in the genus Arthrobacter CRC Critical Reviews in Microbiology 1 521–544

    Article  CAS  Google Scholar 

  • Collins, M. D. 1982 Lipid composition of Renibacterium salmoninarum (Sanders and Fryer) FEMS Microbiology Letters 13 295–297

    Article  CAS  Google Scholar 

  • Collins, M. D. 1986 Lipid composition of Arthrobacter siderocapsulatus, A. viscosus, “A. oxamicetus, “A. sialophilus,” A. stabilis,” and “Agrobacterium pseudotsugene” Systematic and Applied Microbiology 8 1–7

    Article  CAS  Google Scholar 

  • Collins, M. D., Dorsch, M., Stackebrandt, E. 1989 Transfer of Pimelobacter tumescens to Terrabacter gen. nov. as Terrabacter tumescens comb. nov. and of Pimelobacter jensenii to Nocardioides as Nocardioides jensenii comb. nov International Journal of Systematic Bacteriology 39 1–6

    Article  CAS  Google Scholar 

  • Collins, M. D., Goodfellow, M., Minnikin, D. E. 1979 Isoprenoid quinones in the classification of coryneform and related bacteria Journal of General Microbiology 110 127–136

    Article  CAS  PubMed  Google Scholar 

  • Collins, M. D., Jones, D. 1981 The distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications Microbiological Reviews 45 316–354

    CAS  PubMed  PubMed Central  Google Scholar 

  • Collins, M. D., Jones, D., Keddie, R. M., Kroppenstedt, R. M., Schleifer, K. H. 1983 Classification of some coryneform bacteria in a new genus Aureobacterium Systematic and Applied Microbiology 4 236–252

    Article  CAS  PubMed  Google Scholar 

  • Collins, M. D., Jones, D., Kroppenstedt, R. M. 1981 Reclassification of Corynebacterium ilicis (Mandel, Guba and Litsky) in the genus Arthrobacter as Arthrobacter ilicis comb. nov Zentralblatt für Bakteriologie, Mikrobiologie und Hygiene, Abt. I., Orig. C. 2 318–323

    Google Scholar 

  • Collins, M. D., Kroppenstedt, R. M. 1983 Lipid composition as a guide to the classification of some coryneform bacteria containing an A4α type peptidoglycan (Schleifer and Kandler) Systematic and Applied Microbiology 4 95–104

    Article  CAS  PubMed  Google Scholar 

  • Collins, M. D., Shah, H. N., Minnikin, D. E. 1980 A note on the separation of natural mixtures of bacterial menaquinones using reverse-phase partition thin-layer chromatography Journal of Applied Bacteriology 48 277–282

    Article  CAS  PubMed  Google Scholar 

  • Conn, H. J. 1928 A type of bacteria abundant in productive soils, but apparently lacking in certain soils of low productivity New York State Agricultural Experimental Station Technical Bulletin No. 138 3–26

    Google Scholar 

  • Conn, H. J. 1947 A protest against the misuse of the generic name Corynebacterium Journal of Bacteriology 54 10

    CAS  PubMed  Google Scholar 

  • Conn, H. J., Dimmick, I. 1947 Soil bacteria similar in morphology to Mycobacterium and Corynebacterium Journal of Bacteriology 54 291–303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crombach, W. H. J. 1974a Relationships among coryneform bacteria from soil, cheese and sea fish Antonie van Leeuwenhoek Journal of Microbiology and Serology 40 347–359

    Article  CAS  Google Scholar 

  • Crombach, W. H. J. 1974b Morphology and physiology of coryneform bacteria Antonie van Leeuwenhoek Journal of Microbiology and Serology 40 361–376

    Article  CAS  Google Scholar 

  • Cummins, C. S., Harris, H. 1959 Taxonomic position of Arthrobacter Nature 184 831–832

