Life at Low Temperatures

  • Siegfried Scherer
  • Klaus Neuhaus


Most habitats on our planet are permanently cold. By volume, 90% of the world’s oceans have a temperature of 5°C or less, supporting both psychrophilic and psychrotolerant microorganisms. When terrestrial habitats are included, over 80% of the earth’s biosphere is permanently cold (Russell, 1990a). Archaea contribute significantly to biomass in cold environments, although few have been isolated (Goodchild et al., 2004).

Microorganisms that are able to grow at low temperatures are termed “psychrophilic” (sometimes also “obligate psychrophiles”) and “psychrotolerant” (or “facultative psychrophiles” or “psychrotrophs”) or even “psychroactive” (Nozhevnikova et al., 2001b). We recommend here the use of only the designations “psychrophilic” and “psychrotolerant.” (Morita, 1975) has defined psychrophiles “as organisms having an optimal temperature for growth at about 15°C or lower, a maximal temperature for growth at about 20°C, and a minimal temperature for growth at about 0°C...

Literature Cited

  1. Abd El-Rahman, H. A., D. Fritze, C. Sproer, and D. Claus. 2002 Two novel psychrotolerant species, Bacillus psychrotolerans sp. nov. and Bacillus psychrodurans sp. nov., which contain ornithine in their cell walls Int. J. Syst. Evol. Microbiol. 52 2127–2133PubMedCrossRefGoogle Scholar
  2. Agafonov, D. E., V. A. Kolb, I. V. Nazimov, and A. S. Spirin. 1999 A protein residing at the subunit interface of the bacterial ribosome Proc. Natl. Acad. Sci. USA 96 12345–12349PubMedCrossRefGoogle Scholar
  3. Agafonov, D. E., V. A. Kolb, and A. S. Spirin. 2001 A novel stress-response protein that binds at the ribosomal subunit interface and arrests translation Cold Spring Harb. Symp. Quant. Biol. 66 509–514PubMedCrossRefGoogle Scholar
  4. Aguilar, P. S., J. E. Cronan Jr., and D. de Mendoza. 1998 A Bacillus subtilis gene induced by cold shock encodes a membrane phospholipid desaturase J. Bacteriol. 180 2194–2200PubMedGoogle Scholar
  5. Aguilar, P. S., P. Lopez, and D. de Mendoza. 1999 Transcriptional control of the low-temperature-inducible des gene, encoding the delta5 desaturase of Bacillus subtilis J. Bacteriol. 181 7028–7033PubMedGoogle Scholar
  6. Aguilar, P. S., A. M. Hernandez-Arriaga, L. E. Cybulski, A. C. Erazo, and D. de Mendoza. 2001 Molecular basis of thermosensing: A two-component signal transduction thermometer in Bacillus subtilis EMBO J. 20 1681–1691PubMedCrossRefGoogle Scholar
  7. Akila, G., and T. S. Chandra. 2003 A novel cold-tolerant Clostridium strain PXYL1 isolated from a psychrophilic cattle manure digester that secretes thermolabile xylanase and cellulase FEMS Microbiol. Lett. 219 63–67PubMedCrossRefGoogle Scholar
  8. Albers, S. V., J. L. van de Vossenberg, A. J. Driessen, and W. N. Konings. 2000 Adaptations of the archaeal cell membrane to heat stress Front. Biosci. 5 D813–D820PubMedCrossRefGoogle Scholar
  9. Allen, E. E., D. Facciotti, and D. H. Bartlett. 1999 Monounsaturated but not polyunsaturated fatty acids are required for growth of the deep-sea bacterium Photobacterium profundum SS9 at high pressure and low temperature Appl. Environ. Microbiol. 65 1710–1720PubMedGoogle Scholar
  10. Allen, E. E., and D. H. Bartlett. 2000 FabF is required for piezoregulation of cis-vaccenic acid levels and piezophilic growth of the deep-sea bacterium Photobacterium profundum strain SS9 J. Bacteriol. 182 1264–1271PubMedCrossRefGoogle Scholar
  11. Allen, E. E., and D. H. Bartlett. 2002 Structure and regulation of the omega-3 polyunsaturated fatty acid synthase genes from the deep-sea bacterium Photobacterium profundum strain SS9 Microbiology 148 1903–1913PubMedGoogle Scholar
  12. Alquati, C., L. De Gioia, G. Santarossa, L. Alberghina, P. Fantucci, and M. Lotti. 2002 The cold-active lipase of Pseudomonas fragi: Heterologous expression, biochemical characterization and molecular modeling Eur. J. Biochem. 269 3321–3328PubMedCrossRefGoogle Scholar
  13. Angelidis, A. S., L. T. Smith, L. M. Hoffman, and G. M. Smith. 2002a Identification of opuC as a chill-activated and osmotically activated carnitine transporter in Listeria monocytogenes Appl. Environ. Microbiol. 68 2644–2650PubMedCrossRefGoogle Scholar
  14. Angelidis, A. S., L. T. Smith, and G. M. Smith. 2002b Elevated carnitine accumulation by Listeria monocytogenes impaired in glycine betaine transport is insufficient to restore wild-type cryotolerance in milk whey Int. J. Food Microbiol. 75 1–9PubMedCrossRefGoogle Scholar
  15. Annous, B. A., L. A. Becker, D. O. Bayles, D. P. Labeda, and B. J. Wilkinson. 1997 Critical role of anteiso-C(15:0) fatty acid in the growth of Listeria monocytogenes at low temperatures Appl. Environ. Microbiol. 63 3887–3894PubMedGoogle Scholar
  16. Arnorsdottir, J., R. B. Smaradottir, O. T. Magnusson, S. H. Gudmundur, and M. M. Kristjansson. 2002 Characterization of a cloned subtilisin-like serine proteinase from a psychrotrophic Vibrio species Eur. J. Biochem. 269 5536–5546PubMedCrossRefGoogle Scholar
  17. Arsene, F., T. Tomoyasu, A. Mogk, C. Schirra, A. Schulze-Specking, and B. Bukau. 1999 Role of region C in regulation of the heat shock gene-specific sigma factor of Escherichia coli, sigma32 J. Bacteriol. 181 3552–3561PubMedGoogle Scholar
  18. Asgeirsson, B., and O. S. Andresson. 2001 Primary structure of cold-adapted alkaline phosphatase from a Vibrio sp. as deduced from the nucleotide gene sequence Biochim. Biophys. Acta 1549 99–111PubMedCrossRefGoogle Scholar
  19. Atlung, T., and F. G. Hansen. 1999 Low-temperature-induced DnaA protein synthesis does not change initiation mass in Escherichia coli K-12 J. Bacteriol. 181 5557–5562PubMedGoogle Scholar
  20. Bae, W., S. Phadtare, K. Severinov, and M. Inouye. 1999 Characterization of Escherichia coli cspE, whose product negatively regulates transcription of cspA, the gene for the major cold shock protein Molec. Microbiol. 31 1429–1441CrossRefGoogle Scholar
  21. Bae, W., B. Xia, M. Inouye, and K. Severinov. 2000 Escherichia coli CspA-family RNA chaperones are transcription antiterminators Proc. Natl. Acad. Sci. USA 97 7784–7789PubMedCrossRefGoogle Scholar
  22. Bae, E., and G. N. Phillips Jr. 2004 Structures and analysis of highly homologous psychrophilic, mesophilic, and thermophilic adenylate kinases J. Biol. Chem. 279 28202–28208PubMedCrossRefGoogle Scholar
  23. Bakermans, C., A. I. Tsapin, V. Souza-Egipsy, D. A. Gilichinsky, and K. H. Nealson. 2003 Reproduction and metabolism at:10 degrees C of bacteria isolated from Siberian permafrost Environ. Microbiol. 5 321–326PubMedCrossRefGoogle Scholar
  24. Baneyx, F. 1999 Recombinant protein expression in Escherichia coli Curr. Opin. Biotechnol. 10 411–421PubMedCrossRefGoogle Scholar
  25. Baneyx, F., and M. Mujacic. 2003 Cold-inducible promoters for heterologous protein expression Meth. Molec. Biol. 205 1–18Google Scholar
  26. Baraniecki, C. A., J. Aislabie, and J. M. Foght. 2002 Characterization of Sphingomonas sp. Ant 17, an aromatic hydrocarbon-degrading bacterium isolated from Antarctic soil Microb. Ecol. 43 44–54PubMedCrossRefGoogle Scholar
  27. Barbaro, S. E., J. T. Trevors, and W. E. Inniss. 2001 Effects of low temperature, cold shock, and various carbon sources on esterase and lipase activities and exopolysaccharide production by a psychrotrophic Acinetobacter sp Can. J. Microbiol. 47 194–205PubMedGoogle Scholar
  28. Bayles, D. O., B. A. Annous, and B. J. Wilkinson. 1996 Cold stress proteins induced in Listeria monocytogenes in response to temperature down shock and growth at low temperatures Appl. Environ. Microbiol. 62 1116–1119PubMedGoogle Scholar
  29. Beckering, C. L., L. Steil, M. H. Weber, U. Volker, and M. A. Marahiel. 2002 Genomewide transcriptional analysis of the cold shock response in Bacillus subtilis J. Bacteriol. 184 6395–6402PubMedCrossRefGoogle Scholar
  30. Beran, R. K., and R. W. Simons. 2001 Cold-temperature induction of Escherichia coli polynucleotide phosphorylase occurs by reversal of its autoregulation Molec. Microbiol. 39 112–125CrossRefGoogle Scholar
  31. Bergann, T., J. Kleemann, and D. Sohr. 1995 Model investigations into psychrotrophic growth of Yersinia enterocolitica J. Vet. Med. Ser. B 42 523–531CrossRefGoogle Scholar
  32. Berger, F., P. Normand, and P. Potier. 1997 capA, a cspA-like gene that encodes a cold acclimation protein in the psychrotrophic bacterium Arthrobacter globiformis SI55 J. Bacteriol. 179 5670–5676PubMedGoogle Scholar
  33. Berry, E. D. F., and Berry P. M. 1997 Cold temperature adaptation and growth of microorganisms J. Food Prot. 60 1583–1594Google Scholar
  34. Bhakoo, M., and R. A. Herbert. 1980 Fatty acid and phospholipid composition of five psychrotrophic Pseudomonas spp. grown at different temperatures Arch. Microbiol. 126 51–55PubMedCrossRefGoogle Scholar
  35. Bidle, K. D., M. Manganelli, and F. Azam. 2002 Regulation of oceanic silicon and carbon preservation by temperature control on bacteria Science 298 1980–1984PubMedCrossRefGoogle Scholar
  36. Bishop, R. E., H. S. Gibbons, T. Guina, M. S. Trent, S. I. Miller, and C. R. Raetz. 2000 Transfer of palmitate from phospholipids to lipid A in outer membranes of Gram-negative bacteria EMBO J. 19 5071–5080PubMedCrossRefGoogle Scholar
  37. Bläsi, U., M. O’Connor, C. L. Squires, and A. E. Dahlberg. 1999 Misled by sequence complementarity: Does the DB-anti-DB interaction withstand scientific scrutiny? Molec. Microbiol. 33 439–441CrossRefGoogle Scholar
  38. Boerema, J. A., D. M. Broda, and R. G. Bell. 2003 Abattoir sources of psychrophilic clostridia causing blown pack spoilage of vacuum-packed chilled meats determined by culture-based and molecular detection procedures Lett. Appl. Microbiol. 36 406–411PubMedCrossRefGoogle Scholar
  39. Bollman, J., A. Ismond, and G. Blank. 2001 Survival of Escherichia coli O157:H7 in frozen foods: Impact of the cold shock response Int. J. Food Microbiol. 64 127–138PubMedCrossRefGoogle Scholar
  40. Boziaris, I. S., and M. R. Adams. 2001 Temperature shock, injury and transient sensitivity to nisin in Gram negatives J. Appl. Microbiol. 91 715–724PubMedCrossRefGoogle Scholar
  41. Brandi, A., C. L. Pon, and C. O. Gualerzi. 1994 Interaction of the main cold shock protein CS7.4 (CspA) of Escherichia coli with the promoter region of hns Biochimie 76 1090–1098PubMedCrossRefGoogle Scholar
  42. Brandi A., P. Pietroni, C. O. Gualerzi, and C. Pon. 1996 Post-transcriptional regulation of CspA expression in Escherichia coli Molec. Microbiol. 19 231–240CrossRefGoogle Scholar
  43. Brandi, A., R. Spurio, C. O. Gualerzi, and C. L. Pon. 1999a Massive presence of the Escherichia coli “major cold-shock protein” CspA under non-stress conditions EMBO J. 18 1653–1659PubMedCrossRefGoogle Scholar
  44. Brandi, A., R. Spurio, C. O. Gualerzi, and C. L. Pon. 1999b Corrigendum [Massive presence of the Escherichia coli “major cold-shock protein” CspA under non-stress conditions] EMBO J. 18 2670CrossRefGoogle Scholar
  45. Brenchley, J. E. 1996 Psychrophilic microorganisms and their cold-active enzymes 17 432–437Google Scholar
  46. Brenot, A., K. Y. King, and M. G. Caparon. 2005 The PerR regulon in peroxide resistance and virulence of Streptococcus pyogenes Molec. Microbiol. 55 221–234CrossRefGoogle Scholar
  47. Bresolin, G., T. Fuchs, K. Neuhaus, P. K. Francis, and S. Scherer. 2004, Investigation of a putative cold adaptation regulon in Yersinia enterocolitica, J. Bacteriol. in pressGoogle Scholar
