• Harald Huber
  • Robert Huber
  • Karl O. Stetter
Reference work entry


The order Thermoproteales (Zillig et al., 1981) is one of the three orders of the archaeal phylum Crenarchaeota (Woese et al., 1990). This branch is further represented by the orders Sulfolobales (Stetter, 1989) and Desulfurococcales (Huber and Stetter, 2001b). Members of the Thermoproteales are rod-shaped extreme thermophiles or hyperthermophiles, which grow either as anaerobes or facultative anaerobes. Under autotrophic conditions, they gain energy by oxidation of hydrogen, using sulfur, thiosulfate, sulfite, oxygen, selenate, and arsenate as electron acceptors. Alternatively, they grow by several types of respiration, using sulfur, oxygen, nitrate, nitrite, arsenate, ferric iron, selenate, selenite, L-cystine, and oxidized glutathione as electron acceptors, or by fermentation of organic substrates. Following the classification listed in the new edition of Bergey’s Manual of Systematic Bacteriology (Huber and Stetter, 2001a), the order Thermoproteales comprises two...


Alternative Electron Acceptor Glycerol Ether Methanosarcina Barkeri Tetraether Lipid Strain H10T 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Allen, M. B. 1959 Studies with Cyanidium caldarium, an anomalously pigmented chlorophyte Arch. Mikrobiol. 32 270–277CrossRefPubMedGoogle Scholar
  2. Ashkin, A., and J. M. Dziedzic. 1987a Optical trapping and manipulation of viruses and bacteria Science 235 1517–1520CrossRefPubMedGoogle Scholar
  3. Ashkin, A., J. M. Dziedzic, and T. Yamane. 1987b Optical trapping and manipulation of single cells using infrared laser beams Nature 330 769–771CrossRefPubMedGoogle Scholar
  4. Balch, W. E., and R. S. Wolfe. 1976 New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere Appl. Environ. Microbiol. 32 781–791PubMedPubMedCentralGoogle Scholar
  5. Balch, W. E., G. E. Fox, L. J. Magrum, C. R. Woese, and R. S. Wolfe. 1979 Methanogens: Reevaluation of a unique biological group Microbiol. Rev. 43 250–296Google Scholar
  6. Beck, P., and R. Huber. 1997 Detection of cell viability in cultures of hyperthermophiles FEMS Microbiol. Lett. 147 11–14CrossRefGoogle Scholar
  7. Bonch-Osmolovskaya, E. A., M. L. Miroshnichenko, N. A. Kostrikina, N. A. Chernych, and G. A. Zavarzin. 1990 Thermoproteus uzoniensis sp. nov., a new extremely thermophilic archaebacterium from Kamchatka continental hot springs Arch. Microbiol. 154 556–559CrossRefGoogle Scholar
  8. Bonch-Osmolovskaya, E. A., M. L. Miroshnichenko, N. A. Kostrikina, N. A. Chernych, and G. A. Zavarzin. 2001 Validation of publication of new names and new combinations previously effectively published outside the IJSEM. List No. 82 Int. J. Syst. Evol. Microbiol. 51 1619–1620CrossRefGoogle Scholar
  9. Burggraf, S., N. Larsen, C. R. Woese, and K. O. Stetter. 1993 An intron within the 16S ribosomal RNA gene of the archaeon Pyrobaculum aerophilum Proc. Natl. Acad. Sci. USA 90 2547–2550CrossRefPubMedPubMedCentralGoogle Scholar
  10. Burggraf, S., H. Huber, and K. O. Stetter. 1997 Reclassification of the crenarchaeal orders and families in accordance with 16S rRNA sequence data Int. J. Syst. Bacteriol. 47 657–660CrossRefPubMedGoogle Scholar
