Mycobacterium leprae

  • Thomas M. Shinnick
Firmicutes with High GC Content of DNA

Abstract

Although Mycobacterium leprae was one of the first bacterial pathogens of humans to be described (Hansen, 1874), progress on understanding the basic biology and pathogenicity of this organism has been greatly hampered by the inability to find a conventional laboratory medium or tissue culture system that can support its growth. Consequently, the only means of propagating this organism at present is by using experimental animals. Furthermore, it has been found that the nine-banded armadillo can be used to produce large numbers of bacilli (Kirchheimer and Storrs, 1971; Storrs, 1971). Relatively little is known, therefore, about the taxonomy, genetics, and biochemistry of this species. A corollary of this is that much of what we do know about M. leprae has come from studies of the disease it causes (leprosy or Hansen’s disease) and from the animal models. As such, this chapter emphasizes the characteristics and behavior of M. leprae in experimental animal model systems and in humans. Several excellent reviews on the clinical aspects, epidemiology, immunology, and pathology of leprosy and on the biochemistry and immunochemistry of M. leprae have been published recently, and the reader is referred to these for additional information (Bloom and Godal, 1983; Bloom and Mehra, 1984; Fine, 1982; Gaylord and Brennan, 1987; Hastings, 1986; Hastings and Franzblau, 1988; Jopling and McDougall, 1988; Kaplan and Cohn, 1986; Stewart-Tull, 1982).

Although M. leprae can occasionally be found in the body extracellularly, the bacillis appears to be able to replicate only within cells of the host, most commonly in macrophages and Schwann cells (Bloom and Godal, 1983; Kaplan and Cohn, 1986). Hence, M. leprae is considered to be an obligate intracellular pathogen. In host cells, the bacilli are found singly or in clumps referred to as globi (Cowdry, 1940). The bacilli are straight or slightly curved, Gram-positive, acid-fast, alcohol-fast, nonmotile rods ranging from 1 to 8 µm in length and 0.2 to 0.5 µm in width (Draper, 1983). Acid- and alcohol-fastness refers to the ability of the bacillus to retain the color of certain dyes, usually carbol fuchsin, following treatment with mild acid and alcohol, respectively.

M. leprae has been placed in the genus Mycobacterium in the family Actinomycetales based mainly on cell structure, staining properties and chemical composition as well as on the basis of the presence of mycolic acids, antigens characteristic of mycobacteria, and a lipid-rich cell envelope (Draper, 1976; Harboe et al., 1977; Stanford et al., 1975). For example, the M. leprae bacillus closely resembles M. tuberculosis bacilli in size, morphology, and staining characteristics, although it does stain a little more deeply with carbol fuchsin and the staining is somewhat less acid fast. Recently, analyses of the ribosomal RNA sequences of armadillo-grown M. leprae by nucleic acid hybridization techniques (Sela et al., 1989) and by ribosomal RNA sequence comparisons (Smida et al., 1988) revealed that M. leprae is closely related to the corynebacteria, nocardia, and mycobacteria, especially to the two slowly growing Mycobacterium species M. avium and M. tuberculosis. Although these observations indicate that M. leprae should be classified in the genus Mycobacterium, several features distinguish M. leprae from other members of the Mycobacterium genus. These are: 1) loss of acid-fastness upon extraction with pyridine, although M. smegmatis, M. vaccae, and M. phlei do lose acid fastness after prolonged exposure to pyridine (Fisher and Barksdale, 1971; McCormick and Sanchez, 1979; Skinsnes et al., 1975); 2) ability to oxidize 3,4-dihydroxyphenylalanine (Prabhakaran and Kirchheimer, 1966); 3) replacement of L-alanine with glycine in the linking peptide of peptidoglycan (Draper, 1976); 4) 56% GC content as compared with 65–70% for most Mycobacterium species (Clark-Curtiss et al., 1985; Imaeda et al., 1982; Wayne and Gross, 1968); and 5) lack of substantial genomic DNA homology with other Mycobacterium species (quite in contrast with the ribosomal rRNA results) (Athwal et al., 1984; Grosskinski et al., 1989). Although these differences are not sufficient to exclude M. leprae from the genus Mycobacterium, they are sufficient to render the final taxonomic position of M. leprae somewhat in doubt.