  48. Brigulla, M., T. Hoffmann, A. Krisp, A. Volker, E. Bremer, and U. Volker. 2003 Chill induction of the SigB-dependent general stress response in Bacillus subtilis and its contribution to low-temperature adaptation J. Bacteriol. 185 4305–4314PubMedCrossRefGoogle Scholar
  49. Broda, D. M., D. J. Saul, R. G. Bell, and D. R. Musgrave. 2000 Clostridium algidixylanolyticum sp. nov., a psychrotolerant, xylan-degrading, spore-forming bacterium Int. J. Syst. Evol. Microbiol. 50(2) 623–631PubMedCrossRefGoogle Scholar
  50. Broeze, R., C. J. Solomon, and D. H. Pope. 1978 Effects of low temperature on in vivo and in vitro protein synthesis in Escherichia coli and Pseudomonas fluorescens J. Bacteriol. 134 861–874PubMedGoogle Scholar
  51. Browse, J., and Z. Xin. 2001 Temperature sensing and cold acclimation Curr. Opin. Plant Biol. 4 241–246PubMedCrossRefGoogle Scholar
  52. Brozek, K. A., and C. R. Raetz. 1990 Biosynthesis of lipid A in Escherichia coli: Acyl carrier protein-dependent incorporation of laurate and myristate J. Biol. Chem. 265 15410–15417PubMedGoogle Scholar
  53. Bylund, G. O., L. C. Wipemo, L. A. Lundberg, and P. M. Wikstrom. 1998 RimM and RbfA are essential for efficient processing of 16S rRNA in Escherichia coli J. Bacteriol. 180 73–82PubMedGoogle Scholar
  54. Byun, J. S., J. S. Min, I. S. Kim, J. W. Kim, M. S. Chung, and M. Lee. 2003 Comparison of indicators of microbial quality of meat during aerobic cold storage J. Food Prot. 66 1733–1737PubMedGoogle Scholar
  55. Cairrão, F., A. Cruz, H. Mori, and C. M. Arraiano. 2003 Cold shock induction of RNase R and its role in the maturation of the quality control mediator SsrA/tmRNA Molec. Microbiol. 50 1349–1360CrossRefGoogle Scholar
  56. Camardella, L., R. Di Fraia, A. Antignani, M. A. Ciardiello, G. di Prisco, J. K. Coleman, L. Buchon, J. Guespin, and N. J. Russell. 2002 The Antarctic Psychrobacter sp. TAD1 has two cold-active glutamate dehydrogenases with different cofactor specificities: Characterisation of the NAD+-dependent enzyme Comp. Biochem. Physiol. A Molec. Integr. Physiol. 131 559–567CrossRefGoogle Scholar
  57. Carpenter, E. J., S. Lin, and D. G. Capone. 2000 Bacterial activity in south pole snow Appl. Environ. Microbiol. 66 4514–4517PubMedCrossRefGoogle Scholar
  58. Carr, F. J., D. Chill, and N. Maida. 2002 The lactic acid bacteria: A literature survey Crit. Rev. Microbiol. 28 281–370PubMedCrossRefGoogle Scholar
  59. Carroll, J. W., M. C. Mateescu, K. Chava, R. R. Colwell, and A. K. Bej. 2001 Response and tolerance of toxigenic Vibro cholerae O1 to cold temperatures Ant. v. Leeuwenhoek 79 377–384CrossRefGoogle Scholar
  60. Carty, S. M., K. R. Sreekumar, and C. R. Raetz. 1999 Effect of cold shock on lipid A biosynthesis in Escherichia coli: Induction At 12 degrees C of an acyltransferase specific for palmitoleoyl-acyl carrier protein J. Biol. Chem. 274 9677–9685PubMedCrossRefGoogle Scholar
  61. Cavicchioli, R. 2002a Extremophiles and the search for extraterrestrial life Astrobiology 2 281–292PubMedCrossRefGoogle Scholar
  62. Cavicchioli, R., K. S. Siddiqui, D. Andrews, and K. R. Sowers. 2002b Low-temperature extremophiles and their applications Curr. Opin. Biotechnol. 13 253–261PubMedCrossRefGoogle Scholar
  63. Chablain, P. A., G. Philippe, A. Groboillot, N. Truffaut, and J. F. Guespin-Michel. 1997 Isolation of a soil psychrotrophic toluene-degrading Pseudomonas strain: Influence of temperature on the growth characteristics on different substrates Res. Microbiol. 148 153–161PubMedCrossRefGoogle Scholar
  64. Chamot, D., W. C. Magee, E. Yu, and G. W. Owttrim. 1999 A cold shock-induced cyanobacterial RNA helicase J. Bacteriol. 181 1728–1732PubMedGoogle Scholar
  65. Chamot, D., and G. W. Owttrim. 2000 Regulation of cold shock-induced RNA helicase gene expression in the Cyanobacterium anabaena sp. strain PCC 7120 J. Bacteriol. 182 1251–1256PubMedCrossRefGoogle Scholar
  66. Chan, K. F., H. Le Tran, R. Y. Kanenaka, and S. Kathariou. 2001 Survival of clinical and poultry-derived isolates of Campylobacter jejuni at a low temperature (4°C) Appl. Environ. Microbiol. 67 4186–4191PubMedCrossRefGoogle Scholar
  67. Charollais, J., M. Dreyfus, and I. Iost. 2004 CsdA, a cold-shock RNA helicase from Escherichia coli, is involved in the biogenesis of 50S ribosomal subunit Nucleic Acids Res. 32 2751–2759PubMedCrossRefGoogle Scholar
  68. Chattopadhyay, M. K., M. V. Jagannadham, M. Vairamani, and S. Shivaji. 1997 Carotenoid pigments of an antarctic psychrotrophic bacterium Micrococcus roseus: Temperature dependent biosynthesis, structure, and interaction with synthetic membranes Biochem. Biophys. Res. Commun. 239 85–90PubMedCrossRefGoogle Scholar
  69. Chattopadhyay, M. K. 2002 The link between bacterial radiation resistance and cold adaptation J. Biosci. 27 71–73PubMedCrossRefGoogle Scholar
  70. Chihib, N. E., M. Ribeiro da Silva, G. Delattre, M. Laroche, and M. Federighi. 2003 Different cellular fatty acid pattern behaviours of two strains of Listeria monocytogenes Scott A and CNL 895807 under different temperature and salinity conditions FEMS Microbiol. Lett. 218 155–160PubMedCrossRefGoogle Scholar
  71. Chong, S. C., Y. Liu, M. Cummins, D. L. Valentine, and D. R. Boone. 2002 Methanogenium marinum sp. nov., a H2-using methanogen from Skan Bay, Alaska, and kinetics of H2 utilization Ant. v. Leeuwenhoek 81 263–270CrossRefGoogle Scholar
  72. Chou, M., T. Matsunaga, Y. Takada, and N. Fukunaga. 1999 NH4 + transport system of a psychrophilic marine bacterium, Vibrio sp. strain ABE-1 Extremophiles 3 89–95PubMedCrossRefGoogle Scholar
  73. Chowdhury, S., C. Ragaz, E. Kreuger, and F. Narberhaus. 2003 Temperature-controlled structural alterations of an RNA thermometer J. Biol. Chem. 278 47915–47921PubMedCrossRefGoogle Scholar
  74. Clarke, D. J., and B. C. Dowds. 1994 The gene coding for polynucleotide phosphorylase in Photorhabdus sp. strain K122 is induced at low temperatures J. Bacteriol. 176 3775–3784PubMedGoogle Scholar
  75. Claverie, P., C. Vigano, J. M. Ruysschaert, C. Gerday, and G. Feller. 2003 The precursor of a psychrophilic alpha-amylase: structural characterization and insights into cold adaptation Biochim. Biophys. Acta 1649 119–122PubMedCrossRefGoogle Scholar
  76. Clementz, T., J. J. Bednarski, and C. R. Raetz. 1996 Function of the htrB high temperature requirement gene of Escherchia coli in the acylation of lipid A: HtrB catalyzed incorporation of laurate J. Biol. Chem. 271 12095–12102PubMedCrossRefGoogle Scholar
  77. Clementz, T., Z. Zhou, and C. R. Raetz. 1997 Function of the Escherichia coli msbB gene, a multicopy suppressor of htrB knockouts, in the acylation of lipid A. Acylation by MsbB follows laurate incorporation by HtrB J. Biol. Chem. 272 10353–10360PubMedCrossRefGoogle Scholar
  78. Coker, J. A., P. P. Sheridan, J. Loveland-Curtze, K. R. Gutshall, A. J. Auman, and J. E. Brenchley. 2003 Biochemical characterization of a beta-galactosidase with a low temperature optimum obtained from an Antarctic arthrobacter isolate J. Bacteriol. 185 5473–5482PubMedCrossRefGoogle Scholar
  79. Colquhoun, D. J., and H. Sorum. 2001 Temperature dependent siderophore production in Vibrio salmonicida Microb. Pathog. 31 213–219PubMedCrossRefGoogle Scholar
  80. Coote, J. G. 2001 Environmental sensing mechanisms in Bordetella Adv. Microb. Physiol. 44 141–181PubMedCrossRefGoogle Scholar
  81. Cordwell, S. J., M. R. Larsen, R. T. Cole, and B. J. Walsh. 2002 Comparative proteomics of Staphylococcus aureus and the response of methicillin-resistant and methicillin-sensitive strains to Triton X-100 Microbiology 148 2765–2781PubMedGoogle Scholar
  82. Cressy, H. K., A. R. Jerrett, C. M. Osborne, and P. J. Bremer. 2003 A novel method for the reduction of numbers of Listeria monocytogenes cells by freezing in combination with an essential oil in bacteriological media J. Food Prot. 66 390–395PubMedGoogle Scholar
  83. Cronan, J. E., and C. O. Rock. 1996, Biosynthesis of membrane lipids, In: F. C. Neidhardt, R. Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (Eds.) Escherichia coli and Salmonella: Cellular and Molecular Biology, Washington DC, 612–636Google Scholar
  84. Cybulski, L. E., G. del Solar, P. O. Craig, M. Espinosa, and D. de Mendoza. 2004 Bacillus subtilis DesR functions as a phosphorylation-activated switch to control membrane lipid fluidity J. Biol. Chem. 279 39340–39347PubMedCrossRefGoogle Scholar
  85. Dalluge, J. J., T. Hashizume, A. E. Sopchik, J. A. McCloskey, and D. R. Davis. 1996 Conformational flexibility in RNA: The role of dihydrouridine Nucleic Acids Res. 24 1073–1079PubMedCrossRefGoogle Scholar
  86. Dalluge, J. J., T. Hamamoto, K. Horikoshi, R. Y. Morita, K. O. Stetter, and J. A. McCloskey. 1997 Posttranscriptional modification of tRNA in psychrophilic bacteria J. Bacteriol. 179 1918–1923PubMedGoogle Scholar
  87. D'Amico, S., P. Claverie, T. Collins, D. Georlette, E. Gratia, A. Hoyoux, M. A. Meuwis, G. Feller, and C. Gerday. 2002a Molecular basis of cold adaptation Phil. Trans. R. Soc. Lond. B Biol. Sci. 357 917–925CrossRefGoogle Scholar
  88. D'Amico, S., C. Gerday, and G. Feller. 2002b Dual effects of an extra disulfide bond on the activity and stability of a cold-adapted alpha-amylase J. Biol. Chem. 277 46110–46115PubMedCrossRefGoogle Scholar
  89. Dammel, C. S., and H. F. Noller. 1993 A cold-sensitive mutation in 16S rRNA provides evidence for helical switching in ribosome assembly Genes Dev. 7 660–670PubMedCrossRefGoogle Scholar
  90. Dammel, C. S., and H. F. Noller. 1995 Suppression of a cold-sensitive mutation in 16S rRNA by overexpression of a novel ribosome-binding factor, RbfA Genes Dev. 9 626–637PubMedCrossRefGoogle Scholar
  91. Datta, P. P., and R. K. Bhadra. 2003 Cold shock response and major cold shock proteins of Vibrio cholerae Appl. Environ. Microbiol. 69 6361–6369PubMedCrossRefGoogle Scholar
  92. De, E., N. Orange, N. Saint, J. Guerillon, R. De Mot, and G. Molle. 1997 Growth temperature dependence of channel size of the major outer-membrane protein (OprF) in psychrotrophic Pseudomonas fluorescens strains Microbiology 143(3) 1029–1035CrossRefGoogle Scholar
  93. de Mendoza, D., and J. E. Cronan Jr. 1983 Thermal regulation of membrane lipid fluidity in bacteria Trends Biochem. Sci. 8 49–52CrossRefGoogle Scholar
  94. Denner, E. B., B. Mark, H. J. Busse, M. Turkiewicz, and W. Lubitz. 2001 Psychrobacter proteolyticus sp. nov., a psychrotrophic, halotolerant bacterium isolated from the Antarctic krill Euphausia superbadana, excreting a cold-adapted metalloprotease Syst. Appl. Microbiol. 24 44–53PubMedCrossRefGoogle Scholar
  95. Derzelle, S., B. Hallet, T. Ferain, J. Delcour, and P. Hols. 2003 Improved adaptation to cold-shock, stationary-phase, and freezing stresses in Lactobacillus plantarum overproducing cold-shock proteins Appl. Environ. Microbiol. 69 4285–4290PubMedCrossRefGoogle Scholar
  96. Didier, D. K., J. Schiffenbauer, S. L. Woulfe, M. Zacheis, B. D. Schwartz. 1988 Characterization of the cDNA encoding a protein binding to the major histocompatibility complex class II Y box Proc. Natl. Acad. Sci. USA 85 7322–7326PubMedCrossRefGoogle Scholar
  97. Dietrich, R., C. Fella, S. Strich, and E. Martlbauer. 1999 Production and characterization of monoclonal antibodies against the hemolysin BL enterotoxin complex produced by Bacillus cereus Appl. Environ. Microbiol. 65 4470–4474PubMedGoogle Scholar
  98. DiRita, V. J., N. C. Engleberg, A. Heath, A. Miller, J. A. Crawford, and R. Yu. 2000 Virulence gene regulation inside and outside Phil. Trans. R. Soc. Lond. B Biol. Sci. 355 657–665CrossRefGoogle Scholar