  11. Dalgaard, J. Z., and R. A. Garrett. 1992 Protein-coding introns from the 23S rRNA-encoding gene form stable circles in the hyperthermophilic archaeon Pyrobaculum organotrophum Gene 121 103–110CrossRefPubMedGoogle Scholar
  12. De Rosa, M., A. Gambacorta, and A. Gliozzi. 1986 Structure, biosynthesis, and physiochemical properties of archaebacterial lipids Microbiol. Rev. 50 70–80PubMedPubMedCentralGoogle Scholar
  13. Fiala, G., K. O. Stetter, H. W. Jannasch, T. A. Langworthy, and J. Madon. 1986 Staphylothermus marinus sp. nov. represents a novel genus of extremely thermophilic submarine heterotrophic archaebacteria growing up to 98°C Syst. Appl. Microbiol. 8 106–113CrossRefGoogle Scholar
  14. Fitz-Gibbon, S., H. Ladner, U. J. Kim, K. O. Stetter, M. I. Simon, and J. H. Miller. 2002 Genome sequence of the hyperthermophilic crenarchaeon Pyrobaculum aerophilum Proc. Natl. Acad. Sci, USA 99 984–989CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hensel, R., S. Laumann, J. Lang, H. Heumann, and F. Lottspeich. 1987 Characterization of two D-glyceraldehyde-3-phosphate dehydrogenases from the extremely thermophilic archaebacterium Thermoproteus tenax Eur. J. Biochem. 170 325–333CrossRefPubMedGoogle Scholar
  16. Horn, C., B. Paulmann, G. Kerlen, N. Junker, and H. Huber. 1999 In vivo observation of cell division of anaerobic hyperthermophiles by using a high-intensity dark-field microscope J. Bacteriol. 181 5114–5118PubMedPubMedCentralGoogle Scholar
  17. Huber, H., and K. O. Stetter. 2001a Order I: Thermoproteales In: G. Garrity (Ed.) Bergey’s Manual of Systematic Bacteriology, 2nd ed Springer-Verlag, New York, NY 1 170Google Scholar
  18. Huber, H., and K. O. Stetter. 2001b Order II: Desulfurococcales In: G. Garrity (Ed.) Bergey’s Manual of Systematic Bacteriology, 2nd ed Springer-Verlag, New York, NY 1 179–180Google Scholar
  19. Huber, H., and K. O. Stetter. 2001c Genus III: Pyrobaculum In: G. Garrity (Ed.) Bergey’s Manual of Systematic Bacteriology, 2nd ed Springer-Verlag, New York, NY 1 174–177Google Scholar
  20. Huber, R., J. K. Kristjansson, and K. O. Stetter. 1987 Pyrobaculum gen. nov., a new genus of neutrophilic, rod-shaped archaebacteria from continental solfataras growing optimally at 100°C Arch. Microbiol. 149 95–101CrossRefGoogle Scholar
  21. Huber, R., and K. O. Stetter. 1992 The order Thermoproteales In: A. Balows, H. G. TrÜper, M. Dworkin, W. Harder, and K.-H. Schleifer (Eds.) The Prokaryotes, 2nd ed Springer-Verlag, New York, NY 677–683Google Scholar
  22. Huber, R., S. Burggraf, T. Mayer, S. M. Barns, P. Rossnagel, and K. O. Stetter. 1995 Isolation of a hyperthermophilic archaeum predicted by in situ RNA analysis Nature 367 57–58CrossRefGoogle Scholar
  23. Huber, R. 1999 Die Laserpinzette als Basis fÜr Einzelzellkultivierungen Biospektrum 5 289–291Google Scholar
  24. Huber, R., H. Huber, and K. O. Stetter. 2000a Towards the ecology of hyperthermophiles: biotopes, new isolation strategies and novel metabolic properties FEMS Microbiol. Rev. 24 615–623CrossRefPubMedGoogle Scholar
  25. Huber, R., M. Sacher, A. Vollmann, H. Huber, and D. Rose. 2000b Respiration of arsenate and selenate by hyperthermophilic archaea Syst. Appl. Microbiol. 23 305–314CrossRefPubMedGoogle Scholar