    Article  Google Scholar 

  • Cure, G. L., Keddie, R. M. 1973 Methods for the morphological examination of aerobic coryneform bacteria 123–135 Board, R. G., and Lovelock, D. N. (ed.) Sampling-microbiological monitoring of environments Society for Applied Bacteriology Technical Series 7. New York Academic Press

    Google Scholar 

  • Duxbury, T., Gray, T. R. G. 1977 A microcultural study of the growth of cystites, cocci and rods of Arthrobacter globiformis Journal of General Microbiology 103 101–106

    Article  Google Scholar 

  • Ehrlich, H. C. 1963 Bacteriology of manganese nodules. I. Bacterial action on manganese in nodule enrichments Applied Microbiology 11 15–19

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrlich, H. C. 1968 Bacteriology of manganese nodules. II. Manganese oxidation by cell-free extract from a manganese nodule bacterium Applied Microbiology 16 197–202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Einck, K. H., Pattee, P. A., Holt, J. G., Hagedorn, C., Miller, J. A., Berryhill, D. L. 1973 Isolation and characterisation of a bacteriophage of Arthrobacter globiformis Journal of Virology 12 1031–1033

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ensign, J. C., Rittenberg, S. C. 1963 A crystalline pigment produced from 2-hydroxypyridine by Arthrobacter crystallopoietes n. sp Archiv für Mikrobiologie 47 137–153

    Article  CAS  PubMed  Google Scholar 

  • Ensign, J. C., Wolfe, R. S. 1964 Nutritional control of morphogenesis in Arthrobacter crystallopoietes Journal of Bacteriology 87 924–932

    CAS  PubMed  PubMed Central  Google Scholar 

  • Faller, A. H., Schleifer, K. H. 1981 Effects of growth phase and oxygen supply on the cytochrome composition and morphology of Arthrobacter crystallopoietes Current Microbiology 6 253–258

    Article  CAS  Google Scholar 

  • Fiedler, F., Schäffler, M. J. 1987 Teichoic acids in cell walls of strains of the “nicotianae” group of Arthrobacter: a chemotaxonomic marker Systematic and Applied Microbiology 9 16–21

    Article  CAS  Google Scholar 

  • Gibson, T. 1953 The taxonomy of the genus Corynebacterium Atti del VI Congresso Internazionale di Microbiologia Roma 1 16–20

    Google Scholar 

  • Giovanozzi-Sermanni, G. 1959 Una nuova specie di Arthrobacter determinante la degradazione della nicotina: Arthrobacter nicotianae. II Tabacco 63 83–86

    Google Scholar 

  • Gounot, A. M. 1967 Role biologique des Arthrobacter dans les limons souterrains Annales de I’Institut Pasteur 113 923–945

    CAS  Google Scholar 

  • Gray, T. R. G. 1976 Survival of vegetative microbes in soil Symposium of the Society for General Microbiology 26 327–364

    CAS  Google Scholar 

  • Greenberg, J., Barker, H. A. 1962 A ferrichrome-requiring arthrobacter which decomposes puromycin aminonucleoside Journal of Bacteriology 83 1163–1164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gundersen, K., Jensen, H. L. 1956 A soil bacterium decomposing organic nitro-compounds Acta Agriculturae Scandinavica 6 100–114

    Article  CAS  Google Scholar 

  • Hagedorn, C., Holt, J. G. 1975a A nutritional and taxonomic survey of Arthrobacter soil isolates Canadian Journal of Microbiology 21 353–361

    Article  CAS  PubMed  Google Scholar 

  • Hagedorn, C., Holt, J. G. 1975b Ecology of soil arthrobacters in Clarion-Webster toposequences of Iowa Applied Microbiology 29 211–218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holm, E., Jensen, V. 1972 Aerobic chemoorganotrophic bacteria of a Danish beech forest Oikos 23 248–260