  99. Dmitriev, V. V., N. E. Suzina, T. G. Rusakova, D. A. Gilichinskii, and V. I. Duda. 2001 Ultrastructural characteristics of natural forms of microorganisms isolated from permafrost grounds of eastern Siberia by the method of low-temperature fractionation Dokl. Biol. Sci. 378 304–306PubMedCrossRefGoogle Scholar
  100. Dorman, C. J., J. C. Hinton, and A. Free. 1999 Domain organization and oligomerization among H-NS-like nucleoid-associated proteins in bacteria Trends Microbiol. 7 124–128PubMedCrossRefGoogle Scholar
  101. Dowhan, W. 1997 Molecular basis for membrane phospholipid diversity: Why are there so many lipids? Ann. Rev. Biochem. 66 199–232PubMedCrossRefGoogle Scholar
  102. Drlica, K. 1992 Control of bacterial DNA supercoiling Molec. Microbiol. 6 425–433CrossRefGoogle Scholar
  103. Drouin, P., D. Prevost, and H. Antoun. 2000 Physiological adaptation to low temperatures of strains of Rhizobium leguminosarum bv. viciae associated with Lathyrus spp FEMS Microbiol. Ecol. 32 111–120PubMedGoogle Scholar
  104. Duilio, A., M. L. Tutino, V. Matafora, G. Sannia, and G. Marino. 2001 Molecular characterization of a recombinant replication protein (Rep) from the Antarctic bacterium Psychrobacter sp. TA144 FEMS Microbiol. Lett. 198 49–55PubMedCrossRefGoogle Scholar
  105. Duilio, A., M. L. Tutino, and G. Marino. 2004 Recombinant protein production in Antarctic Gram-negative bacteria Meth. Molec. Biol. 267 225–237Google Scholar
  106. Dykes, G. A., and S. M. Moorhead. 2001 The role of L-carnitine and glycine betaine in the survival and sub-lethal injury of non-growing Listeria monocytogenes cells during chilled storage Lett. Appl. Microbiol. 32 282–286PubMedCrossRefGoogle Scholar
  107. Edgcomb, M. R., S. Sirimanne, B. J. Wilkinson, P. Drouin, and R. D. Morse. 2000 Electron paramagnetic resonance studies of the membrane fluidity of the foodborne pathogenic psychrotroph Listeria monocytogenes Biochim. Biophys. Acta 1463 31–42PubMedCrossRefGoogle Scholar
  108. Edwards, K. J., D. R. Rogers, C. O. Wirsen, and T. M. McCollom. 2003 Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing, chemolithoautotrophic alpha-and gamma-proteobacteria from the deep sea Appl. Environ. Microbiol. 69 2906–2913PubMedCrossRefGoogle Scholar
  109. El-Fahmawi, B., and G. W. Owttrim. 2003 Polar-biased localization of the cold stress-induced RNA helicase, CrhC, in the Cyanobacterium Anabaena sp. strain PCC 7120 Molec. Microbiol. 50 1439–1448CrossRefGoogle Scholar
  110. Eriksson, M., J. O. Ka, and W. W. Mohn. 2001 Effects of low temperature and freeze-thaw cycles on hydrocarbon biodegradation in Arctic tundra soil Appl. Environ. Microbiol. 67 5107–5112PubMedCrossRefGoogle Scholar
  111. Eriksson, S., R. Hurme, and M. Rhen. 2002 Low-temperature sensors in bacteria Phil. Trans. R. Soc. Lond. B Biol. Sci. 357 887–893CrossRefGoogle Scholar
  112. Eriksson, M., E. Sodersten, Z. Yu, G. Dalhammar, and W. W. Mohn. 2003 Degradation of polycyclic aromatic hydrocarbons at low temperature under aerobic and nitrate-reducing conditions in enrichment cultures from northern soils Appl. Environ. Microbiol. 69 275–284PubMedCrossRefGoogle Scholar
  113. Ermolenko, D. N., and G. I. Makhatadze. 2002 Bacterial cold-shock proteins Cell. Molec. Life Sci. 59 1902–1913PubMedCrossRefGoogle Scholar
  114. Etchegaray, J. P., P. G. Jones, and M. Inouye. 1996 Differential thermoregulation of two highly homologous cold-shock genes, cspA and cspB, of Escherichia coli Genes Cells 1 171–178PubMedCrossRefGoogle Scholar
  115. Etchegaray, J. P., and M. Inouye. 1999a A sequence downstream of the initiation codon is essential for cold shock induction of cspB of Escherichia coli J. Bacteriol. 181 5852–5854PubMedGoogle Scholar
  116. Etchegaray, J. P., and M. Inouye. 1999b CspA, CspB, and CspG, major cold shock proteins of Escherichia coli, are induced at low temperature under conditions that completely block protein synthesis J. Bacteriol. 181 1827–1830PubMedGoogle Scholar
  117. Etchegaray, J. P., and M. Inouye. 1999c DB or not DB in translation? Molec. Microbiol. 33 438–439CrossRefGoogle Scholar
  118. Etchegaray, J. P., and M. Inouye. 1999d Translational enhancement by an element downstream of the initiation codon in Escherichia coli J. Biol. Chem. 274 10079–10085PubMedCrossRefGoogle Scholar
  119. Fang, L., W. Jiang, W. Bae, and M. Inouye. 1997 Promoter-independent cold-shock induction of cspA and its derepression at 37 °C by mRNA stabilization Molec. Microbiol. 23 355–64CrossRefGoogle Scholar
  120. Fang, L., Y. Hou, and M. Inouye. 1998 Role of the cold-box region in the 5’ untranslated region of the cspA mRNA in its transient expression at low temperature in Escherichia coli J. Bacteriol. 180 90–95PubMedGoogle Scholar
  121. Favaro, R., and G. Deho. 2003 Polynucleotide phosphorylase-deficient mutants of Pseudomonas putida J. Bacteriol. 185 5279–5286PubMedCrossRefGoogle Scholar
  122. Felix, G., and T. Boller. 2003 Molecular sensing of bacteria in plants: The highly conserved RNA-binding motif RNP-1 of bacterial cold shock proteins is recognized as an elicitor signal in tobacco J. Biol. Chem. 278 6201–6208PubMedCrossRefGoogle Scholar
  123. Feller, G., E. Narinx, J.-L. Arpigny, Z. Zekhnini, J. Swings, and C. Gerday. 1994 Temperature dependence of growth, enzyme secretion and activity of psychrophilic Antarctic bacteria Appl. Microbiol. Biotechnol. 41 477–479CrossRefGoogle Scholar
  124. Feller, G. 2003a Molecular adaptations to cold in psychrophilic enzymes Cell. Molec. Life Sci. 60 648–662PubMedCrossRefGoogle Scholar
  125. Feller, G., and C. Gerday. 2003 Psychrophilic enzymes: Hot topics in cold adaptation Nature Rev. 1 200–208CrossRefGoogle Scholar
  126. Feng, W., R. Tejero, D. E. Zimmerman, M. Inouye, and G. T. Montelione. 1998 Solution NMR structure and backbone dynamics of the major cold-shock protein (CspA) from Escherichia coli: Evidence for conformational dynamics in the single-stranded RNA-binding site Biochemistry 37 10881–10896PubMedCrossRefGoogle Scholar
  127. Feng, Y., H. Huang, J. Liao, and S. N. Cohen. 2001 Escherichia coli Poly(A)-binding proteins that interact with components of degradosomes or impede RNA decay mediated by polynucleotide phosphorylase and RNase E J. Biol. Chem. 276 31651–31656PubMedCrossRefGoogle Scholar
  128. Fernandes, S., B. Geueke, O. Delgado, J. Coleman, and R. Hatti-Kaul. 2002 Beta-galactosidase from a cold-adapted bacterium: purification, characterization and application for lactose hydrolysis Appl. Microbiol. Biotechnol. 58 313–321PubMedCrossRefGoogle Scholar
  129. Fey, A., and R. Conrad. 2000 Effect of temperature on carbon and electron flow and on the archaeal community in methanogenic rice field soil Appl. Environ. Microbiol. 66 4790–4797PubMedCrossRefGoogle Scholar
  130. Finneran, K. T., C. V. Johnsen, and D. R. Lovley. 2003 Rhodoferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III) Int. J. Syst. Evol. Microbiol. 53 669–673PubMedCrossRefGoogle Scholar
  131. Fong, N. J., M. L. Burgess, K. D. Barrow, and D. R. Glenn. 2001 Carotenoid accumulation in the psychrotrophic bacterium Arthrobacter agilis in response to thermal and salt stress Appl. Microbiol. Biotechnol. 56 750–756PubMedCrossRefGoogle Scholar
  132. Forster, J. 1887 Über einige Eigenschaften leuchtender Bakterien Zbl. Bakteriol. Parasitenkde. 2 337–340Google Scholar
  133. Francis, K. P., and G. S. A. B. Stewart. 1997 Detection and speciation of bacteria through PCR using universal major cold-shock protein primer oligomers J. Indust. Microbiol. Biotechnol. 19 286–293CrossRefGoogle Scholar
  134. Francis, K. P., D. Joh, C. Bellinger-Kawahara, M. J. Hawkinson, T. F. Purchio, and P. R. Contag. 2000 Monitoring bioluminescent Staphylococcus aureus infections in living mice using a novel luxABCDE construct Infect. Immun. 68 3594–3600PubMedCrossRefGoogle Scholar
  135. Garcia-Mira, M. M., D. Boehringer, and F. X. Schmid. 2004 The folding transition state of the cold shock protein is strongly polarized J. Molec. Biol. 339 555–569PubMedCrossRefGoogle Scholar
  136. Garofoli, S., M. Falconi, and A. Desideri. 2004 Thermophilicity of wild type and mutant cold shock proteins by molecular dynamics simulation J. Biomolec. Struct. Dyn. 21 771–780CrossRefGoogle Scholar
  137. Gavaghan, H. 2002 Life in the deep freeze Nature 415 828–830PubMedCrossRefGoogle Scholar
  138. Gawande, P. V., and A. A. Bhagwat. 2002 Protective effects of cold temperature and surface-contact on acid tolerance of Salmonella spp J. Appl. Microbiol. 93 689–696PubMedCrossRefGoogle Scholar
  139. Gerday, C., M. Aittaleb, J. L. Arpigny, E. Baise, J. P. Chessa, G. Garsoux, I. Petrescu, and G. Feller. 1997 Psychrophilic enzymes: a thermodynamic challenge Biochim. Biophys. Acta 1342 119–131PubMedCrossRefGoogle Scholar
  140. Gerday C., M. Aittaleb, J. L. Arpigny, E. Baise, J. P. Chessa, J. M. Francois, G. Garsoux, I. Petrescu, and G. Feööer. 1999 Cold enzymes: A hot topic In: R. Margesin and S. F. (Eds.) Cold Adapted Organisms Berlin 257–275Google Scholar
  141. Gerday, C., M. Aittaleb, M. Bentahir, J. P. Chessa, P. Claverie, T. Collins, S. D’Amico, J. Dumont, G. Garsoux, D. Georlette, A. Hoyoux, T. Lonhienne, M. A. Meuwis, and G. Feller. 2000 Cold-adapted enzymes: From fundamentals to biotechnology Trends Biotechnol. 18 103–107PubMedCrossRefGoogle Scholar
  142. Gerike, U., M. J. Danson, and D. W. Hough. 2001 Cold-active citrate synthase: mutagenesis of active-site residues Protein Engin. 14 655–661CrossRefGoogle Scholar
  143. Giangrossi, M., R. M. Exley, F. Le Hegarat, and C. L. Pon. 2001a Different in vivo localization of the Escherichia coli proteins CspD and CspA FEMS Microbiol. Lett. 202 171–176PubMedCrossRefGoogle Scholar
  144. Giangrossi, M., C. O. Gualerzi, and C. L. Pon. 2001b Mutagenesis of the downstream region of the Escherichia coli hns promoter Biochimie 83 251–259PubMedCrossRefGoogle Scholar
  145. Giangrossi, M., A. M. Giuliodori, C. O. Gualerzi, and C. L. Pon. 2002 Selective expression of the beta-subunit of nucleoid-associated protein HU during cold shock in Escherichia coli Molec. Microbiol. 44 205–216CrossRefGoogle Scholar
  146. Giuliodori, A. M., A. Brandi, C. O. Gualerzi, and C. L. Pon. 2004 Preferential translation of cold-shock mRNAs during cold adaptation RNA 10 265–276PubMedCrossRefGoogle Scholar
  147. Goldstein, E., and K. Drlica. 1984 Regulation of bacterial DNA supercoiling: Plasmid linking numbers vary with growth temperature Proc. Natl. Acad. Sci. USA 81 4046–4050PubMedCrossRefGoogle Scholar
  148. Goldstein, J., N. S. Pollitt, and M. Inouye. 1990 Major cold shock protein of Escherichia coli Proc. Natl. Acad. Sci. USA 87(1) 283–287PubMedCrossRefGoogle Scholar
  149. Golovlev, E. L. 2003 Bacterial cold shock response at the level of DNA transcription, translation and chromosome dynamics [in Russian] Mikrobiologiia 72 5–13PubMedGoogle Scholar
  150. Gonzalez, B., F. Ceciliani, and A. Galizzi. 2003 Growth at low temperature suppresses readthrough of the UGA stop codon during the expression of Bacillus subtilis flgM gene in Escherichia coli J. Biotechnol. 101 173–180PubMedCrossRefGoogle Scholar
  151. Goodchild, A., N. F. Saunders, H. Ertan, M. Raftery, M. Guilhaus, P. M. Curmi, and R. Cavicchioli. 2004 A proteomic determination of cold adaptation in the Antarctic archaeon, Methanococcoides burtonii Molec. Microbiol. 53 309–321CrossRefGoogle Scholar
  152. Gopal, B., L. F. Haire, S. J. Gamblin, E. J. Dodson, A. N. Lane, K. G. Papavinasasundaram, M. J. Colston, and G. Dodson. 2001 Crystal structure of the transcription elongation/anti-termination factor NusA from Mycobacterium tuberculosis at 1.7 A resolution J. Molec. Biol. 314 1087–1095PubMedCrossRefGoogle Scholar