  26. Itoh, T., K. Suzuki, and T. Nakase. 1998a Occurrence of introns in the 16S rRNA genes of members of the Thermoproteus Arch. Microbiol. 170 155–161CrossRefPubMedGoogle Scholar
  27. Itoh, T., K. Suzuki, and T. Nakase. 1998b Thermocladium modestius gen. nov., sp. nov., a new genus of rod-shaped, extremely thermophilic crenarchaeote Int. J. Syst. Bacteriol. 48 879–887CrossRefPubMedGoogle Scholar
  28. Itoh, T., K. Suzuki, P. C. Sanchez, and T. Nakase. 1999 Caldivirga maquilingensis gen. nov., sp. nov., a new genus of rod-shaped crenarchaeote isolated from a hot spring in the Philippines Int. J. Syst. Bacteriol. 49 1157–1163CrossRefPubMedGoogle Scholar
  29. Kashefi, K., and D. R. Lovley. 2000 Reduction of Fe(III), Mn(IV), and toxic metals at 100°C by Pyrobaculum islandicum Appl. Env. Microbiol. 66 1050–1056CrossRefGoogle Scholar
  30. König, H., R. Skorko, W. Zillig, and W. D. Reiter. 1982 Glycogen in the thermoacidophilic archaebacteria of the genera Sulfolobus, Thermoproteus, Desulfurococcus and Thermococcus Arch. Microbiol. 132 297–303CrossRefGoogle Scholar
  31. Kujo, C., and Ohshima, T. 1998 Enzymological characteristics of the hyperthermostable NAD-dependent glutamate dehydrogenase from the archaeon Pyrobaculum islandicum and effects of denaturants and organic solvents Appl. Environ. Microbiol. 64 2152–2157PubMedPubMedCentralGoogle Scholar
  32. Langworthy, T. A., and J. L. Pond. 1986 Membranes and lipids of thermophiles In: T. Brock (Ed.) Thermophiles: General, Molecular, and Applied Microbiology John Wiley, New York, NY 107–135Google Scholar
  33. Lübben, M., and K. Morand. 1994 Novel prenylated hemes as cofactors of cytochrome oxidases J. Biol. Chem. 269 21473–21479PubMedGoogle Scholar
  34. Ludwig, W., and O. Strunk. 2001 ARB: A software environment for sequence dataGoogle Scholar
  35. Messner, P., D. Pum, M. SÁra, K. O. Stetter, and U. Sleytr. 1986 Ultrastructure of the cell envelope of the archaebacteria Thermoproteus tenax and Thermoproteus neutrophilus J. Bacteriol. 166 1046–1054CrossRefPubMedPubMedCentralGoogle Scholar
  36. Molitor, M., C. Dahl, I. Molitor, U. Schäfer, N. Speich, R. Huber, R. Deutzmann, and H. G. TrÜper. 1998 A dissimilatory sirohaem-sulfite-reductase-type protein from the hyperthermophilic archaeon Pyrobaculum islandicum Microbiology 144 529–541CrossRefPubMedGoogle Scholar
  37. Nicolaus, B., A. Gambacorta, A. L. Basso, R. Riccio, M. De Rosa, and W. D. Grant. 1988 Trehalose in archaebacteria Syst. Appl. Microbiol. 10 215–217CrossRefGoogle Scholar
  38. Pfennig, N., and K. D. Lippert. 1966 Über das Vitamin B12-BedÜrfnis phototropher Schwefelbakterien Arch. Mikrobiol. 55 245–256CrossRefGoogle Scholar
  39. Phipps, B. M., H. Engelhardt, R. Huber, and W. Baumeister. 1990 Three-dimensional structure of the crystalline protein envelope layer of the hyperthermophilic Pyrobaculum islandicum J. Struct. Biol. 103 152–163CrossRefGoogle Scholar
  40. Phipps, B. M., R. Huber, and W. Baumeister. 1991 The cell envelope of the hyperthermophilic archaebacterium Pyrobaculum organotrophum consists of two regularly arrayed protein layers: Three-dimensional structure of the outer layer Molec. Microbiol. 5 253–265CrossRefGoogle Scholar