Literature Cited

  1. Abe, M., F. Ninagowa, Y. Yoshino, T. Ozawa, K. Saikawa, T. Saito. 1980 Int. J. Lepr. 48 109Google Scholar
  2. Athwal, R. S., S. S. Deo, T. Imaeda. 1984 Deoxyribonucleic acid relatedness among Mycobacterium leprae, Mycobacterium tuberculosis, and selected bacteria by dot blot and spectrophotometric deoxyribonucleic acid hybridization assays Int. J. Syst. Bacteriol. 34 1136–1141CrossRefGoogle Scholar
  3. Barton, R. F. E. 1974 A clinical study of the nose in leprosy Lepr. Rev. 45 135–144PubMedGoogle Scholar
  4. Binford, C. E. 1959 Histiocytic granulomatous mycobacterial lesions produced in the golden hamster (Cricetus auratus) inoculated with human leprosy—negative results using other animals Lab. Invest. 8 901–924PubMedGoogle Scholar
  5. Bloom, B. R., V. Mehra. 1984 Immunological unresponsiveness in leprosy Immunol. Rev. 80 5–28PubMedCrossRefGoogle Scholar
  6. Bloom, B. R., T. Godal. 1983 Selective primary health care: Strategies for control of disease in the developing world V. Leprosy. Rev. Infect. Dis. 5 765–780PubMedCrossRefGoogle Scholar
  7. Brennan, P. J. 1983 The phthiocerol-containing surface lipids of Mycobacterium leprae: a perspective of past and present work Int. J. Lepr. 51 387–396Google Scholar
  8. Brenner, D. J. 1989 DNA hybridization for characterization, classification, and identification of bacteria 75–103 B. Swaminathan and G. Prakash (ed.) Nucleic Acid and Monoclonal Antibody Probes: Applications in Diagnostic Microbiology Marcel Dekker, Inc. New YorkGoogle Scholar
  9. Browne, S. G. 1975 Some aspects of the history of leprosy: the leprosy of yesteryear Proc. R. Soc. Med. 68 485–493PubMedPubMedCentralGoogle Scholar
  10. Butler, W. R., J. O. Kilburn. 1988 Identification of major slow-growing pathogenic mycobacteria and Mycobacterium gordonae by high-performance liquid chromatography of their mycolic acids J. Clin. Microbiol. 26 50–53PubMedPubMedCentralGoogle Scholar
  11. Chan, J., T. Fujiwara, P. Brennan, M. McNeil, S. J. Turco, J.-C. Sibille, M. Snapper, P. Aisen, B. R. Bloom. 1989 Microbial glycolipids: Possible virulence factors that scavenge oxygen radicals Proc. Natl. Acad. Sci. USA 86 2453–2457PubMedPubMedCentralCrossRefGoogle Scholar
  12. Chatterjee, D., C. M. Bozic, C. Kinsley, S.-N. P. J. Brennan. 1989 Phenolic glycolipids of Mycobacterium bovis: New structures and synthesis of a corresponding seroreactive neoglycoprotein Infect. Immun. 57 322–330PubMedPubMedCentralGoogle Scholar
  13. Chehl, S., C. K. Job, R. C. Hastings. 1985 The nose: a site for the transmission of leprosy in nude mice Am. J. Trop. Med. Hyg. 34 1161–1166PubMedGoogle Scholar
  14. Chehl, S., J. Ruby, C. K. Job, R. C. Hastings. 1983 The growth of Mycobacterium leprae in nude mice Lepr. Rev. 54 283–304PubMedGoogle Scholar
  15. Cho, S., S. W. Hunter, R. H. Gelber, T. H. Rea, P. J. Brennan. 1986 Quantitation of the phenolic glycolipid of Mycobacterium leprae and relevance to glycolipid antigenemia in leprosy J. Infect. Dis. 153 560–569PubMedCrossRefGoogle Scholar
  16. Cho, S., D. L. Yanagihara, S. W. Hunter, R. H. Gelber, P. J. Brennan. 1983 Serological specificity of phenolic glycolipid I from Mycobacterium leprae and use in serodiagnosis of leprosy Infect. Immun. 41 1077–1083PubMedPubMedCentralGoogle Scholar