  153. Gophna, U., and E. Z. Ron. 2003 Virulence and the heat shock response Int. J. Med. Microbiol. 292 453–461PubMedCrossRefGoogle Scholar
  154. Gounot, A. M. 1991 Bacterial life at low temperature: Physiological aspects and biotechnological implications J. Appl. Bacteriol. 71 386–397PubMedCrossRefGoogle Scholar
  155. Gounot, A. M., and N. J. Russell. 1999, Physiology of cold-adapted microorganisms, In: R. Margesin and F. Schinner (Eds.) Cold-adapted Organisms: Ecology, Physiology, Enzymology and Molecular Biology, Berlin, Germany, 33–55Google Scholar
  156. Goverde, R. L., J. H. Huis in’t Veld, J. G. Kusters, and F. R. Mooi. 1998 The psychrotrophic bacterium Yersinia enterocolitica requires expression of pnp, the gene for polynucleotide phosphorylase, for growth at low temperature (5°C) Molec. Microbiol. 28 555–569CrossRefGoogle Scholar
  157. Graham, P. H. 1992 Stress tolerance in Rhizobium and Bradyrhizobium, and nodulation under adverse soil conditions Can. J. Microbiol. 38 475–484CrossRefGoogle Scholar
  158. Granum, P. E., and T. Lund. 1997 Bacillus cereus and its food poisoning toxins FEMS Microbiol. Lett. 157 223–228PubMedCrossRefGoogle Scholar
  159. Graumann, P., and M. A. Marahiel. 1996a A case of convergent evolution of nucleic acid binding modules Bioessays 18 309–315PubMedCrossRefGoogle Scholar
  160. Graumann, P., K. Schröder, R. Schmid, and M. A. Marahiel. 1996b Cold shock stress-induced proteins in Bacillus subtilis J. Bacteriol. 178 4611–4619PubMedGoogle Scholar
  161. Graumann, P., T. M. Wendrich, M. H. Weber, K. Schroder, and M. A. Marahiel. 1997 A family of cold shock proteins in Bacillus subtilis is essential for cellular growth and for efficient protein synthesis at optimal and low temperatures Molec. Microbiol. 25 741–756CrossRefGoogle Scholar
  162. Graumann, P. L., and M. A. Marahiel. 1998 A superfamily of proteins that contain the cold-shock domain Trends Biochem. Sci. 23 286–290PubMedCrossRefGoogle Scholar
  163. Graumann, P. L., and M. A. Marahiel. 1999a Cold shock proteins CspB and CspC are major stationary-phase-induced proteins in Bacillus subtilis Arch. Microbiol. 171 135–138PubMedCrossRefGoogle Scholar
  164. Graumann, P. L., and M. A. Marahiel. 1999b Cold shock response in Bacillus subtilis J. Molec. Microbiol. Biotechnol. 1 203–209Google Scholar
  165. Groudieva, T., M. Kambourova, H. Yusef, M. Royter, R. Grote, H. Trinks, and G. Antranikian. 2004 Diversity and cold-active hydrolytic enzymes of culturable bacteria associated with Arctic sea ice, Spitzbergen Extremophiles 8 475–488PubMedCrossRefGoogle Scholar
  166. Gualerzi, C. O., A. M. Giuliodori, and C. L. Pon. 2003 Transcriptional and post-transcriptional control of cold-shock genes J. Molec. Biol. 331 527–539PubMedCrossRefGoogle Scholar
  167. Guentert, A. M., and R. H. Linton. 2003 Growth and survival of selected pathogens in margarine-style table spreads J. Environ. Health 65 9–14; quiz 27–8PubMedGoogle Scholar
  168. Guillou, C., and J. F. Guespin-Michel. 1996 Evidence for two domains of growth temperature for the psychrotrophic bacterium Pseudomonas fluorescens MF0 Appl. Environ. Microbiol. 62 3319–3324PubMedGoogle Scholar
  169. Hamasaki, Y., M. Ayaki, H. Fuchu, M. Sugiyama, and H. Morita. 2003 Behavior of psychrotrophic lactic acid bacteria isolated from spoiling cooked meat products Appl. Environ. Microbiol. 69 3668–3671PubMedCrossRefGoogle Scholar
  170. Harrison, W. A., A. C. Peters, and L. M. Fielding. 2000 Growth of Listeria monocytogenes and Yersinia enterocolitica colonies under modified atmospheres at 4 and 8 degrees C using a model food system J. Appl. Microbiol. 88 38–43PubMedCrossRefGoogle Scholar
  171. Hauser, E., P. Kämpfer, and H. J. Busse. 2004 Pseudomonas psychrotolerans sp. nov Int. J. Syst. Evol. Microbiol. 54 1633–1637PubMedCrossRefGoogle Scholar
  172. Hébraud, M., E. Dubois, P. Potier, and J. Labadie. 1994 Effect of growth temperatures on the protein levels in a psychrotrophic bacterium, Pseudomonas fragi J. Bacteriol. 176 4017–4024PubMedGoogle Scholar
  173. Hébraud, M., and P. Potier. 1999 Cold shock response and low temperature adaptation in psychrotrophic bacteria J. Molec. Microbiol. Biotechnol. 1 211–219Google Scholar
  174. Hébraud, M., and J. Guzzo. 2000 The main cold shock protein of Listeria monocytogenes belongs to the family of ferritin-like proteins FEMS Microbiol. Lett. 190 29–34PubMedCrossRefGoogle Scholar
  175. Helgason, E., O. A. Okstad, D. A. Caugant, H. A. Johansen, A. Fouet, M. Mock, I. Hegna, and Kolsto. 2000 Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis—one species on the basis of genetic evidence Appl. Environ. Microbiol. 66 2627–2630PubMedCrossRefGoogle Scholar
  176. Herbert, R. A. 1986. The ecology and physiology of psychrophilic microorganisms, In: R. A. Herbert and C. A. Codd (Eds.) Microbes in Extreme Environments, London, UK, 1–23Google Scholar
  177. Heuchert, A., F. O. Glockner, R. Amann, and U. Fischer. 2004 Psychrobacter nivimaris sp. nov., a heterotrophic bacterium attached to organic particles isolated from the South Atlantic (Antarctica) Syst. Appl. Microbiol. 27 399–406PubMedCrossRefGoogle Scholar
  178. Holmes, D. E., J. S. Nicoll, D. R. Bond, and D. R. Lovley. 2004 Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell Appl. Environ. Microbiol. 70 6023–6030PubMedCrossRefGoogle Scholar
  179. Hong, S. H., and R. T. Marshall. 2001 Natural exopolysaccharides enhance survival of lactic acid bacteria in frozen dairy desserts J. Dairy Sci. 84 1367–1374PubMedCrossRefGoogle Scholar
  180. Horvath, I., A. Glatz, V. Varvasovszki, Z. Torok, T. Pali, G. Balogh, E. Kovacs, L. Nadasdi, S. Benko, F. Joo, and L. Vigh. 1998 Membrane physical state controls the signaling mechanism of the heat shock response in Synechocystis PCC 6803: Identification of hsp17 as a “fluidity gene” Proc. Natl. Acad. Sci. USA 95 3513–3518PubMedCrossRefGoogle Scholar
  181. Hossain, M. M., and H. Nakamoto. 2003 Role for the cyanobacterial HtpG in protection from oxidative stress Curr. Microbiol. 46 70–76PubMedCrossRefGoogle Scholar
  182. Hoyoux, A., I. Jennes, P. Dubois, S. Genicot, F. Dubail, J. M. Francois, E. Baise, G. Feller, and C. Gerday. 2001 Cold-adapted beta-galactosidase from the Antarctic psychrophile Pseudoalteromonas haloplanktis Appl. Environ. Microbiol. 67 1529–1535PubMedCrossRefGoogle Scholar
  183. Huang, Y. J., G. V. Swapna, P. K. Rajan, H. Ke, B. Xia, K. Shukla, M. Inouye, and G. T. Montelione. 2003 Solution NMR structure of ribosome-binding factor A (RbfA), a cold-shock adaptation protein from Escherichia coli J. Molec. Biol. 327 521–536PubMedCrossRefGoogle Scholar
  184. Hughes, K. A., and N. Blenkharn. 2003 A simple method to reduce discharge of sewage microorganisms from an Antarctic research station Mar. Pollut. Bull. 46 353–357PubMedCrossRefGoogle Scholar
  185. Hulton, C. S., A. Seirafi, J. C. Hinton, J. M. Sidebotham, L. Waddell, G. D. Pavitt, T. Owen-Hughes, A. Spassky, H. Buc, and C. F. Higgins. 1990 Histone-like protein H1 (H-NS), DNA supercoiling, and gene expression in bacteria Cell 63 631–642PubMedCrossRefGoogle Scholar
  186. Humphry, D. R., A. George, G. W. Black, and S. P. Cummings. 2001 Flavobacterium frigidarium sp. nov., an aerobic, psychrophilic, xylanolytic and laminarinolytic bacterium from Antarctica Int. J. Syst. Evol. Microbiol. 51 1235–1243PubMedGoogle Scholar
  187. Hurme, R., and M. Rhen. 1998 Temperature sensing in bacterial gene regulation—what it all boils down to Molec. Microbiol. 30 1–6CrossRefGoogle Scholar
  188. Huston, A. L., B. B. Krieger-Brockett, and J. W. Deming. 2000 Remarkably low temperature optima for extracellular enzyme activity from Arctic bacteria and sea ice Environ. Microbiol. 2 383–388PubMedCrossRefGoogle Scholar
  189. Huston, A. L., B. Methe, and J. W. Deming. 2004 Purification, characterization, and sequencing of an extracellular cold-active aminopeptidase produced by marine psychrophile Colwellia psychrerythraea strain 34H Appl. Environ. Microbiol. 70 3321–3328PubMedCrossRefGoogle Scholar
  190. Imbert, M., and F. Gancel. 2004 Effect of different temperature downshifts on protein synthesis by Aeromonas hydrophila Curr. Microbiol. 49 79–83PubMedCrossRefGoogle Scholar
  191. Inaba, M., I. Suzuki, B. Szalontai, Y. Kanesaki, D. A. Los, H. Hayashi, and N. Murata. 2003 Gene-engineered rigidification of membrane lipids enhances the cold inducibility of gene expression in synechocystis J. Biol. Chem. 278 12191–12198PubMedCrossRefGoogle Scholar
  192. Inouye, M., and S. Phadtare. 2004 Cold shock response and adaptation at near-freezing temperature in microorganisms Sci. STKE 2004 pe26PubMedCrossRefGoogle Scholar
  193. Irwin, J. A., G. A. Alfredsson, A. J. Lanzetti, H. M. Gudmundsson, and P. C. Engel. 2001a Purification and characterisation of a serine peptidase from the marine psychrophile strain PA-43 FEMS Microbiol. Lett. 201 285–290PubMedCrossRefGoogle Scholar
  194. Irwin, J. A., H. M. Gudmundsson, V. T. Marteinsson, G. O. Hreggvidsson, A. J. Lanzetti, G. A. Alfredsson, and P. C. Engel. 2001b Characterization of alanine and malate dehydrogenases from a marine psychrophile strain PA-43 Extremophiles 5 199–211PubMedCrossRefGoogle Scholar
  195. Jagannadham, M. V., K. Narayanan, C. M. Rao, and S. Shivaji. 1996 In vivo characteristics and localisation of carotenoid pigments in psychrotrophic and mesophilic Micrococcus roseus using photoacoustic spectroscopy Biochem. Biophys. Res. Commun. 227 221–226PubMedCrossRefGoogle Scholar
  196. Jagannadham, M. V., M. K. Chattopadhyay, C. Subbalakshmi, M. Vairamani, K. Narayanan, C. M. Rao, and S. Shivaji. 2000 Carotenoids of an Antarctic psychrotolerant bacterium, Sphingobacterium antarcticus, and a mesophilic bacterium, Sphingobacterium multivorum Arch. Microbiol. 173 418–424PubMedCrossRefGoogle Scholar
  197. Jäger, S., E. Evguenieva-Hackenberg, and G. Klug. 2004 Temperature-dependent processing of the cspA mRNA in Rhodobacter capsulatus Microbiology 150 687–695PubMedCrossRefGoogle Scholar
  198. Jahns, T., and H. Kaltwasser. 1993 Properties of the cold-labile NAD(+)-specific glutamate dehydrogenase from Bacillus cereus DSM 31 J. Gen. Microbiol. 139(4) 775–780PubMedCrossRefGoogle Scholar
  199. Janiyani, K. L., and M. K. Ray. 2002 Cloning, sequencing, and expression of the cold-inducible hutU gene from the antarctic psychrotrophic bacterium Pseudomonas syringae Appl. Environ. Microbiol. 68 1–10PubMedCrossRefGoogle Scholar
  200. Jay, J. M. 2002 A review of aerobic and psychrotrophic plate count procedures for fresh meat and poultry products J. Food Prot. 65 1200–1206PubMedGoogle Scholar
  201. Jensen, N., P. Varelis, and F. B. Whitfield. 2001 Formation of guaiacol in chocolate milk by the psychrotrophic bacterium Rahnella aquatilis Lett. Appl. Microbiol. 33 339–343PubMedCrossRefGoogle Scholar
  202. Jiang, W., P. Jones, and M. Inouye. 1993 Chloramphenicol induces the transcription of the major cold shock gene of Escherichia coli, cspA J. Bacteriol. 175 5824–5828PubMedGoogle Scholar
  203. Jiang, W., L. Fang, and M. Inouye. 1996a Complete growth inhibition of Escherichia coli by ribosome trapping with truncated cspA mRNA at low temperature Genes Cells 1 965–976PubMedCrossRefGoogle Scholar
  204. Jiang, W., L. Fang, and M. Inouye. 1996b The role of the 5′-end untranslated region of the mRNA for CspA, the major cold-shock protein of Escherichia coli, in cold-shock adaptation J. Bacteriol. 178 4919–4925PubMedGoogle Scholar