  41. Reddy, D. M., P. F. Crain, C. G. Edmonds, R. Gupta, T. Hashizume, K. O. Stetter, F. Widdel, and J. A. McCloskey. 1992 Structure determination of two new amino acid-containing derivatives of adenosine from tRNA of thermophilic bacteria and archaea Nucl. Acids Res. 20 5607–5615CrossRefPubMedPubMedCentralGoogle Scholar
  42. Rieger, G., K. MÜller, R. Hermann, K. O. Stetter, and R. Rachel. 1997 Cultivation of hyperthermophilic archaea in capillary tubes resulting in improved preservation of fine structures Arch. Microbiol. 186 373–379CrossRefGoogle Scholar
  43. Sako, Y., T. Nunoura, and A. Uchida. 2001 Pyrobaculum oguniense sp. nov., a novel facultatively aerobic and hyperthermophilic archaeon growing at up to 97 °C Int. J. Syst. Bacteriol. 51 303–309CrossRefGoogle Scholar
  44. Schäfer, S., C. Barkowski, and G. Fuchs. 1986 Carbon assimilation by the autotrophic thermophilic archaebacterium Thermoproteus neutrophilus Arch. Microbiol. 146 301–308CrossRefGoogle Scholar
  45. Selig, M., and P. Schönheit. 1994 Oxidation of organic compounds to CO2 with sulfur or thiosulfate as electron acceptor in the anaerobic hyperthermophilic archaea Thermoproteus tenax and Pyrobaculum islandicum proceeds via the citric acid cycle Arch. Microbiol. 162 286–294CrossRefGoogle Scholar
  46. Stetter, K. O. 1982 Ultrathin mycelia-forming organisms from submarine volcanic areas having an optimum growth temperature of 105°C Nature 300 258–259CrossRefGoogle Scholar
  47. Stetter, K. O., H. König, and E. Stackebrandt. 1983 Pyrodictium gen. nov., a new genus of submarine disc-shaped sulphur reducing archaebacteria growing optimally at 105°C Syst. Appl. Microbiol. 4 535–551CrossRefPubMedGoogle Scholar
  48. Stetter, K. O., and W. Zillig. 1985 Thermoplasma and the thermophilic sulfur-dependent archaebacteria In: C. Woese and R. S. Wolfe (Eds.) The Bacteria Academic Press, New York, NY 8 100–201Google Scholar
  49. Stetter, K. O. 1986 Diversity of extremely thermophilic archaebacteria In: T. D. Brock (Ed.) Thermophiles: General, Molecular, and Applied Microbiology John Wiley, New York, NY 40–74Google Scholar
  50. Stetter, K. O. 1989 Order III: Sulfolobales In: J. T. Staley, M. P. Bryant, N. Pfennig, and J. G. Holt (Eds.) Bergey’s Manual of Systematic Bacteriology William and Wilkins, Baltimore, MD 2250Google Scholar
  51. Stetter, K. O. 1999 Extremophiles and their adaptation to hot environments FEBS Lett. 452 22–55CrossRefPubMedGoogle Scholar
  52. Stetter, K. O. 2000 Sulfur-containing high-temperature biotopes and their microorganismsGoogle Scholar
  53. Stetter, K. O. 2001 Genus VII: Thermodiscus In: G. Garrity (Ed.) Bergey’s Manual of Systematic Bacteriology, 2nd ed Springer-Verlag, New York, NY 1 189–190Google Scholar
  54. Thurl, S., J. Butrow, and W. Schäfer. 1985 New types of menaquinones from the thermophilic archaebacterium Thermoproteus tenax Biol. Chem. Hoppe-Seyler 366 1079–1083CrossRefPubMedGoogle Scholar
  55. Tindall, B. J. 1989 Fully saturated menaquinones in the archaebacterium Pyrobaculum islandicum FEMS Microbiol. Lett. 60 251–254CrossRefGoogle Scholar