    Article  Google Scholar 

  • Horvath, R. S., Alexander, M. 1970 Cometabolism of m-chlorobenzoate by an Arthrobacter Applied Microbiology 20 254–258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iizuka, H., Komagata, K. 1965 Microbiological studies on petroleum and natural gas. III. Determination of Brevibacterium, Arthrobacter, Micrococcus, Sarcina, Alcaligenes, and Achromobacter isolated from oil-brines in Japan Journal of General and Applied Microbiology 11 1–14

    Article  Google Scholar 

  • Jensen, H. L. 1933 Corynebacteria as an important group of soil microorganisms Proceedings of the Linnean Society of New South Wales 58 181–185

    CAS  Google Scholar 

  • Jensen, H. L. 1934 Studies on saprophytic mycobacteria and corynebacteria Proceedings of the Linnean Society of New South Wales 59 19–61

    Google Scholar 

  • Jensen, H. L. 1952 The coryneform bacteria Annual Review of Microbiology 6 77–90

    Article  CAS  PubMed  Google Scholar 

  • Jensen, H. L. 1964 Studies on soil bacteria (Arthrobacter globiformis) capable of decomposing the herbicide Endothal Acta Agriculturae Scandinavica 14 193–207

    Article  Google Scholar 

  • Jensen, V. 1968 The plate count technique 158–170 Gray, T. R. G., and Parkinson, D. (ed.) The ecology of soil bacteria Liverpool Liverpool University Press

    Google Scholar 

  • Jones, C. W. 1980 Cytochrome patterns in classification and identification including their relevance to the oxidase test 127–138 Goodfellow, M., and Board, R. G. (ed.) Microbial classification and identification Society for Applied Bacteriology Symposium Series 8. New York Academic Press

    Google Scholar 

  • Jones, D. 1978 An evaluation of the contribution of numerical taxonomy to the classification of the coryneform bacteria 13–46 Bousfield, I. J., and Callely, A. G. (ed.) Coryneform bacteria. Special Publications of the Society for General Microbiology I London Academic Press

    Google Scholar 

  • Jones, D., Pell, P. A., Sneath, P. H. A. 1984 Maintenance of bacteria on glass beads at −60°C to −76°C 35–40 Kirsop, B. E., and Snell, J. J. S. (ed.) Maintenance of microorganisms: A manual of laboratory methods London Academic Press

    Google Scholar 

  • Kaneko, T., Kitamura, K., Yamamoto, Y. 1969 Arthrobacter luteus nov. sp. isolated from brewery sewage Journal of General and Applied Microbiology 15 317–326

    Article  Google Scholar 

  • Katznelson, H., Cole, S. E. 1965 Production of gibberellin-like substances by bacteria and actinomycetes Canadian Journal of Microbiology 11 733–741

    Article  CAS  PubMed  Google Scholar 

  • Keddie, R. M. 1974 Arthrobacter 618–625 Buchanan, R. E., and Gibbons, N. E. (ed.) Bergey’s manual of determinative bacteriology, 8th ed Baltimore Williams & Wilkins

    Google Scholar 

  • Keddie, R. M., Bousfield, I. J. 1980 Cell wall composition in the classification and identification of coryneform bacteria 167–188 Goodfellow, M., and Board, R. G. (ed.) Microbiological classification and identification Society for Applied Bacteriology Symposium Series No. 8 New York Academic Press

    Google Scholar 

  • Keddie, R. M., Collins, M. D., Jones, D. 1986 Genus Arthrobacter 1288–1301 Sneath, P. H. A., Mair, N. S., Sharpe, M. E., and Holt, J. G. (ed.) Bergey’s manual of systematic bacteriology, vol. 2 Baltimore Williams & Wilkins

    Google Scholar 

  • Keddie, R. M., Cure, G. L. 1977 The cell wall composition and distribution of free mycolic acids in named strains of coryneform bacteria and in isolates from various natural sources Journal of Applied Bacteriology 42 229–252