  205. Jiang, W., Y. Hou, and M. Inouye. 1997 CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone J. Biol. Chem. 272 196–202PubMedCrossRefGoogle Scholar
  206. Johansson, J., P. Mandin, A. Renzoni, C. Chiaruttini, M. Springer, and P. Cossart. 2002 An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes Cell 110 551–561PubMedCrossRefGoogle Scholar
  207. Johansson, P. M., and S. A. Wright. 2003 Low-temperature isolation of disease-suppressive bacteria and characterization of a distinctive group of pseudomonads Appl. Environ. Microbiol. 69 6464–6474PubMedCrossRefGoogle Scholar
  208. Johnston, M. D., and M. H. Brown. 2002 An investigation into the changed physiological state of Vibrio bacteria as a survival mechanism in response to cold temperatures and studies on their sensitivity to heating and freezing J. Appl. Microbiol. 92 1066–1077PubMedCrossRefGoogle Scholar
  209. Jones, P. G., R. A. VanBogelen, and F. C. Neidhardt. 1987 Induction of proteins in response to low temperature in Escherichia coli J. Bacteriol. 169 2092–2095PubMedGoogle Scholar
  210. Jones, P. G., M. Cashel, G. Glaser, and F. C. Neidhardt. 1992a Function of a relaxed-like state following temperature downshifts in Escherichia coli J. Bacteriol. 174 3903–3914PubMedGoogle Scholar
  211. Jones, P. G., R. Krah, S. R. Tafuri, and A. P. Wolffe. 1992b DNA gyrase, CS7.4, and the cold shock response in Escherichia coli J. Bacteriol. 174 5798–5802PubMedGoogle Scholar
  212. Jones, P. G., and M. Inouye. 1994 The cold-shock response—a hot topic Molec. Microbiol. 11 811–818CrossRefGoogle Scholar
  213. Jones, P. G., M. Mitta, Y. Kim, W. Jiang, and M. Inouye. 1996 Cold shock induces a major ribosomal-associated protein that unwinds double-stranded RNA in Escherichia coli Proc. Natl. Acad. Sci. USA 93 76–80PubMedCrossRefGoogle Scholar
  214. Jones, C. E., G. Shama, D. Jones, I. S. Roberts, and P. W. Andrew. 1997 Physiological and biochemical studies on psychrotolerance in Listeria monocytogenes J. Appl. Microbiol. 83 31–35PubMedCrossRefGoogle Scholar
  215. Jones, S. L., P. Drouin, B. J. Wilkinson, and PD, I.I.M. 2002 Correlation of long-range membrane order with temperature-dependent growth characteristics of parent and a cold-sensitive, branched-chain-fatty-acid-deficient mutant of Listeria monocytogenes Arch. Microbiol. 177 217–222PubMedCrossRefGoogle Scholar
  216. Junge, K., H. Eicken, and J. W. Deming. 2003 Motility of Colwellia psychrerythraea strain 34H at subzero temperatures Appl. Environ. Microbiol. 69 4282–4284PubMedCrossRefGoogle Scholar
  217. Kaan, T., B. Jürgen, and T. Schweder. 1999 Regulation of the expression of the cold shock proteins CspB and CspC in Bacillus subtilis Molec. Gen. Genet. 262 351–354PubMedCrossRefGoogle Scholar
  218. Kaan, T., G. Homuth, U. Mader, J. Bandow, and T. Schweder. 2002 Genome-wide transcriptional profiling of the Bacillus subtilis cold-shock response Microbiology 148 3441–3455PubMedGoogle Scholar
  219. Kalinin, A., A. Rak, D. Shcherbakov, and P. Bayer. 2002 1H, 13C and 15N resonance assignments of the ribosome-associated cold shock response protein Yfia of Escherichia coli J Biomol NMR 23 335–336PubMedCrossRefGoogle Scholar
  220. Kalinowski, R. M., R. B. Tompkin, P. W. Bodnaruk, and W. P. Pruett Jr. 2003 Impact of cooking, cooling, and subsequent refrigeration on the growth or survival of Clostridium perfringens in cooked meat and poultry products J. Food Prot. 66 1227–1232PubMedGoogle Scholar
  221. Kämpfer, P. 1994 Limits and possibilities of total fatty acid analysis for classification and identification of Bacillus species Syst. Appl. Microbiol. 17 86–98CrossRefGoogle Scholar
  222. Kandror, O., and A. L. Goldberg. 1997 Trigger factor is induced upon cold shock and enhances viability of Escherichia coli at low temperatures Proc. Natl. Acad. Sci. USA 94 4978–4981PubMedCrossRefGoogle Scholar
  223. Kandror, O., A. DeLeon, and A. L. Goldberg. 2002 Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures Proc. Natl. Acad. Sci. USA 99 9727–9732PubMedCrossRefGoogle Scholar
  224. Kaneda, T. 1991 Iso-and anteiso-fatty acids in bacteria: Biosynthesis, function, and taxonomic significance Microbiol. Rev. 55 288–302PubMedGoogle Scholar
  225. Kannan, K., K. L. Janiyani, S. Shivaji, and M. K. Ray. 1998 Histidine utilisation operon (hut) is upregulated at low temperature in the antarctic psychrotrophic bacterium Pseudomonas syringae FEMS Microbiol. Lett. 161 7–14PubMedCrossRefGoogle Scholar
  226. Karlson, D., and R. Imai. 2003 Conservation of the cold shock domain protein family in plants Plant Physiol. 131 12–15PubMedCrossRefGoogle Scholar
  227. Karr, E. A., W. M. Sattley, D. O. Jung, M. T. Madigan, and L. A. Achenbach. 2003 Remarkable diversity of phototrophic purple bacteria in a permanently frozen Antarctic lake Appl. Environ. Microbiol. 69 4910–4914PubMedCrossRefGoogle Scholar
  228. Katiyar, V., and R. Goel. 2003 Solubilization of inorganic phosphate and plant growth promotion by cold tolerant mutants of Pseudomonasfluorescens Microbiol. Res. 158 163–168PubMedCrossRefGoogle Scholar
  229. Kato, T., M. Haruki, T. Imanaka, M. Morikawa, and S. Kanaya. 2001 Isolation and characterization of psychotrophic bacteria from oil-reservoir water and oil sands Appl. Microbiol. Biotechnol. 55 794–800PubMedCrossRefGoogle Scholar
  230. Katzif, S., D. Danavall, S. Bowers, J. T. Balthazar, and W. M. Shafer. 2003 The major cold shock gene, cspA, is involved in the susceptibility of Staphylococcus aureus to an antimicrobial peptide of human cathepsin G Infect. Immun. 71 4304–4312PubMedCrossRefGoogle Scholar
  231. Kawamoto, S., D. Yasokawa, A. Kaidou, S. Tokuyama, K. Aoyama, M. Sasabuchi, and S. Yashima. 1989 Characterization of a cold resistant mutant of Escherichia coli J. Ferment. Bioengin. 68 383–389CrossRefGoogle Scholar
  232. Kazuoka, T., S. Takigawa, N. Arakawa, Y. Hizukuri, I. Muraoka, T. Oikawa, and K. Soda. 2003 Novel psychrophilic and thermolabile L-threonine dehydrogenase from psychrophilic Cytophaga sp. strain KUC-1 J. Bacteriol. 185 4483–4489PubMedCrossRefGoogle Scholar
  233. Kempler, G., and B. Ray. 1978 Nature of freezing damage on the lipopolysaccharide molecule of Escherichia coli B Cryobiology 15 578–584PubMedCrossRefGoogle Scholar
  234. Khan, M., V. K. Bajpai, S. A. Anasari, A. Kumar, and R. Goel. 2003 Characterization and localization of fluorescent Pseudomonas cold shock protein(s) by monospecific polyclonal antibodies Microbiol. Immunol. 47 895–901PubMedGoogle Scholar
  235. Khmelenina, V. N., V. A. Makutina, M. G. Kalyuzhnaya, E. M. Rivkina, D. A. Gilichinsky, and Y. Trotsenko. 2002 Discovery of viable methanotrophic bacteria in permafrost sediments of northeast Siberia Dokl. Biol. Sci. 384 235–237PubMedCrossRefGoogle Scholar
  236. Kim, W. S., and N. W. Dunn. 1997 Identification of a cold shock gene in lactic acid bacteria and the effect of cold shock on cryotolerance Curr. Microbiol. 35 59–63PubMedCrossRefGoogle Scholar
  237. Kim, W. S., N. Khunajakr, and N. W. Dunn. 1998 Effect of cold shock on protein synthesis and on cryotolerance of cells frozen for long periods in Lactococcus lactis Cryobiology 37 86–91PubMedCrossRefGoogle Scholar
  238. Kim, B. H., I. S. Bang, S. Y. Lee, S. K. Hong, S. H. Bang, I. S. Lee, and Y. K. Park. 2001 Expression of cspH, Encoding the Cold Shock Protein in Salmonella enterica Serovar Typhimurium UK-1 J. Bacteriol. 183 5580–5588PubMedCrossRefGoogle Scholar
  239. Kjelleberg, S. 1993 Starvation in Bacteria Kluwer Academic, Dordrecht, The NetherlandsGoogle Scholar
  240. Klein, W., M. H. Weber, and M. A. Marahiel. 1999 Cold shock response of Bacillus subtilis: Isoleucine-dependent switch in the fatty acid branching pattern for membrane adaptation to low temperatures J. Bacteriol. 181 5341–5349PubMedGoogle Scholar
  241. Knoblauch, C., and B. B. Jørgensen. 1999a Effect of temperature on sulphate reduction, growth rate and growth yield in five psychrophilic sulphate-reducing bacteria from Arctic sediments Environ. Microbiol. 1 457–467PubMedCrossRefGoogle Scholar
  242. Knoblauch, C., B. B. Jørgensen, and J. Harder. 1999b Community size and metabolic rates of psychrophilic sulfate-reducing bacteria in Arctic marine sediments Appl. Environ. Microbiol. 65 4230–4233PubMedGoogle Scholar
  243. Koda, N., T. Asaeda, K. Yamade, H. Kawahara, and H. Obata. 2001 A novel cryoprotective protein (CRP) with high activity from the ice-nucleating bacterium, Pantoea agglomerans IFO12686 Biosci. Biotechnol. Biochem. 65 888–894PubMedCrossRefGoogle Scholar
  244. Konkel, M. E., and K. Tilly. 2000 Temperature-regulated expression of bacterial virulence genes Microb. Infect. 2 157–166CrossRefGoogle Scholar
  245. Könneke, M., and F. Widdel. 2003 Effect of growth temperature on cellular fatty acids in sulphate-reducing bacteria Environ. Microbiol. 5 1064–1070PubMedCrossRefGoogle Scholar
  246. Krispin, O., and R. Allmansberger. 1995 Changes in DNA supertwist as a response of Bacillus subtilis towards different kinds of stress FEMS Microbiol. Lett. 134 129–135PubMedCrossRefGoogle Scholar
  247. Kulakova, L., A. Galkin, T. Nakayama, T. Nishino, and N. Esaki. 2004 Cold-active esterase from Psychrobacter sp. Ant300: gene cloning, characterization, and the effects of Gly—>Pro substitution near the active site on its catalytic activity and stability Biochim. Biophys. Acta 1696 59–65PubMedCrossRefGoogle Scholar
  248. Kumar, G. S., M. V. Jagannadham, and M. K. Ray. 2002 Low-temperature-induced changes in composition and fluidity of lipopolysaccharides in the antarctic psychrotrophic bacterium Pseudomonas syringae J. Bacteriol. 184 6746–6749PubMedCrossRefGoogle Scholar
  249. Kumar, S., and R. Nussinov. 2004 Different roles of electrostatics in heat and in cold: Adaptation by citrate synthase Chembiochem 5 280–290PubMedCrossRefGoogle Scholar
  250. Kunklova, D., V. Liska, P. Svoboda, and J. Svobodova. 1995 Cold-shock response of protein, RNA, DNA and phospholipid synthesis an Bacillus subtilis Folia Microbiol. 40 627–632CrossRefGoogle Scholar
  251. Landsman, D. 1992 RNP-1, an RNA-binding motif is conserved in the DNA-binding cold shock domain Nucleic Acids Res 20 2861–2864PubMedCrossRefGoogle Scholar
  252. La Teana, A., A. Brandi, M. Falconi, R. Spurio, C. L. Pon, and C. O. Gualerzi. 1991 Identification of a cold shock transcriptional enhancer of the Escherichia coli gene encoding nucleoid protein H-NS Proc. Natl. Acad. Sci. USA 88 10907–10911PubMedCrossRefGoogle Scholar
  253. La Teana, A., A. Brandi, M. O’Connor, S. Freddi, and C. L. Pon. 2000 Translation during cold adaptation does not involve mRNA-rRNA base pairing through the downstream box Rna 6 1393–1402PubMedCrossRefGoogle Scholar
  254. Laybourn-Parry, J. 2002 Survival mechanisms in Antarctic lakes Phil. Trans. R. Soc. Lond. B Biol. Sci. 357 863–869CrossRefGoogle Scholar
  255. Leblanc, L., C. Leboeuf, F. Leroi, A. Hartke, and Y. Auffray. 2003 Comparison between NaCl tolerance response and acclimation to cold temperature in Shewanella putrefaciens Curr. Microbiol. 46 157–162PubMedCrossRefGoogle Scholar
  256. Lechner, S., R. Mayr, K. P. Francis, B. M. Pruss, T. Kaplan, E. Wiessner-Gunkel, G. S. Stewart, and S. Scherer. 1998 Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group Int. J. Syst. Bacteriol. 48(4) 1373–1382CrossRefGoogle Scholar
  257. Lee, S. J., A. Xie, W. Jiang, J. P. Etchegaray, P. G. Jones, and M. Inouye. 1994 Family of the major cold-shock protein, CspA (CS7.4), of Escherichia coli, whose members show a high sequence similarity with the eukaryotic Y-box binding proteins Molec. Microbiol. 11 833–839CrossRefGoogle Scholar