  17. Clark-Curtis, J. E., M. A. Docherty. 1989 A species-specific repetitive sequence in Mycobacterium leprae DNA J. Infect. Dis. 159 7–15CrossRefGoogle Scholar
  18. Clark-Curtiss, J. E., W. R. Jacobs, M. A. Docherty, L. R. Ritchie, R. Curtiss III. 1985 Molecular analysis of DNA and construction of genomic libraries of Mycobacterium leprae J. Bacteriol. 161 1093–1102PubMedPubMedCentralGoogle Scholar
  19. Clark-Curtiss, J. E., G. P. Walsh. 1989 Conservation of genomic sequences among isolates of Mycobacterium leprae J. Bacteriol. 171 4844–4851PubMedPubMedCentralCrossRefGoogle Scholar
  20. Collaborative effort of the U.S. Leprosy Panel of the U.S.-Japan Cooperative Medical Sciences Program the Leonard Wood Memorial. 1975 Rifampin therapy of lepromatous leprosy Am. J. Trop. Med. Hyg. 24 475–484Google Scholar
  21. Colston, M. J., G. R. F. Hilson. 1976 Growth of Mycobacterium leprae and M. marinum in congenitally athymic (nude) mice Nature 262 399–401PubMedCrossRefGoogle Scholar
  22. Colston, M. J., G. R. F. Hilson. 1979 The effect of freezing and storage in liquid nitrogen on the viability and growth of Mycobacterium leprae J. Med. Micro. 12 137–142CrossRefGoogle Scholar
  23. Cowdry, E. V. 1940 Cytologic Studies on globi in leprosy Am. J. Pathol. 16 103–136PubMedPubMedCentralGoogle Scholar
  24. Daffe, M., M. A. Laneelle, C. Lacave, G. Laneelle. 1988 Monoglycosyldiacylphenol-pthiocerol of Mycobacterium tuberculosis and Mycobacterium bovis Biochim. Biophys. Acta 958 443–449PubMedCrossRefGoogle Scholar
  25. d’Arcy Hart, P. 1982 Lysosome fusion responses of macrophages to infection: behaviour and significance 437–447 M. L. Karnovsky and L. Bolis (ed.) Phagocytosis: past and future Academic Press New YorkCrossRefGoogle Scholar
  26. Davey, T. F., R. J. W. Rees. 1974 The nasal discharge in leprosy: clinical and bacteriological aspects Lepr. Rev. 45 121–134PubMedGoogle Scholar
  27. Desai, S. D., T. J. Birdi, N. H. Antia. 1989 Correlation between macrophage activation and bactericidal function and Mycobacterium leprae antigen presentation in macrophages of leprosy patients and normal individuals Infect. Immun. 57 1311–1317PubMedPubMedCentralGoogle Scholar
  28. Desikan, K. V., C. K. Job. 1968 A review of postmortem findings in 37 cases of leprosy Int. J. Lepr. 36 31–44Google Scholar
  29. Donham, K. J., J. R. Leininger. 1977 Spontaneous leprosy-like disease in a chimpanzee J. Infect. Dis. 136 132–136PubMedCrossRefGoogle Scholar
  30. Draper, P. 1976 The cell walls of Mycobacterium leprae Int. J. Lepr. 44 95–98Google Scholar
  31. Draper, P. 1983 The bacteriology of Mycobacterium leprae Tubercle 64 43–56PubMedCrossRefGoogle Scholar
  32. Draper, P., R. J. W. Rees. 1970 Electron-transparent zone of mycobacterium may be a defence mechanism Nature 228 860–861PubMedCrossRefGoogle Scholar
  33. Fieldsteel, A. H., L. Levy. 1976 Neonatally thymectomized Lewis rats infected with Mycobacterium leprae: response to primary infection, secondary challenge, and large inocula Infect. Immun. 14 736–741PubMedPubMedCentralGoogle Scholar
  34. Fine, P. E. M. 1982 Leprosy: The epidemiology of a slow-growing bacterium Epidemiol. Rev. 4 161–188PubMedGoogle Scholar