    Article  CAS  PubMed  Google Scholar 

  • Keddie, R. M., Cure, G. L. 1978 Cell wall composition of coryneform bacteria 47–84 Bousfield, I. J., and Callely, A. G. (ed.) Coryneform bacteria. Special Publications of the Society for General Microbiology I London Academic Press

    Google Scholar 

  • Keddie, R. M., Jones, D. 1981 Saprophytic, aerobic coryneform bacteria 1838–1878 Starr, M. P., Stolp, H., Trüper, H. G., Balows, A., and Schlegel, H. G. (ed.) The prokaryotes: A handbook on habitats, isolation and identification of bacteria Berlin Springer-Verlag

    Google Scholar 

  • Keddie, R. M., Leask, B. G. S., Grainger, J. M. 1966 A comparison of coryneform bacteria from soil and herbage: Cell wall composition and nutrition Journal of Applied Bacteriology 29 17–43

    Article  Google Scholar 

  • Kitamura, K., Kaneko, T., Yamamoto, Y. 1972 Lysis of viable yeast cells by enzymes of Arthrobacter luteus. I. Isolation of lytic strain and studies of its lytic activity Journal of Applied and General Microbiology 18 57–71

    Article  CAS  Google Scholar 

  • Klein, D. A., Davis, J. A., Casida, L. E. Jr. 1968 Oxidation of n-alkanes to ketones by an Arthrobacter species Antonie van Leeuwenhoek Journal of Microbiology and Serology 34 495–503

    Article  CAS  Google Scholar 

  • Kolenbrander, P. E., Lotong, N., Ensign, J. C. 1976 Growth and pigment production by Arthrobacter pyridinolis n. sp Archives of Microbiology 110 239–245

    Article  CAS  PubMed  Google Scholar 

  • Kortstee, G. J. J. 1970 The aerobic decomposition of choline by microorganisms. I. The ability of aerobic organisms, particularly coryneform bacteria, to utilize choline as the sole carbon and nitrogen source Archiv für Mikrobiologie 71 235–244

    Article  CAS  PubMed  Google Scholar 

  • Kostiw, L. L., Boylen, C. W., Tyson, B. J. 1972 Lipid composition of growing and starving cells of Arthrobacter crystallopoeites Journal of Bacteriology 111 103–111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kraft, A. A., Ayres, J. C., Torrey, G. S., Salzer, R. H., da Silva, G. A. N. 1966 Coryneform bacteria in poultry, eggs and meat Journal of Applied Bacteriology 29 161–166

    Article  CAS  PubMed  Google Scholar 

  • Krulwich, T. A., Pelliccione, N. J. 1979 Catabolic pathways of coryneforms, nocardias and mycobacteria Annual Review of Microbiology 33 95–111

    Article  CAS  PubMed  Google Scholar 

  • Labeda, D. P., Liu, K. C., Casida, L. E. Jr. 1976 Colonization of soil by Arthrobacter and Pseudomonas under varying conditions of water and nutrient availability as studied by plate counts and transmission electron microscopy Applied and Environmental Microbiology 31 551–561

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lechevalier, H. A., Lechevalier, M. P. 1981 Actinomycete genera “in search of a family,” 2118–2123 Starr, M. P., Stolp, H., Trüper, H. G., Balows, A., and Schlegel, H. G. (ed.) The prokaryotes: A handbook on habitats, isolation and identification of bacteria. Berlin Springer-Verlag

    Google Scholar 

  • Lee, J. S., Pfeifer, D. K. 1977 Microbiological characteristics of Pacific shrimp (Pandalus jordani) Applied and Environmental Microbiology 33 853–859

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lochhead, A. G. 1958a Two new species of Arthrobacter requiring respectively vitamin B12 and the terregens factor Archiv für Mikrobiologie 31 163–170

    Article  Google Scholar 

  • Lochhead, A. G. 1958b Soil bacteria and growth-promoting substances Bacteriological Reviews 22 145–153