  56. Tindall, B. J., V. Wray, R. Huber, and M. D. Collins. 1991 A novel, fully saturated cyclic menaquinone in the archaebacterium Pyrobaculum organotrophum Syst. Appl. Microbiol. 14 218–221CrossRefGoogle Scholar
  57. Trincone, A., B. Nicolaus, G. Palmieri, M. De Rosa, R. Huber, G. Huber, K. O. Stetter, and A. Gambacorta. 1992 Distribution of complex and core lipids within new hyperthermophilic members of the archaea domain Syst. Appl. Microbiol. 15 11–17CrossRefGoogle Scholar
  58. Völkl, P., R. Huber, E. Drobner, R. Rachel, S. Burggraf, A. Trincone, and K. O. Stetter. 1993 Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum Appl. Env. Microbiol. 59 2918–2926Google Scholar
  59. Völkl, P., P. Markiewicz, K. O. Stetter, and J. H. Miller. 1994 The sequence of a subtilisin-type protease (aerolysin) from the hyperthermophilic archaeum Pyrobaculum aerophilum reveals sites important to thermostability Protein Sci. 3 1329–1340CrossRefPubMedPubMedCentralGoogle Scholar
  60. Wildhaber, I., and W. Baumeister. 1987 The cell envelope of Thermoproteus tenax: Three-dimensional structure of the surface layer and its role in shape maintenance EMBO J. 6 1475–1480PubMedPubMedCentralGoogle Scholar
  61. Woese, C. R., O. Kandler, and M. L. Wheelis. 1990 Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria and Eukarya Proc. Natl. Acad. Sci. USA 87 4576–4579CrossRefPubMedPubMedCentralGoogle Scholar
  62. Zillig, W., K. O. Stetter, W. Schäfer, D. Janekovic, S. Wunderl, I. Holz, and P. Palm. 1981 Thermoproteales: A novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from Icelandic solfataras Zbl. Bact. Hyg., I. Abt. Orig. C. 2 205–227Google Scholar
  63. Zillig, W., and K. O. Stetter. 1982a Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 8 Int. J. Syst. Bacteriol. 32 266–268CrossRefGoogle Scholar
  64. Zillig, W., K. O. Stetter, D. Prangishvili, W. Schäfer, S. Wunderl, D. Janekovic, I. Holz, and P. Palm. 1982b Desulfurococcaceae, the second family of the extremely thermophilic, anaerobic, sulfur-respiring Thermoproteales Zbl. Bact. Hyg., I. Abt. Orig. C 3 304–317Google Scholar
  65. Zillig, W., A. Gierl, G. Schreiber, W. Wunderl, D. Janekovic, K. O. Stetter, and H.-P. Klenk. 1983 The archaebacterium Thermofilum pendens represents a novel genus of the thermophilic, anaerobic sulfur respiring Thermoproteales Syst. Appl. Microbiol. 4 79–87CrossRefPubMedGoogle Scholar
  66. Zillig, W. 1989 Order II: Thermoproteales In: J. T. Staley, M. P. Bryant, N. Pfennig, and J. G. Holt (Eds.) Bergey’s Manual of Systematic Bacteriology William and Wilkins, Baltimore, MD 2240–2244Google Scholar
  67. Zillig, W., D. Prangishvili, C. Schleper, M. Elferink, I. Holz, S. Albers, D. Janekovic, and D. Götz. 1996 Viruses, plasmids and other genetic elements of thermophilic and hyperthermophilic Archaea FEMS Microbiol. Rev. 18 225–236CrossRefPubMedGoogle Scholar
  68. Zillig, W., and A.-L. Reysenbach. 2001 Genus I: Thermofilum In: G. Garrity (Ed.) Bergey’s Manual of Systematic Bacteriology, 2nd ed Springer-Verlag, New York, NY 1 178–179Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Harald Huber
  • Robert Huber
  • Karl O. Stetter

There are no affiliations available

Personalised recommendations