  35. Fisher, C. A., L. Barksdale. 1971 Elimination of the acid-fastness but not the gram positivity of leprosy bacilli after extraction with pyridine J. Bacteriol. 106 707–708PubMedPubMedCentralGoogle Scholar
  36. Franzblau, S. G. 1988 Oxidation of palmitic acid by Mycobacterium leprae in an axenic medium J. Clin. Microbiol. 26 18–21PubMedPubMedCentralGoogle Scholar
  37. Franzblau, S. G., E. B. Harris, R. C. Hastings. 1987 Axenic incorporation of [U-14C] palmitic acid into phenolic glycolipid I of Mycobacterium leprae FEMS Microbiol. Lett. 48 107–114CrossRefGoogle Scholar
  38. Franzblau, S. G., R. C. Hastings. 1987 Rapid in vitro metabolic screen for antileprosy compounds Antimicrob. Agents Chemother. 31 780–783PubMedPubMedCentralCrossRefGoogle Scholar
  39. Frehel, C., N. Rastogi. 1987 Mycobacterium leprae surface components intervene in the early phagosome-lysosome fusion inhibition event Infect. Immun. 55 2916–2921PubMedPubMedCentralGoogle Scholar
  40. Gaylord, H., P. J. Brennan. 1987 Leprosy and the leprosy bacillus: recent developments in characterization of antigens and immunology of the disease Annu. Rev. Microbiol. 41 645–675PubMedCrossRefGoogle Scholar
  41. Grange, J. M., T. J. Rowbotham. 1987 Microbe dependence of Mycobacterium leprae: A possible intracellular relationship with protozoa Int. J. Lepr. 55 565–566Google Scholar
  42. Greater, J. G. 1975 The fly as potential vector in the transmission of leprosy Lepr. Rev. 46 279–286Google Scholar
  43. Grosskinsky, C. M., W. R. Jr. Jacobs, J. E. Clark-Curtiss, B. R. Bloom. 1989 Genetic relationships between Mycobacterium leprae, Mycobacterium tuberculosis, and candidate leprosy vaccine strains by DNA hybridization: Identification of an M. leprae-specific repetitive sequence Infect. Immun. 57 1535–1541PubMedPubMedCentralGoogle Scholar
  44. Guatelli, J. C., T. R. Gingeras, D. D. Richman. 1989 Nucleic acid amplification in vitro: Detection of sequences with low copy numbers and application to diagnosis of human immunodeficiency virus type 1 infection Clin. Microbiol. Rev. 2 217–226PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hanks, J. H., B. R. Chatterjee, M. F. Lechat. 1964 A guide to the counting of mycobacteria in clinical and experimental materials Int. J. Lepr. 32 156–167PubMedGoogle Scholar
  46. Hansen, G. A. 1874 Causes of Leprosy Norsk. Mag. for Laegervidenskaben 4 1–88Google Scholar
  47. Hansen, G. A., C. Looft. 1895 Leprosy: in its clinical and pathological aspects Reprinted by John Wright, 1973 BristolGoogle Scholar
  48. Harboe, M., O. Closs, B. Bjorvatn, G. Kronvall, N. H. Axelsen. 1977 Antibody response in rabbits to immunization with Mycobacterium leprae Infect. Immun. 18 792–805PubMedPubMedCentralGoogle Scholar
  49. Hastings, R. C. (ed.). 1986 Leprosy Churchill Livingstone Edinburgh New YorkGoogle Scholar
  50. Hastings, R. C., Franzblau, S. G. 1988 Chemotherapy of leprosy Annu. Rev. Toxicol. 28 231–45CrossRefGoogle Scholar
  51. Hilson, G. R. F. 1965 Observations on the inoculation of M. leprae in the foot pad of the white rat Int. J. Lepr. 33 662–665Google Scholar
  52. Hunter, S. W., P. J. Brennan. 1981 A novel phenolic glycolipid from Mycobacterium leprae possibly involved in immunogenicity and pathogenicity J. Bacteriol. 147 728–735PubMedPubMedCentralGoogle Scholar