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lochhead, A. G., Burton, M. O. 1953 An essential bacterial growth factor produced by microbial synthesis Canadian Journal of Botany 31 7–22

    Article  Google Scholar 

  • Lochhead, A. G., Burton, M. O. 1956 Importance of soil extract for the enumeration and study of soil bacteria 157–161 Transactions of the 6th International Congress of Soil Science Paris

    Google Scholar 

  • Lochhead, A. G., Burton, M. O. 1957 Qualitative studies of soil micro-organisms. XIV. Specific vitamin requirements of the predominant bacterial flora Canadian Journal of Microbiology 3 35–42

    Article  CAS  PubMed  Google Scholar 

  • Loos, M. A., Roberts, R. N., Alexander, M. 1967 Phenols as intermediates in the decomposition of phenoxyacetates by an Arthrobacter species Canadian Journal of Microbiology 13 679–690

    Article  CAS  PubMed  Google Scholar 

  • Lowe, W. E., Gray, T. R. G. 1972 Ecological studies on coccoid bacteria in a pine forest soil. I. Classification Soil Biology and Biochemistry 4 459–468

    Article  Google Scholar 

  • Lund, B. M. 1969 Properties of some pectolytic, yellow pigmented, Gram-negative bacteria isolated from fresh cauliflowers Journal of Applied Bacteriology 32 60–67

    Article  CAS  PubMed  Google Scholar 

  • Luscombe, B. M., Gray, T. R. G. 1971 Effect of varying growth rate on the morphology of Arthrobacter Journal of General Microbiology 69 433–434

    Article  Google Scholar 

  • Lysenko, O. 1959 The occurrence of species of the genus Brevibacterium in insects Journal of Insect Pathology 1 34–42

    Google Scholar 

  • Mandel, M., Guba, E. F., Litsky, W. 1961 The causal agent of bacterial blight of American holly Bacteriological Proceedings 61

    Google Scholar 

  • Meyer, D. J., Jones, C. W. 1973 Distribution of cytochromes in bacteria: relationship to general physiology International Journal of Systematic Bacteriology 23 459–467

    Article  Google Scholar 

  • Minnikin, D. E., Collins, M. D., Goodfellow, M. 1978a Menaquinone patterns in the classification of nocardioform and related bacteria Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskranheit und Hygiene Abt. 1, Suppl. 6 85–90

    Google Scholar 

  • Minnikin, D. E., Goodfellow, M., Collins, M. D. 1978b Lipid composition in the classification and identification of coryneform and related taxa 85–160 Bousfield, I. J., and Callely, A. G. (ed.) Special publications of the Society for General Microbiology. I. Coryneform bacteria London Academic Press

    Google Scholar 

  • Moiroud, A., Gounot, A. M. 1969 Sur une bactérie psychrophile obligatoire isolée de limons glaciaires Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences, Serie D 269 2150–2152

    CAS  Google Scholar 

  • Morris, J. G. 1960 Studies on the metabolism of Arthrobacter globiformis Journal of General Microbiology 22 564–582

    Article  CAS  Google Scholar 

  • Morrisey, R. F., Dugan, E. P., Koths, J. S. 1976 Chitinase production by an Arthrobacter sp. lysing cells of Fusarium roseum Soil Biology and Biochemistry 8 23–28

    Article  Google Scholar 

  • Mulder, E. G., Adamse, A. D., Antheunisse, J., Deinema, M. H., Woldendorp, J. W., Zevenhuizen, L. P. T. M. 1966 The relationship between Brevibacterium linens and bacteria of the genus Arthrobacter Journal of Applied Bacteriology 29 44–71

    Article  Google Scholar 

  • Mulder, E. G., Antheunisse, J. 1963 Morphologie, physiologie et écologie des Arthrobacter Annales de I’Institut Pasteur 105 46–74