  258. Lelivelt, M. J., and T. H. Kawula. 1995 Hsc66, an Hsp70 homolog in Escherichia coli, is induced by cold shock but not by heat shock J. Bacteriol. 177 4900–4907PubMedGoogle Scholar
  259. Lettinga, G., S. Rebac, and G. Zeeman. 2001 Challenge of psychrophilic anaerobic wastewater treatment Trends Biotechnol. 19 363–370PubMedCrossRefGoogle Scholar
  260. Li, J., G. L. Kolling, K. R. Matthews, and M. L. Chikindas. 2003 Cold and carbon dioxide used as multi-hurdle preservation do not induce appearance of viable but non-culturable Listeria monocytogenes J. Appl. Microbiol. 94 48–53PubMedCrossRefGoogle Scholar
  261. Liang, Z. X., I. Tsigos, T. Lee, V. Bouriotis, K. A. Resing, N. G. Ahn, and J. P. Klinman. 2004 Evidence for increased local flexibility in psychrophilic alcohol dehydrogenase relative to its thermophilic homologue Biochemistry 43 14676–14683PubMedCrossRefGoogle Scholar
  262. Lin, C., R. C. Yu, and C. C. Chou. 2004 Susceptibility of Vibrio parahaemolyticus to various environmental stresses after cold shock treatment Int. J. Food Microbiol. 92 207–215PubMedCrossRefGoogle Scholar
  263. Lipponen, M. T., M. H. Suutari, and P. J. Martikainen. 2002 Occurrence of nitrifying bacteria and nitrification in Finnish drinking water distribution systems Water Res. 36 4319–4329PubMedCrossRefGoogle Scholar
  264. Liu, S., J. E. Graham, L. Bigelow, P. D. Morse 2nd, and B. J. Wilkinson. 2002 Identification of Listeria monocytogenes genes expressed in response to growth at low temperature Appl. Environ. Microbiol. 68 1697–1705PubMedCrossRefGoogle Scholar
  265. Lonhienne, T., C. Gerday, and G. Feller. 2000 Psychrophilic enzymes: revisiting the thermodynamic parameters of activation may explain local flexibility Biochim. Biophys. Acta 1543 1–10PubMedCrossRefGoogle Scholar
  266. Lonhienne, T., J. Zoidakis, C. E. Vorgias, G. Feller, C. Gerday, and V. Bouriotis. 2001 Modular structure, local flexibility and cold-activity of a novel chitobiase from a psychrophilic Antarctic bacterium J. Molec. Biol. 310 291–297PubMedCrossRefGoogle Scholar
  267. Lopez, M. M., and G. I. Makhatadze. 2000 Major cold shock proteins, CspA from Escherichia coli and CspB from Bacillus subtilis, interact differently with single-stranded DNA templates Biochim. Biophys. Acta 1479 196–202PubMedCrossRefGoogle Scholar
  268. Lopez-Garcia, P, and P. Forterre. 1999 Control of DNA topology during thermal stress in hyperthermophilic archaea: DNA topoisomerase levels, activities and induced thermotolerance during heat and cold shock in Sulfolobus Molec. Microbiol. 33 766–777CrossRefGoogle Scholar
  269. Los, D. A., M. K. Ray, and N. Murata. 1997 Differences in the control of the temperature-dependent expression of four genes for desaturases in Synechocystis sp. PCC 6803 Molec. Microbiol. 25 1167–1175CrossRefGoogle Scholar
  270. Los, D. A., and N. Murata. 1999 Responses to cold shock in cyanobacteria J. Molec. Microbiol. Biotechnol. 1 221–230Google Scholar
  271. Lynch, W. H., J. MacLeod, and M. Franklin. 1975a Effect of growth temperature on the accumulation of glucose-oxidation products in Pseudomonas fluorescens Can. J. Microbiol. 21 1553–1559PubMedCrossRefGoogle Scholar
  272. Lynch, W. H., J. MacLeod, and M. Franklin. 1975b Effect of temperature on the activity and synthesis of glucose-catabolizing enzymes in Pseudomonas fluorescens Can. J. Microbiol. 21 1560–1572PubMedCrossRefGoogle Scholar
  273. Lynch, W. H., and M. Franklin. 1978 Effect of temperature on diauxic growth with glucose and organic acids in Pseudomonas fluorescens Arch. Microbiol. 118 133–140PubMedCrossRefGoogle Scholar
  274. Madan Babu, M., and S. A. Teichmann. 2003 Evolution of transcription factors and the gene regulatory network in Escherichia coli Nucleic Acid Res. 31 1234–1244PubMedCrossRefGoogle Scholar
  275. Makhatadze, G. I., V. V. Loladze, A. V. Gribenko, and M. M. Lopez. 2004 Mechanism of thermostabilization in a designed cold shock protein with optimized surface electrostatic interactions J. Molec. Biol. 336 929–942PubMedCrossRefGoogle Scholar
  276. Mangoli, S., V. R. Sanzgiri, and S. K. Mahajan. 2001 A common regulator of cold and radiation response in Escherichia coli J. Environ. Pathol. Toxicol. Oncol. 20 23–26PubMedCrossRefGoogle Scholar
  277. Männistö, M. K., and J. A. Puhakka. 2001a Temperature-and growth-phase-regulated changes in lipid fatty acid structures of psychrotolerant groundwater Proteobacteria Arch. Microbiol. 177 41–46PubMedCrossRefGoogle Scholar
  278. Männistö, M. K., M. S. Salkinoja-Salonen, and J. A. Puhakka. 2001b In situ polychlorophenol bioremediation potential of the indigenous bacterial community of boreal groundwater Water Res. 35 2496–2504PubMedCrossRefGoogle Scholar
  279. Männistö, M. K., M. A. Tiirola, and J. A. Puhakka. 2001c Degradation of 2,3,4,6-tetrachlorophenol at low temperature and low dioxygen concentrations by phylogenetically different groundwater and bioreactor bacteria Biodegradation 12 291–301PubMedCrossRefGoogle Scholar
  280. Mansfield, B. E., M. S. Dionne, D. S. Schneider, and N. E. Freitag. 2003 Exploration of host-pathogen interactions using Listeria monocytogenes and Drosophila melanogaster Cell Microbiol. 5 901–911PubMedCrossRefGoogle Scholar
  281. Maoz, A., R. Mayr, G. Bresolin, K. Neuhaus, K. P. Francis, and S. Scherer. 2002 Sensitive in situ monitoring of a recombinant bioluminescent Yersinia enterocolitica reporter mutant in real time on Camembert cheese Appl. Environ. Microbiol. 68 5737–5740PubMedCrossRefGoogle Scholar
  282. Marchant, R., I. M. Banat, T. J. Rahman, and M. Berzano. 2002 What are high-temperature bacteria doing in cold environments? Trends Microbiol. 10 120–121PubMedCrossRefGoogle Scholar
  283. Margesin, R., and F. Schinner, F. 1999 Biodegradation of diesel oil by cold-adapted microorganisms in presence of sodium dodecyl sulfate Chemosphere 38 3463–3472PubMedCrossRefGoogle Scholar
  284. Margesin, R., D. Labbe, F. Schinner, C. W. Greer, and L. G. Whyte. 2003 Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine Alpine soils Appl. Environ. Microbiol. 69 3085–3092PubMedCrossRefGoogle Scholar
  285. Margesin, R., P. Schumann, C. Sproer, and A. M. Gounot. 2004 Arthrobacter psychrophenolicus sp. nov., isolated from an alpine ice cave Int. J. Syst. Evol. Microbiol. 54 2067–2072PubMedCrossRefGoogle Scholar
  286. Martinez-Antonio, A., and J. Collado-Vides. 2003 Identifying global regulators in transcriptional regulatory networks in bacteria Curr. Opin. Microbiol. 6 482–489PubMedCrossRefGoogle Scholar
  287. Mary, P., N. E. Chihib, O. Charafeddine, C. Defives, and J. P. Hornez. 2002 Starvation survival and viable but nonculturable states in Aeromonas hydrophila Microb. Ecol. 43 250–258PubMedCrossRefGoogle Scholar
  288. Mascarenhas, J., M. H. Weber, and P. L. Graumann. 2001 Specific polar localization of ribosomes in Bacillus subtilis depends on active transcription EMBO Rep. 2 685–689PubMedCrossRefGoogle Scholar
  289. Mastronicolis, S. K., J. B. German, N. Megoulas, E. Petron, P. Foka, and G. M. Smith. 1998 Influence of cold shock on the fatty acid composition of different classes of the food-borne pathogen Listeria monocytogenes Food Microbiol. 15 299–306CrossRefGoogle Scholar
  290. Mathy, N., A. C. Jarrige, M. Robert-Le Meur, and C. Portier. 2001 Increased expression of Escherichia coli polynucleotide phosphorylase at low temperatures is linked to a decrease in the efficiency of autocontrol J. Bacteriol. 183 3848–3854PubMedCrossRefGoogle Scholar
  291. Matthies, C., A. Gossner, G. Acker, A. Schramm, and H. L. Drake. 2004 Lactovum miscens gen. nov., sp. nov., an aerotolerant, psychrotolerant, mixed-fermentative anaerobe from acidic forest soil Res. Microbiol. 155 847–854PubMedCrossRefGoogle Scholar
  292. Mattick, K. L., L. E. Phillips, F. Jorgensen, H. M. Lappin-Scott, and T. J. Humphrey. 2003a Filament formation by Salmonella spp. inoculated into liquid food matrices at refrigeration temperatures, and growth patterns when warmed J. Food Prot. 66 215–219PubMedGoogle Scholar
  293. Mattick, K. L., R. J. Rowbury, and T. J. Humphrey. 2003b Morphological changes to Escherichia coli O157:H7, commensal E. coli and Salmonella spp. in response to marginal growth conditions, with special reference to mildly stressing temperatures Sci. Progr. 86 103–113CrossRefGoogle Scholar
  294. Maus, J. E., and S. C. Ingham. 2003 Employment of stressful conditions during culture production to enhance subsequent cold-and acid-tolerance of bifidobacteria J. Appl. Microbiol. 95 146–154PubMedCrossRefGoogle Scholar
  295. Maxwell, A., and A. J. Howells. 1999 Overexpression and purification of bacterial DNA gyrase Meth. Molec. Biol. 94 135–144Google Scholar
  296. Mayr, B., T. Kaplan, S. Lechner, and S. Scherer. 1996 Identification and purification of a family of dimeric major cold shock protein homologs from the psychrotrophic Bacillus cereus WSBC 10201 J. Bacteriol. 178 2916–2925PubMedGoogle Scholar
  297. Mayr, R., F. von Stetten, K. P. Francis, and S. Scherer. 1999 Significance of psychrotolerant spore formers in food spoilage and methodologies for their detection and identification Mitt. Lebensm. Hyg. 90 42–61Google Scholar
  298. Mendez, M. B., L. M. Orsaria, V. Philippe, M. E. Pedrido, and R. R. Grau. 2004 Novel roles of the master transcription factors Spo0A and sigmaB for survival and sporulation of Bacillus subtilis at low growth temperature J. Bacteriol. 186 989–1000PubMedCrossRefGoogle Scholar
  299. Mendum, M. L., and L. T. Smith. 2002 Characterization of glycine betaine porter I from Listeria monocytogenes and its roles in salt and chill tolerance Appl. Environ. Microbiol. 68 813–819PubMedCrossRefGoogle Scholar
  300. Michel, V., J. Labadie, and M. Hebraud. 1996 Effect of different temperature upshifts on protein synthesis by the psychrotrophic bacterium Pseudomonas fragi Curr. Microbiol. 33 16–25PubMedCrossRefGoogle Scholar
  301. Michel, V., I. Lehoux, G. Depret, P. Anglade, J. Labadie, and M. Hebraud. 1997 The cold shock response of the psychrotrophic bacterium Pseudomonas fragi involves four low-molecular-mass nucleic acid-binding proteins J. Bacteriol. 179 7331–7442PubMedGoogle Scholar
  302. Mikami, K., Y. Kanesaki, I. Suzuki, and N. Murata. 2002 The histidine kinase Hik33 perceives osmotic stress and cold stress in Synechocystis sp PCC 6803 Molec. Microbiol. 46 905–915CrossRefGoogle Scholar
  303. Minakhin, L., and K. Severinov. 2003 On the role of the Escherichia coli RNA polymerase sigma 70 region 4.2 and alpha-subunit C-terminal domains in promoter complex formation on the extended-10 galP1 promoter J. Biol. Chem. 278 29710–29718PubMedCrossRefGoogle Scholar
  304. Mindock, C. A., M. A. Petrova, and R. I. Hollingsworth. 2001 Re-evaluation of osmotic effects as a general adaptative strategy for bacteria in sub-freezing conditions Biophys. Chem. 89 13–24PubMedCrossRefGoogle Scholar
  305. Mironova, R. S., J. Xu, M. G. AbouHaidar, and I. G. Ivanov. 1999 Efficiency of a novel non-Shine-Dalgarno and a Shine-Dalgarno consensus sequence to initiate translation in Escherichia coli of genes with different downstream box composition Microbiol. Res. 154 35–41PubMedCrossRefGoogle Scholar
  306. Mishra, M., and R. Goel. 1999 Development of a cold resistant mutant of plant growth promoting Pseudomonas fluorescens and its functional characterization J. Biotechnol. 75 71–75PubMedCrossRefGoogle Scholar