  53. Hunter, S. W., T. Fujiwara, P. J. Brennan. 1982 Structure and antigenicity of the major specific glycolipid antigen of Mycobacterium leprae J. Biol. Chem. 257 15072–15078PubMedGoogle Scholar
  54. Imaeda, T., W. F. Kirchheimer, L. Barksdale. 1982 DNA isolated from Mycobacterium leprae: genome size, base ratio, and homology with other related bacteria as determined by optical DNA-DNA reassociation J. Bacteriol. 150 414–417PubMedPubMedCentralGoogle Scholar
  55. Jenkins, P. A., S. R. Pattyn, F. Portaels. 1982 Diagnostic Bacteriology 441–470 C. Ratledge and J. Stanford (ed.) The Biology of the Mycobacteria, vol. 1 Academic Press LondonGoogle Scholar
  56. Job, C. K. 1971 Pathology of peripheral nerve lesions in lepromatous leprosy. A light and electron microscopic study Int. J. Lepr. 39 251–268Google Scholar
  57. Jopling, W. H., A. C. McDougall. 1988 Handbook of Leprosy Heinemann Professional Publishing Ltd OxfordGoogle Scholar
  58. Kaplan, G., Z. A. Cohn. 1986 The immunobiology of leprosy Int. Rev. Exp. Pathol. 28 45–78PubMedGoogle Scholar
  59. Kazda, J. 1981a Occurrence of non-cultivatable acid-fast bacilli in the environment and their relationship to M. leprae Lepr. Rev. 52 (Suppl. 1) 85–92PubMedGoogle Scholar
  60. Kazda, J. 1981b Nine-banded armadillos in captivity: prevention of losses due to parasitic diseases. Some remarks on mycobacteria-free maintenance Int. J. Lepr. 49 345–346Google Scholar
  61. Kazda, J., R. Ganapati, C. Revankar, T. M. Buchanan, D. B. Young, L. M. Irgens. 1986 Isolation of environment-derived Mycobacterium leprae from the soil in Bombay Lepr. Rev. 57 (Suppl. 3) 201–208PubMedGoogle Scholar
  62. Kirchheimer, W. F. 1976 The role of arthropods in the transmission of leprosy Int. J. Lepr. 44 104–107Google Scholar
  63. Kirchheimer, W. F., E. E. Storrs. 1971 Attempts to establish the armadillo (Dasypus novemcinctus Linn.) as a model for the study of leprosy. 1. Report of lepromatoid leprosy in an experimentally infected armadillo Int. J. Lepr. 39 693–702Google Scholar
  64. Koch, R. 1897 Die Lepraerkrankungen in Kreise Memel Abstracted in Baumgartens Jahresbericht 14 428Google Scholar
  65. Koster, F. T., D. M. Scollard, E. T. Umland, D. B. Fishbein, W. C. Hanley, P. J. Brennan, K. E. Nelson. 1987 Cellular and humoral immune response to a phenolic glycolipid antigen (PGL-I) in patients with leprosy J. Clin. Microbiol. 25 551–556PubMedPubMedCentralGoogle Scholar
  66. Levy, L. 1976 Studies on the mouse foot pad technique for cultivation of Mycobacterium leprae. 3. Doubling time during logarithmic multiplication Lepr. Rev. 47 103–106PubMedGoogle Scholar
  67. Lumpkin, L. R., G. F. Fox, J. E. Wolf. 1983 Leprosy in five armadillo handlers J. Am. Acad. Dermatol. 9 899–903PubMedCrossRefGoogle Scholar
  68. McCormick, G. T., R. M. Sanchez. 1979 Pyridine extractability of acid-fastness of M. leprae Int. J. Lepr. 47 495–499Google Scholar
  69. McWhirter, N. (ed.). 1981 Guiness Book of Records. 28th ed Trowbridge: Redwood Burn Ltd.Google Scholar
  70. Mehra, V., P. J. Brennan, E. Rada, J. Convit, B. R. Bloom. 1984 Lymphocyte suppression in leprosy induced by unique M. leprae glycolipid Nature 308 194–196PubMedCrossRefGoogle Scholar