    Google Scholar 

  • Nand, K., Rao, D. V. 1972 Arthrobacter mysorens—a new species excreting L-glutamic acid Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abt. 2, Orig. 127 324–331

    CAS  Google Scholar 

  • O’Donnell, A. G., Goodfellow, M., Minnikin, D. E. 1982 Lipids in the classification of Nocardioides: reclassification of Arthrobacter simplex (Jensen) Lochhead in the genus Nocardioides (Prauser) emend. O’Donnell et al. as Nocardioides simplex comb. nov Archive für Mikrobiologie 133 323–329

    Article  Google Scholar 

  • Owens, J. D., Keddie, R. M. 1969 The nitrogen nutrition of soil and herbage coryneform bacteria Journal of Applied Bacteriology 32 338–347

    Article  CAS  PubMed  Google Scholar 

  • Park, Y-H., Hori, H., Suzuki, K.-I., Osawa, S., Komagata, K. 1987 Phylogenetic analysis of the coryneform bacteria by 5S rRNA sequences Journal of Bacteriology 169 1801–1806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivière, J. 1963 Action des microorganismes de la rhizosphère sur la croissance du blé. II. Isolement et caractérisation des bactéries produisant des phytohormones Annales de L’Institut Pasteur 105 303–314

    Google Scholar 

  • Robinson, J. B., Salonius, P. O., Chase, F. E. 1965 A note on the differential response of Arthrobacter spp. and Pseudomonas spp. to drying in soil Canadian Journal of Microbiology 11 746–748

    Article  CAS  PubMed  Google Scholar 

  • Roth, N. G., Wheaton, R. B. 1962 Continuity of psychrophilic and mesophilic growth characteristics in the genus Arthrobacter Journal of Bacteriology 83 551–555

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sacks, L. E. 1954 Observations on the morphogenesis of Arthrobacter citreus, spec. nov Journal of Bacteriology 67 342–345

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders, J. E., Fryer, J. L. 1980 Renibacterium salmoninarum gen. nov. spec. nov., the causative agent of bacterial kidney disease in salmonid fishes International Journal of Systematic Bacteriology 30 496–502

    Article  CAS  Google Scholar 

  • Schefferle, H. E. 1966 Coryneform bacteria in poultry deep litter Journal of Applied Bacteriology 29 147–160

    Article  Google Scholar 

  • Schleifer, K. H., Kandler, O. 1972 Peptidoglycan types of bacterial cell walls and their taxonomic implications Bacteriological Reviews 36 407–477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schleifer, K. H., Seidl, P. H. 1985 Chemical composition and structure of murein 201–219 Goodfellow, M. and Minnikin, D. E. (ed.) Chemical methods in bacterial systematics. Society for Applied Bacteriology Technical series no. 20 London Academic Press

    Google Scholar 

  • Seidman, P., Chan, E. C. S. 1969 Growth of Arthrobacter citreus in a chemically-defined medium and its requirement for chelating agents with schizokinen activity Journal of General Microbiology 58 v

    CAS  PubMed  Google Scholar 

  • Seiler, H., Braatz, R., Ohmeyer, G. 1980 Numerical cluster analysis of coryneform bacteria from activated sludge Zentralblatt für Bakteriologie, Parazitenkunde, Infektionskrankheiten und Hygiene Abt 1. Orig C. 1 357–375

    Google Scholar 

  • Sethunathan, N., Pathak, M. D. 1971 Development of a diazinon-degrading bacterium in paddy water after repeated application of diazinon Canadian Journal of Microbiology 17 699–702

    Article  CAS  PubMed  Google Scholar 

  • Sguros, P. L. 1955 Microbial transformations of the tobacco alkaloids. I. Cultural and morphological characteristics of a nicotinophile Journal of Bacteriology 69 28–37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharpee, K. W., Duxbury, J. M., Alexander, M. 1973 2,4-Dichlorophenoxyacetate metabolism by Arthrobacter sp.: Accumulation of a chlorobutenolide Applied Microbiology 26 445–447