  307. Mitrofanov, I. G., M. T. Zuber, M. L. Litvak, W. V. Boynton, D. E. Smith, D. Drake, D. Hamara, A. S. Kozyrev, A. B. Sanin, C. Shinohara, R. S. Saunders, and V. Tretyakov. 2003 CO2 snow depth and subsurface water-ice abundance in the northern hemisphere of Mars Science 300 2081–2084PubMedCrossRefGoogle Scholar
  308. Mitta, M., L. Fang, and M. Inouye. 1997 Deletion analysis of cspA of Escherichia coli: Requirement of the AT-rich UP element for cspA transcription and the downstream box in the coding region for its cold shock induction Molec. Microbiol. 26 321–325CrossRefGoogle Scholar
  309. Mohanty, B. K., and S. R. Kushner. 2003 Genomic analysis in Escherichia coli demonstrates differential roles for polynucleotide phosphorylase and RNase II in mRNA abundance and decay Molec. Microbiol. 50 645–658CrossRefGoogle Scholar
  310. Moll, I., M. Huber, S. Grill, P. Sairafi, F. Mueller, R. Brimacombe, P. Londei, and U. Bläsi. 2001 Evidence against an interaction between the mRNA downstream box and 16S rRNA in translation initiation J. Bacteriol. 183 3499–3505PubMedCrossRefGoogle Scholar
  311. Montes, M. J., E. Mercade, N. Bozal, and J. Guinea. 2004 Paenibacillus antarcticus sp. nov., a novel psychrotolerant organism from the Antarctic environment Int. J. Syst. Evol. Microbiol. 54 1521–1526PubMedCrossRefGoogle Scholar
  312. Moran, A. J., M. Hills, J. Gunton, and F. E. Nano. 2001 Heat-labile proteases in molecular biology applications FEMS Microbiol. Lett. 197 59–63PubMedCrossRefGoogle Scholar
  313. Moreno, J. M., H. P. Sorensen, K. K. Mortensen, and H. U. Sperling-Petersen. 2000 Macromolecular mimicry in translation initiation: A model for the initiation factor IF2 on the ribosome IUBMB Life 50 347–354PubMedGoogle Scholar
  314. Morita, R. Y. 1975 Psychrophilic bacteria Bacteriol. Rev. 39 144–167PubMedGoogle Scholar
  315. Morita, M., M. Kanemori, H. Yanagi, and T. Yura. 1999a Heat-induced synthesis of sigma32 in Escherichia coli: Structural and functional dissection of rpoH mRNA secondary structure J. Bacteriol. 181 401–410PubMedGoogle Scholar
  316. Morita, M. T., Y. Tanaka, T. S. Kodama, Y. Kyogoku, H. Yanagi, and T. Yura. 1999b Translational induction of heat shock transcription factor sigma32: Evidence for a built-in RNA thermosensor Genes Dev. 13 655–665PubMedCrossRefGoogle Scholar
  317. Morra, G., M. Hodoscek, and E. W. Knapp. 2003 Unfolding of the cold shock protein studied with biased molecular dynamics Proteins 53 597–606PubMedCrossRefGoogle Scholar
  318. Mountfort, D. O., H. F. Kaspar, R. A. Asher, and D. Sutherland. 2003 Influences of pond geochemistry, temperature, and freeze-thaw on terminal anaerobic processes occurring in sediments of six ponds of the McMurdo Ice Shelf, near Bratina Island, Antarctica Appl. Environ. Microbiol. 69 583–592PubMedCrossRefGoogle Scholar
  319. Mujacic, M., K. W. Cooper, and F. Baneyx. 1999 Cold-inducible cloning vectors for low-temperature protein expression in Escherichia coli: application to the production of a toxic and proteolytically sensitive fusion protein Gene 238 325–332PubMedCrossRefGoogle Scholar
  320. Murakawa, T., H. Yamagata, H. Tsuruta, and Y. Aizono. 2002 Cloning of cold-active alkaline phosphatase gene of a psychrophile, Shewanella sp., and expression of the recombinant enzyme Biosci. Biotechnol. Biochem. 66 754–761PubMedCrossRefGoogle Scholar
  321. Nakagawa, T., Y. Fujimoto, M. Uchino, T. Miyaji, K. Takano, and N. Tomizuka. 2003 Isolation and characterization of psychrophiles producing cold-active beta-galactosidase Lett. App.l Microbiol. 37 154–157CrossRefGoogle Scholar
  322. Nakashima, K., K. Kanamaru, T. Mizuno, and K. Horikoshi. 1996 A novel member of the cspA family of genes that is induced by cold shock in Escherichia coli J. Bacteriol. 178 2994–2997PubMedGoogle Scholar
  323. Nara, T., L. Lee, and Y. Imae. 1991 Thermosensing ability of Trg and Tap chemoreceptors in Escherichia coli J. Bacteriol. 173 1120–1124PubMedGoogle Scholar
  324. Nara, T., I. Kawagishi, S. Nishiyama, M. Homma, and Y. Imae. 1996 Modulation of the thermosensing profile of the Escherichia coli aspartate receptor tar by covalent modification of its methyl-accepting sites J. Biol. Chem. 271 17932–17936PubMedCrossRefGoogle Scholar
  325. Nash, C. H., and D. W. Grant. 1969 Thermal stability of ribosomes from a psychrophilic and a mesophilic yeast Can. J. Microbiol. 15 1116–1118PubMedCrossRefGoogle Scholar
  326. Nedwell, D. B., and M. Rutter. 1994 Influence of temperature on growth rate and competition between two psychrotolerant Antarctic bacteria: Low temperature diminishes affinity for substrate uptake Appl. Environ. Microbiol. 60 1984–1992PubMedGoogle Scholar
  327. Neuhaus, K., K. P. Francis, S. Rapposch, A. Görg, and S. Scherer. 1999 Pathogenic Yersinia species carry a novel, cold-inducible major cold shock protein tandem gene duplication producing both bicistronic and monocistronic mRNA J. Bacteriol. 181 6449–6455PubMedGoogle Scholar
  328. Neuhaus, K. M. 2000a Characterization of Major Cold Shock Protein Genes of the Psychrotolerant Food Pathogens Bacillus weihenstephanensis and Yersinia enterocolitica (dissertation) Technical University Munich, Hieronymus München, Munich, GermanyGoogle Scholar
  329. Neuhaus, K., S. Rapposch, K. P. Francis, and S. Scherer. 2000b Restart of exponential growth of cold-shocked Yersinia enterocolitica occurs after down-regulation of cspA1/A2 mRNA J. Bacteriol. 182 3285–3288PubMedCrossRefGoogle Scholar
  330. Neuhaus, K., N. Anastasov, V. Kaberdin, K. P. Francis, V. L. Miller, and S. Scherer. 2003 The AGUAAA motif in cspA1/A2 mRNA is important for adaptation of Yersinia enterocolitica to grow at low temperature Molec. Microbiol. 50 1629–1645CrossRefGoogle Scholar
  331. Newkirk, K., W. Feng, W. Jiang, R. Tejero, S. D. Emerson, M. Inouye, and G. T. Montelione. 1994 Solution NMR structure of the major cold shock protein (CspA) from Escherichia coli: Identification of a binding epitope for DNA Proc. Natl. Acad. Sci. USA 91 5114–5118PubMedCrossRefGoogle Scholar
  332. Nichols, D. S., P. D. Nichols, N. J. Russell, N. W. Davies, and T. A. McMeekin. 1997 Polyunsaturated fatty acids in the psychrophilic bacterium Shewanella gelidimarina ACAM 456T: Molecular species analysis of major phospholipids and biosynthesis of eicosapentaenoic acid Biochim. Biophys. Acta 1347 164–176PubMedCrossRefGoogle Scholar
  333. Nicodeme, M., C. Perrin, P. Hols, P. Bracquart, and J. L. Gaillard. 2004 Identification of an iron-binding protein of the Dps family expressed by Streptococcus thermophilus Curr. Microbiol. 48 51–56PubMedCrossRefGoogle Scholar
  334. Niki, H., A. Jaffe, R. Imamura, T. Ogura, and S. Hiraga. 1991 The new gene mukB codes for a 177 kd protein with coiled-coil domains involved in chromosome partitioning of E. coli EMBO J. 10 183–193PubMedGoogle Scholar
  335. Nishiyama, S., T. Nara, M. Homma, Y. Imae, and I. Kawagishi. 1997 Thermosensing properties of mutant aspartate chemoreceptors with methyl-accepting sites replaced singly or multiply by alanine J. Bacteriol. 179 6573–6580PubMedGoogle Scholar
  336. Nishiyama, S., I. N. Maruyama, M. Homma, and I. Kawagishi. 1999a Inversion of thermosensing property of the bacterial receptor Tar by mutations in the second transmembrane region J. Molec. Biol. 286 1275–1284PubMedCrossRefGoogle Scholar
  337. Nishiyama, S. I., T. Umemura, T. Nara, M. Homa, and I. Kawagishi. 1999b Conversion of a bacterial warm sensor to a cold sensor by methylation of a single residue in the presence of an attractant Molec. Microbiol. 32 357–365CrossRefGoogle Scholar
  338. Novotna, J., J. Vohradsky, P. Berndt, H. Gramajo, H. Langen, X. M. Li, W. Minas, L. Orsaria, D. Roeder, and C. J. Thompson. 2003 Proteomic studies of diauxic lag in the differentiating prokaryote Streptomyces coelicolor reveal a regulatory network of stress-induced proteins and central metabolic enzymes Molec. Microbiol. 48 1289–1303CrossRefGoogle Scholar
  339. Nozhevnikova, A. N., V. K. Nekrasova, M. V. Kevbrina, and O. R. Kotsyurbenko. 2001a Production and oxidation of methane at low temperature by the microbial population of municipal sludge checks situated in north-east Europe Water Sci. Technol. 44 89–95PubMedGoogle Scholar
  340. Nozhevnikova, A. N., M. V. Simankova, S. N. Parshina, and O. R. Kotsyurbenko. 2001b Temperature characteristics of methanogenic archaea and acetogenic bacteria isolated from cold environments Water Sci. Technol. 44 41–48PubMedGoogle Scholar
  341. Nozhevnikova, A. N., K. Zepp, F. Vazquez, A. J. Zehnder, and C. Holliger. 2003 Evidence for the existence of psychrophilic methanogenic communities in anoxic sediments of deep lakes Appl. Environ. Microbiol. 69 1832–1835PubMedCrossRefGoogle Scholar
  342. Ntougias, S., and N. J. Russell. 2001 Alkalibacterium olivoapovliticus gen. nov., sp. nov., a new obligately alkaliphilic bacterium isolated from edible-olive wash-waters Int. J. Syst. Evol. Microbiol. 51 1161–1170PubMedCrossRefGoogle Scholar
  343. Nyborg, M., T. Atlung, O. Skovgaard, and F. G. Hansen. 2000 Two types of cold sensitivity associated with the A184—>V change in the DnaA protein Molec. Microbiol. 35 1202–1210CrossRefGoogle Scholar
  344. Ochiai, T., N. Fukunaga, and S. Sasaki. 1979 Purification and some properties of two NADP+-specific isocitrate dehydrogenases from an obligately psychrophilic marine bacterium, Vibrio sp., strain ABE-1 J. Biochem. (Tokyo) 86 377–384Google Scholar
  345. O’Connell, K. P., and M. F. Thomashow. 2000a Transcriptional organization and regulation of a polycistronic cold shock operon in Sinorhizobium meliloti RM1021 encoding homologs of the Escherichia coli major cold shock gene cspA and ribosomal protein gene rpsU Appl. Environ. Microbiol. 66 392–400PubMedCrossRefGoogle Scholar
  346. O’Connell, K. P., A. M. Gustafson, M. D. Lehmann, and M. F. Thomashow. 2000a Identification of cold shock gene loci in Sinorhizobium meliloti by using a luxAB reporter transposon Appl. Environ. Microbiol. 66 401–405PubMedCrossRefGoogle Scholar
  347. O’Connor, M., T. Asai, C. L. Squires, and A. E. Dahlberg. 1999 Enhancement of translation by the downstream box does not involve base pairing of mRNA with the penultimate stem sequence of 16S rRNA Proc. Natl. Acad. Sci. USA 96 8973–8978PubMedCrossRefGoogle Scholar
  348. Olsson, C., S. Ahrne, B. Pettersson, and G. Molin. 2003 The bacterial flora of fresh and chill-stored pork: analysis by cloning and sequencing of 16S rRNA genes Int. J. Food Microbiol. 83 245–252PubMedCrossRefGoogle Scholar
  349. O’Mahony, T., N. Rekhif, C. Cavadini, and G. F. Fitzgerald. 2001 The application of a fermented food ingredient containing “variacin,” a novel antimicrobial produced by Kocuria varians, to control the growth of Bacillus cereus in chilled dairy products J. Appl. Microbiol. 90 106–114PubMedCrossRefGoogle Scholar
  350. Orikoshi, H., N. Baba, S. Nakayama, H. Kashu, K. Miyamoto, M. Yasuda, Y. Inamori, and H. Tsujibo. 2003 Molecular analysis of the gene encoding a novel cold-adapted chitinase (ChiB) from a marine bacterium, Alteromonas sp. strain O-7 J. Bacteriol. 185 1153–1160PubMedCrossRefGoogle Scholar
  351. Panoff, J. M., T. B., M. Gueguen, and P. Boutibonnes. 1998 Cold stress responses in mesophilic bacteria Cryobiology 36 75–83PubMedCrossRefGoogle Scholar
  352. Perrot, F., M. Hébraud, G. A. Junter, and T. Jouenne. 2000 Protein synthesis in Escherichia coli at 4°C Electrophoresis 21 1625–1629PubMedCrossRefGoogle Scholar
  353. Perrot, F., M. Hébraud, R. Charlionet, G. A. Junter, and T. Jouenne. 2001 Cell immobilization induces changes in the protein response of Escherichia coli K-12 to a cold shock Electrophoresis 22 2110–2119PubMedCrossRefGoogle Scholar