  71. Meyers, W. M., G. P. Walsh, H. L. Brown, C. H. Binford, G. D. Jr. Imes, T. L. Hadfield, C. J. Schlagel, Y. Fukunishi, P. J. Gerone, R. H. Wolf, B. J. Gormus, L. N. Martin, M. Harboe, T. Imaeda. 1985 Leprosy in a Mangabey monkey—naturally acquired infection Int. J. Lepr. 53 1–14Google Scholar
  72. Mittal, A., M. Sathish, P. S. Seshadri, I. Nath. 1983 Rapid radiolabeled-microculture method that uses macrophages for in vitro evaluation of Mycobacterium leprae viability and drug susceptibility J. Clin. Microbiol. 17 704–707PubMedPubMedCentralGoogle Scholar
  73. Mor, N. 1983 Intracellular location of Mycobacterium leprae in macrophages of normal and immunodeficient mice and effect of rifampicin Infect. Immun. 42 802–811PubMedPubMedCentralGoogle Scholar
  74. Mullis, K. B., F. A. Faloona. 1987 Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction Methods in Enzymol. 155 335–350CrossRefGoogle Scholar
  75. Narayanan, E., Sreevetsa, W. F., Kirchheimer, B. M. S., Bedi. 1977 Transfer of leprosy bacilli from patients to mouse foot pads by Aedes aegypti Leprosy in India 49 181–186PubMedGoogle Scholar
  76. Pallen, M. J., R. D. McDermott. 1986 How might Mycobacterium leprae enter the body Lepr. Rev. 57 289–297PubMedGoogle Scholar
  77. Payne, S. N., P. Draper, R. J. W. Rees. 1982 Serological activity of purified glycolipid from Mycobacterium leprae Int. J. Lepr. 50 220–221Google Scholar
  78. Pedley, J. C. 1968 The presence of M. leprae in the lumina of the female mammary gland Lepr. Rev. 39 201PubMedGoogle Scholar
  79. Portaels, F., K. Fissette, K. De Ridder, P. M. Macedo, A. De Muynck, M. T. Silva. 1988 Effects of freezing and thawing on the viability and the ultrastructure of in vivo grown mycobacteria Int. J. Lepr. 56 580–587Google Scholar
  80. Prabhakaran, K. 1967 Oxidation of 3,4-dihydroxyphenylalanine (DOPA) by Mycobacterium leprae Int. J. Lepr. 35 42–51Google Scholar
  81. Prabhakaran, K., W. F. Kirchheimer. 1966 Use of 3,4-dihydroxyphenylalanine oxidation in the identification of Mycobacterium leprae J. Bacteriol. 92 1267–1268PubMedPubMedCentralGoogle Scholar
  82. Prasad, H. K., R. S. Mishra, I. Nath. 1987 Phenolic glycolipid I of Mycobacterium leprae induces general suppression of in vitro concanavalin A responses unrelated to leprosy type J. Exp. Med. 165 239PubMedCrossRefGoogle Scholar
  83. Ramasesh, N., R. C. Hastings, J. L. Krahenbuhl. 1987 Metabolism of Mycobacterium leprae in macrophages Infect. Immun. 55 1203–1206PubMedPubMedCentralGoogle Scholar
  84. Rastogi, N., H. L. David. 1988 Mechanisms of pathogenicity in mycobacteria Biochemie 70 1101–1120CrossRefGoogle Scholar
  85. Rees, R. J. W. 1966 Enhanced susceptibility of thymectomized and irradicated mice to infection with Mycobacterium leprae Nature 211 657–658PubMedCrossRefGoogle Scholar
  86. Rees, R. J. W., A. C. McDougall. 1976 Airborne infection with Mycobacterium leprae in mice Int. J. Lepr. 44 99–103Google Scholar
  87. Ridley, D. S., W. H. Jopling. 1966 Classification of leprosy according to immunity. A five-group system Int. J. Lepr. 34 255–273Google Scholar