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw, N., Stead, A. 1971 Lipid composition of some species of Arthrobacter Journal of Bacteriology 107 130–133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sieburth, J. McN. 1964 Polymorphism of a marine bacterium (Arthrobacter) as a function of multiple temperature optima and nutrition. Proceedings of the Symposium on Experimental Marine Ecology Occasional Publication No. 2 11–16

    Google Scholar 

  • Skyring, G. W., Quadling, C. 1969 Soil bacteria: Comparisons of rhizosphere and nonrhizosphere populations Canadian Journal of Microbiology 15 473–488

    Article  CAS  PubMed  Google Scholar 

  • Skyring, G. W., Quadling, C. 1970 Soil bacteria: A principal component analysis and guanine-cytosine contents of some arthrobacter-coryneform soil isolates and of some named cultures Canadian Journal of Microbiology 16 95–106

    Article  CAS  PubMed  Google Scholar 

  • Skyring, G. W., Quadling, C., Rouatt, J. W. 1971 Soil bacteria: Principal component analysis of physiological descriptions of some named cultures of Agrobacterium, Arthrobacter, and Rhizobium Canadian Journal of Microbiology 17 1299–1311

    Article  CAS  PubMed  Google Scholar 

  • Smyk, B. 1970 Fixation of atmospheric nitrogen by the strains of Arthrobacter Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten and Hygiene, Abt. 2 Orig. 124 231–237

    CAS  Google Scholar 

  • Smyk, B. N., Ettlinger, L. 1963 Recherches sur quelque espèces d’arthrobacter fixatrices d’azote isolées des roches karstiques alpines Annales de L’Institut Pasteur 105 341–348

    CAS  PubMed  Google Scholar 

  • Soumare, S., Blondeau, R. 1972 Caractéristiques microbiologiques des sol de la région du nord de la France: Importance des “Arthrobacters.”. Annales de L’Institut Pasteur 123 239–249

    CAS  PubMed  Google Scholar 

  • Splittstoesser, D. F., Wexler, M., White, J., Colwell, R. R. 1967 Numerical taxonomy of Gram-positive and catalase-positive rods isolated from frozen vegetables Applied Microbiology 15 158–162

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stackebrandt, E., Fiedler, F. 1979 DNA-DNA homology studies among Arthrobacter and Brevibacterium Archives of Microbiology 120 289–295

    Article  CAS  PubMed  Google Scholar 

  • Stackebrandt, E., Fowler, V. J., Fiedler, F., Seiler, H. 1983 Taxonomic studies on Arthrobacter nicotianae and related taxa. Description of Arthrobacter uratoxydans sp. nov. and Arthrobacter sulfureus sp. nov. and reclassification of Brevibacterium protophormiae as Arthrobacter protophormiae comb. nov Systematic and Applied Microbiology 4 470–486

    Article  CAS  PubMed  Google Scholar 

  • Stackebrandt, E., Lewis, B. J., Woese, C. R. 1980 The phylogenetic structure of the coryneform group of bacteria Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abt. 2, Orig. C 1 137–149

    Google Scholar 

  • Stackebrandt, E., Woese, C. R. 1981 The evolution of the prokaryotes 1–3 Carlile, M. J., Collins, J. F., and Moseley, B. E. B. (ed.) Molecular and cellular aspects of microbial evolution. Symposium of the Society for General Microbiology 32 Cambridge Cambridge University Press

    Google Scholar 

  • Stevenson, I. L. 1967 Utilization of aromatic hydrocarbons by Arthrobacter spp Canadian Journal of Microbiology 13 205–211

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, K., Collins, M. D., Iijima, E., Komagata, K. 1988 Chemotaxonomic characterization of a radiotolerant bacterium Arthrobacter radiotolerans: description of Rubrobacter radiotolerans gen. nov., comb. nov FEMS Microbiology Letters 52 33–40

    Article  CAS  Google Scholar 

  • Suzuki, K., Komagata, K. 1983 Pimelobacter gen. nov.—a new genus of coryneform bacteria with LL-diaminopimelic acid in the cell wall Journal of General and Applied Microbiology 29 59–71

    Article  CAS  Google Scholar 

  • Szajer, C., Koths, J. S. 1973 Physiological properties and enzymatic activity of an Arthrobacter capable of lysing Fusarium sp Acta Microbiologica Polonica Series B 5 81–86

    CAS  Google Scholar 

  • Tanaka, K., Kimura, K. 1972 Process for producing L-glutamic acid and alpha-ketoglutaric acid United States Patent No. 3,642,576.

    Google Scholar 

  • Tanenbaum, S. W., Flashner, M. 1977 Arthrobacter sialophilus sp. nov. a neuramidase-producing coryneform Canadian Journal of Microbiology 23 1568–1572

    Article  CAS  PubMed  Google Scholar 

  • Tate, R. L., Ensign, J. C. 1974 A new species of Arthrobacter which degrades picolinic acid Canadian Journal of Microbiology 20 691–694

    Article  CAS  PubMed  Google Scholar 

  • Taylor, C. B., Lochhead, A. G. 1937 A study of Bacterium globiforme Conn in soils differing in fertility Canadian Journal of Research C 15 340–347

    Article  Google Scholar 

  • Topping, L. E. 1937 The predominant micro-organisms in soils. I. Description and classification of the organisms Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abt. 2 Orig. 97 289–304

    Google Scholar 

  • Topping, L. E. 1938 The predominant micro-organisms in soils. II. The relative abundance of the different types of organisms obtained by plating, and the relation of plate to total counts. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abt. 2 Orig 98 193–201

    Google Scholar 

  • Veldkamp, H. 1965 The isolation of Arthrobacter Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abt. 1 Orig. Suppl. 1 265–269

    Google Scholar 

  • Veldkamp, H., van den Berg, G., Zevenhuizen, L. P. T. M. 1963 Glutamic acid production by Arthrobacter globiformis Antonie van Leeuwenhoek Journal of Microbiology and Serology 29 35–51

    Article  CAS  Google Scholar 

  • Veldkamp, H., Venema, P. A. A., Harder, W., Konings, W. N. 1966 Production of riboflavin by Arthrobacter globiformis Journal of Applied Bacteriology 29 107–113

    Article  CAS  Google Scholar 

  • Williams, S. T., Davies, F. L. 1965 Use of antibiotics for selective isolation and enumeration of actinomycetes in soil Journal of General Microbiology 38 251–261

    Article  CAS  PubMed  Google Scholar 

  • Wood, E. J. F. 1950 The bacteriology of shark spoilage Australian Journal of Marine and Freshwater Research 1 129–138

    Article  Google Scholar 

  • Yamada, K., Komagata, K. 1972 Taxonomic studies on coryneform bacteria. IV. Morphological, cultural, biochemical and physiological characteristics Journal of General and Applied Microbiology 18 399–416

    Article  Google Scholar 

  • Yamada, Y., Motoi, H., Kinoshita, S., Takada, N., Okada, H. 1975 Oxidative degradation of squalene by Arthrobacter species Applied Microbiology 29 400–404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada, Y., Inouye, G., Tahara, Y., Kondo, K. 1976 The menaquinone system in the classification of coryneform and nocardioform bacteria and related organisms Journal of General and Applied Microbiology 22 203–214

    Article  CAS  Google Scholar 

  • Zevenhuizen, L. P. T. M. 1966 Formation and function of the glycogen-like polysaccharide of Arthrobacter Antonie van Leeuwenhoek Journal of Microbiology and Serology 32 356–372

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Jones, D., Keddie, R.M. (2006). The Genus Arthrobacter. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30743-5_36

Download citation

Publish with us

Policies and ethics