  88. Ridley, M. J., M. F. R. Waters, D. S. Ridley. 1987 Events surrounding the recognition of Mycobacterium leprae in nerves Int. J. Lepr. 55 99–108Google Scholar
  89. Sanchez, G. A., A. Malik, C. Tougne, P. H. Lambert, H. D. Engers. 1986 Simplification and standardization of serodiagnostic tests based on phenolic glycolipid I (PGL-I) antigen Lepr. Rev. 57 (Suppl. 2) 83–93Google Scholar
  90. Sansarricq, H. 1981 Leprosy in the world today Lepr. Rev. 51 (Suppl. 1) 15–31Google Scholar
  91. Schaffer, X. 1898 Ueber der Verbreitung der Leprabacillen von den oberen Luftwegen aus Arch. Dermatol. Syphil. 44 159–174CrossRefGoogle Scholar
  92. Sela, S., J. E. Clark-Curtiss, H. Bercovier. 1989 Characterization and taxonomic implications of the rRNA genes of Mycobacterium leprae J. Bacteriol. 171 70–73PubMedPubMedCentralCrossRefGoogle Scholar
  93. Shepard, C. C. 1960 The experimental disease that follows the injection of human leprosy bacilli into the footpads of mice J. Exp. Med. 12 445–454CrossRefGoogle Scholar
  94. Shepard, C. C. 1962 The nasal excretion of Mycobacterium leprae in leprosy Int. J. Lepr. 30 10–18PubMedGoogle Scholar
  95. Shepard, C. C. 1965 Stability of Mycobacterium leprae and temperature optimum for growth Int. J. Lepr. 33 541–547Google Scholar
  96. Shepard, C. C. 1971 A survey of drugs with activity against M. leprae in mice Int. J. Lepr. 39 340–348Google Scholar
  97. Shepard, C. C. 1986 Experimental Leprosy 269–286 R. C. Hastings (ed.) Leprosy Churchill Livingstone EdinburghGoogle Scholar
  98. Shepard, C. C., R. S. Guinto. 1963 Immunological identification of foot-pad isolates as Mycobacterium leprae by lepromin reactivity in leprosy patients J. Exp. Med. 118 195–204PubMedPubMedCentralCrossRefGoogle Scholar
  99. Shepard, C. C., D. H. McRae. 1965a Mycobacterium leprae in mice: Minimal infectious dose, relationship between staining and infectivity, and effect of cortisone J. Bacteriol. 89 365–372PubMedPubMedCentralGoogle Scholar
  100. Shepard, C. C., D. H. McRae. 1965b Mycobacterium leprae: Viability at 0°C, 31°C, and during freezing Int. J. Lepr. 33 316–323PubMedGoogle Scholar
  101. Shepard, C. C., D. H. McRae. 1968 A method for counting acid-fast bacteria Int. J. Lepr. 36 78–82Google Scholar
  102. Shepard, C. C., D. H. McRae. 1971 Hereditary characteristics that varies among isolates of Mycobacterium leprae Infect. Immun. 3 121–126PubMedPubMedCentralGoogle Scholar
  103. Shepard, C. C., R. M. Vanlandingham, L. L. Walker. 1983 Recent studies of antileprosy drugs Lepr. Rev. 54 23S–30SGoogle Scholar
  104. Sibley, L. D., S. G. Franzblau, J. L. Krahenbuhl. 1987 Intracellular fate of Mycobacterium leprae in normal and activated macrophages Infect. Immun. 55 680–685PubMedPubMedCentralGoogle Scholar
  105. Sibley, L. D., J. L. Krahenbuhl. 1988 Defective activation of granuloma macrophages from Mycobacterium leprae-infected nude mice J. Leuk. Biol. 43 60–66Google Scholar
  106. Sixth Report of the WHO Expert Committee on Leprosy, 1988 World Health Organization Technical Report Series No. 768 GenevaGoogle Scholar
  107. Skinsnes, O. K., P. H. C. Chang, E. Matsuo. 1975 Acid-fast properties and pyridine extraction of M. leprae Int. J. Lepr. 43 392–398Google Scholar
  108. Smida, J., J. Kazda, E. Stackebrandt. 1988 Molecular-genetic evidence for the relationship of Mycobacterium leprae to slow-growing pathogenic mycobacteria Int. J. Lepr. 56 449–454Google Scholar
  109. Stanford, J. L., G. A. W. Rook, J. Convit, T. Godal, G. Kronvall, R. J. W. Rees, G. P. Walsh. 1975 Preliminary taxonomic studies of the leprosy bacillus Brit. J. Exp. Path. 56 579–585PubMedPubMedCentralGoogle Scholar
  110. Steinhoff, U., J. R. Golecki, J. Kazda, S. H. E. Kaufmann. 1989 Evidence for phagosome-lysosome fusion in Mycobacterium leprae-infected murine Schwann cells Infect. Immun. 57 1008–1010PubMedPubMedCentralGoogle Scholar
  111. Stewart-Tull, D. E. S. 1982 Mycobacterium leprae—The bacteriologists’ enigma 273–307 C. Ratledge and J. Stanford, (ed.) The biology of mycobacteria, vol. 1 Academic Press LondonGoogle Scholar
  112. Stoner, G. L. 1979 Importance of the neural predilection of Mycobacterium leprae in leprosy Lancet ii 994–997CrossRefGoogle Scholar
  113. Storrs, E. E. 1971 The nine-banded armadillo: a model for leprosy and other biomedical research Int. J. Lepr. 39 703–714Google Scholar
  114. Tenover, F. C. (ed.). 1989 DNA probes for infectious diseases CRC Press Boca Raton FLGoogle Scholar
  115. Vachula, M., T. J. Holzer, B. R. Andersen. 1989 Suppression of monocyte oxidative response by phenolic glycolipid I of Mycobacterium leprae J. Immunol. 142 1696–1701PubMedGoogle Scholar
  116. Vemuri, N., L. Kandke, P. R. Mahadevan, S. W. Hunter, P. J. Brennan. 1985 Isolation of phenolic glycolipid from human lepromatous nodules Int. J. Lepr. 53 489Google Scholar
  117. Wade, H. W. 1948 The Michigan inoculation cases Int. J. Lepr. 16 465–475Google Scholar
  118. Wade, H. W., V. Ledowski. 1952 The leprosy epidemic at Naura: a review with data on the status since 1937 Int. J. Lepr. 31 34–45Google Scholar
  119. Walsh, G. P., W. M. Meyers, C. H. Binford, P. J. Gerone, R. H. Wolf, J. R. Leininger. 1981 Leprosy—a zoonosis Lepr. Rev. 52 (Suppl. 1) 77–83PubMedGoogle Scholar
  120. Walsh, G. P., E. E. Storrs, H. P. Burchfield, W. M. Meyers, C. H. Binford. 1975 Leprosy-like disease occurring naturally in armadillos J. Reticuloendothel. Soc. 18 347–351PubMedGoogle Scholar
  121. Waters, M. F. R., R. J. W. Rees. 1962 Changes in the morphology of Mycobacterium leprae in patients under treatment Int. J. Lepr. 30 266–277PubMedGoogle Scholar
  122. Wayne, L. G., W. M. Gross. 1968 Base composition of deoxyribonucleic acid isolated from mycobacteria J. Bacteriol. 95 1481–1482PubMedPubMedCentralGoogle Scholar
  123. Wolf, R. H., B. J. Gormus, L. N. Martin, G. B. Baskin, G. P. Walsh, W. M. Meyers, C. H. Binford. 1985 Experimental leprosy in three species of monkeys Science 227 529–531PubMedCrossRefGoogle Scholar
  124. Young, D. B., J. P. Harnisch, J. Knight, T. M. Buchanan. 1985 Detection of phenolic glycolipid I in sera of patients with lepromatous leprosy J. Infect. Dis. 152 1078PubMedCrossRefGoogle Scholar
  125. Young, D. B., S. R. Khanolkar, L. L. Barg, T. M. Buchanan. 1984 Generation and characterization of monoclonal antibodies to the phenolic glycolipid of Mycobacterium leprae Infect. Immun. 43 183–188PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Thomas M. Shinnick

There are no affiliations available

Personalised recommendations