  354. Pfennig, P. L., and A. M. Flower. 2001 BipA is required for growth of Escherichia coi K12 at low temperature Molec. Genet. Genom. 266 313–317CrossRefGoogle Scholar
  355. Phadtare, S., and M. Inouye. 1999 Sequence-selective interactions with RNA by CspB, CspC and CspE, members of the CspA family of Escherichia coli Molec. Microbiol. 33 1004–1014CrossRefGoogle Scholar
  356. Phadtare, S., M. Inouye, and K. Severinov. 2002a The nucleic acid melting activity of Escherichia coli CspE is critical for transcription antitermination and cold acclimation of cells J. Biol. Chem. 277 7239–7245PubMedCrossRefGoogle Scholar
  357. Phadtare, S., S. Tyagi, M. Inouye, and K. Severinov. 2002b Three amino acids in Escherichia coli CspE surface-exposed aromatic patch are critical for nucleic acid melting activity leading to transcription antitermination and cold acclimation of cells J. Biol. Chem. 277 46706–46711PubMedCrossRefGoogle Scholar
  358. Phadtare, S. 2004a Recent developments in bacterial cold-shock response Curr. Iss. Molec. Biol. 6 125–136Google Scholar
  359. Phadtare, S., and M. Inouye. 2004b Genome-wide transcriptional analysis of the cold shock response in wild-type and cold-sensitive, quadruple-csp-deletion strains of Escherichia coli J. Bacteriol. 186 7007–7014PubMedCrossRefGoogle Scholar
  360. Phadtare, S., M. Inouye, and K. Severinov. 2004c The mechanism of nucleic acid melting by a CspA family protein J. Molec. Biol. 337 147–155PubMedCrossRefGoogle Scholar
  361. Pikuta, E. V., D. Marsic, A. Bej, J. Tang, P. Krader, and R. B. Hoover. 2005 Carnobacterium pleistocenium sp. nov., a novel psychrotolerant, facultative anaerobe isolated from permafrost of the Fox Tunnel in Alaska Int. J. Syst. Evol. Microbiol. 55 473–478PubMedCrossRefGoogle Scholar
  362. Polissi, A., W. De Laurentis, S. Zangrossi, F. Briani, V. Longhi, G. Pesole, and G. Deho. 2003 Changes in Escherichia coli transcriptome during acclimatization at low temperature Res. Microbiol. 154 573–580PubMedCrossRefGoogle Scholar
  363. Potier, P., P. Drevet, A. M. Gounot, and A. R. Hipkiss. 1990 Temperature-dependent changes in proteolytic activities and protein composition in the psychrotrophic bacterium Arthrobacter globiformis S1-55 J. Gen. Microbiol. 136 283–291CrossRefGoogle Scholar
  364. Prabagaran, S. R., K. Suresh, R. Manorama, D. Delille, and S. Shivaji. 2005 Marinomonas ushuaiensis sp. nov., isolated from coastal sea water in Ushuaia, Argentina, sub-Antarctica Int. J. Syst. Evol. Microbiol. 55 309–313PubMedCrossRefGoogle Scholar
  365. Prévost, D., P. Drouin, and H. Antoun. 1999 The potential use of cold-adapted rhizobia to improve symbiotic nitrogen fixation in legumes cultivated in temperate regions, In: R. Margesin and F. Schinner (Eds.) Biotechnological Applications of Cold-adapted Organisms, Berlin, Germany, 161–176Google Scholar
  366. Prüß, B. M., K. P. Francis, F. von Stetten, and S. Scherer. 1999 Correlation of 16S ribosomal DNA signature sequences with temperature-dependent growth rates of mesophilic and psychrotolerant strains of the Bacillus cereus group J. Bacteriol. 181 2624–2630PubMedGoogle Scholar
  367. Purdy, K. J., D. B. Nedwell, and T. M. Embley. 2003 Analysis of the sulfate-reducing bacterial and methanogenic archaeal populations in contrasting Antarctic sediments Appl. Environ. Microbiol. 69 3181–3191PubMedCrossRefGoogle Scholar
  368. Qing, G., L. C. Ma, A. Khorchid, G. V. Swapna, T. K. Mal, M. M. Takayama, B. Xia, S. Phadtare, H. Ke, T. Acton, G. T. Montelione, M. Ikura, and M. Inouye. 2004 Cold-shock induced high-yield protein production in Escherichia coli Nature Biotechnol. 22 877–882CrossRefGoogle Scholar
  369. Qoronfleh, M. W., C. Debouck, and J. Keller. 1992 Identification and characterization of novel low-temperature-inducible promoters of Escherichia coli J. Bacteriol. 174 7902–7909PubMedGoogle Scholar
  370. Quillaguaman, J., O. Delgado, B. Mattiasson, and R. Hatti-Kaul. 2004a Chromohalobacter sarecensis sp. nov., a psychrotolerant moderate halophile isolated from the saline Andean region of Bolivia Int. J. Syst. Evol. Microbiol. 54 1921–1926PubMedCrossRefGoogle Scholar
  371. Quillaguaman, J., R. Hatti-Kaul, B. Mattiasson, M. T. Alvarez, and O. Delgado. 2004b Halomonas boliviensis sp. nov., an alkalitolerant, moderate halophile isolated from soil around a Bolivian hypersaline lake Int. J. Syst. Evol. Microbiol. 54 721–725PubMedCrossRefGoogle Scholar
  372. Rajkumari, K., and J. Gowrishankar. 2001 In vivo expression from the RpoS-dependent P1 promoter of the osmotically regulated proU operon in Escherichia coli and Salmonella enterica serovar Typhimurium: activation by rho and hns mutations and by cold stress J. Bacteriol. 183 6543–6550PubMedCrossRefGoogle Scholar
  373. Rak, A., A. Kalinin, D. Shcherbakov, and P. Bayer. 2002 Solution structure of the ribosome-associated cold shock response protein Yfia of Escherichia coli Biochem. Biophys. Res. Commun. 299 710–714PubMedCrossRefGoogle Scholar
  374. Ramstein, J., N. Hervouet, F. Coste, C. Zelwer, J. Oberto, and B. Castaing. 2003 Evidence of a thermal unfolding dimeric intermediate for the Escherichia coli histone-like HU proteins: thermodynamics and structure J. Molec. Biol. 331 101–121PubMedCrossRefGoogle Scholar
  375. Rashid, N., Y. Shimada, S. Ezaki, H. Atomi, and T. Imanaka. 2001 Low-temperature lipase from psychrotrophic Pseudomonas sp. strain KB700A Appl. Environ. Microbiol. 67 4064–4069PubMedCrossRefGoogle Scholar
  376. Ray, B., and M. L. Speck. 1973 Freeze-injury in bacteria CRC Crit. Rev. Clin. Lab. Sci. 4 161–213PubMedCrossRefGoogle Scholar
  377. Ray, M. K., G. S. Kumar, and S. Shivaji. 1994 Phosphorylation of lipopolysaccharides in the Antarctic psychrotroph Pseudomonas syringae: A possible role in temperature adaptation J. Bacteriol. 176 4243–4249PubMedGoogle Scholar
  378. Ray, M. K., T. Sitaramamma, G. Seshu Kumar, and S. Shivaji. 1999 Transcriptional activity at supraoptimal temperature growth in the Antarctic psychrotrophic bacterium Pseudomonas syringae Curr. Microbiol. 38 143–150PubMedCrossRefGoogle Scholar
  379. Reddy, G. S., G. I. Matsumoto, P. Schumann, E. Stackebrandt, and S. Shivaji. 2004 Psychrophilic pseudomonads from Antarctica: Pseudomonas antarctica sp. nov., Pseudomonas meridiana sp. nov. and Pseudomonas proteolytica sp. nov Int. J. Syst. Evol. Microbiol. 54 713–719PubMedCrossRefGoogle Scholar
  380. Reichhardt, W. 1998 Impact of antarctic benthic fauna on the enrichment of biopolymer-degrading psychrophilic bacteria Microb. Ecol. 15 311–321CrossRefGoogle Scholar
  381. Repoila, F., and S. Gottesman. 2001 Signal transduction cascade for regulation of RpoS: temperature regulation of DsrA J. Bacteriol. 183 4012–4023PubMedCrossRefGoogle Scholar
  382. Resch, A., K. Tedin, A. Grundling, A. Mundlein, and U. Bläsi. 1996 Downstream box-anti-downstream box interactions are dispensable for translation initiation of leaderless mRNAs EMBO J. 15 4740–4748PubMedGoogle Scholar
  383. Riva, A., M. O. Delorme, T. Chevalier, N. Guilhot, C. Henaut, and A. Henaut. 2004 Characterization of the GATC regulatory network in E. coli BMC Genomics 5 48PubMedGoogle Scholar
  384. Rocha, E. P., A. Danchin, and A. Viari. 2000 The DB case: Pattern matching evidence is not significant Molec. Microbiol. 37 216–218CrossRefGoogle Scholar
  385. Rohde, J. R., X. S. Luan, H. Rohde, J. M. Fox, and S. A. Minnich. 1999 The Yersinia enterocolitica pYV virulence plasmid contains multiple intrinsic DNA bends which melt at 37 degrees C J. Bacteriol. 181 4198–4204PubMedGoogle Scholar
  386. Romanenko, L. A., P. Schumann, M. Rohde, A. M. Lysenko, V. V. Mikhailov, and E. Stackebrandt. 2002 Psychrobacter submarinus sp. nov. and Psychrobacter marincola sp. nov., psychrophilic halophiles from marine environments Int. J. Syst. Evol. Microbiol. 52 1291–1297PubMedCrossRefGoogle Scholar
  387. Romanenko, L. A., A. M. Lysenko, M. Rohde, V. V. Mikhailov, and E. Stackebrandt. 2004 Psychrobacter maritimus sp. nov. and Psychrobacter arenosus sp. nov., isolated from coastal sea ice and sediments of the Sea of Japan Int. J. Syst. Evol. Microbiol. 54 1741–1745PubMedCrossRefGoogle Scholar
  388. Rossi, M., M. Ciaramella, R. Cannio, F. M. Pisani, M. Moracci, and S. Bartolucci. 2003 Extremophiles 2002 J. Bacteriol. 185 3683–3689PubMedCrossRefGoogle Scholar
  389. Rotert, K. R., A. P. Toste, and J. G. Steiert. 1993 Membrane fatty acid analysis of Antarctic bacteria FEMS Microbiol. Lett. 114 253–257PubMedCrossRefGoogle Scholar
  390. Rudolph, C., G. Wanner, and R. Huber. 2001 Natural communities of novel archaea and bacteria growing in cold sulfurous springs with a string-of-pearls-like morphology Appl. Environ. Microbiol. 67 2336–2344PubMedCrossRefGoogle Scholar
  391. Russell, N. J. 1990a Cold adaptation of microorganisms Philos. Trans. R. Soc. Lond. B, Biol. Sci. 326 595–608, discussion 608–611CrossRefGoogle Scholar
  392. Russell, N. J., and N. Fukunaga. 1990b A comparison of thermal adaptation of membrane lipids in psychrophilic and thermophilic bacteria FEMS Microbiol. Rev. 75 171–182CrossRefGoogle Scholar
  393. Russell, N. J. 1997 Psychrophilic bacteria—molecular adaptations of membrane lipids Comp. Biochem. Physiol. A. Physiol. 118 489–493PubMedCrossRefGoogle Scholar
  394. Russell, N. J. 1998 Molecular adaptations in psychrophilic bacteria: Potential for biotechnological applications Adv. Biochem. Eng. Biotechnol. 61 1–21PubMedGoogle Scholar
  395. Russell, N. J. 2000 Toward a molecular understanding of cold activity of enzymes from psychrophiles Extremophiles 4 83–90PubMedCrossRefGoogle Scholar
  396. Russell, N. J. 2002 Bacterial membranes: The effects of chill storage and food processing. An overview Int. J. Food. Microbiol. 79 27–34PubMedCrossRefGoogle Scholar
  397. Saito, R., and A. Nakayama. 2004 Differences in malate dehydrogenases from the obligately piezophilic deep-sea bacterium Moritella sp. strain 2D2 and the psychrophilic bacterium Moritella sp. strain 5710 FEMS Microbiol. Lett. 233 165–172PubMedCrossRefGoogle Scholar
  398. Sakamoto, T., and D. A. Bryant. 1997a Temperature-regulated mRNA accumulation and stabilization for fatty acid desaturase genes in the cyanobacterium Synechococcus sp. strain PCC 7002 Molec. Microbiol. 23 1281–1292CrossRefGoogle Scholar
  399. Sakamoto, T., S. Higashi, H. Wada, N. Murata, and D. A. Bryant. 1997b Low-temperature-induced desaturation of fatty acids and expression of desaturase genes in the cyanobacterium Synechococcus sp. PCC 7002 FEMS Microbiol. Lett. 152 313–320PubMedCrossRefGoogle Scholar
  400. Sakamoto, J. J., M. Sasaki, and T. Tsuchido. 2001 Purification and characterization of a Bacillus subtilis 168 nuclease, YokF, involved in chromosomal DNA degradation and cell death caused by thermal shock treatments J. Biol. Chem. 276 47046–47051PubMedCrossRefGoogle Scholar
  401. Sakamoto, T., and N. Murata. 2002 Regulation of the desaturation of fatty acids and its role in tolerance to cold and salt stress Curr. Opin. Microbiol. 5 208–210PubMedCrossRefGoogle Scholar
  402. Samsonoff, W. A., and R. MacColl. 2001 Biliproteins and phycobilisomes from cyanobacteria and red algae at the extremes of habitat Arch. Microbiol. 176 400–405PubMedCrossRefGoogle Scholar
  403. Sand, O., M. Gingras, N. Beck, C. Hall, and N. Trun. 2003 Phenotypic characterization of overexpression or deletion of the Escherichia coli crcA, cspE and crcB genes Microbiology 149 2107–2117PubMedCrossRefGoogle Scholar
  404. Sardesai, N., and C. R. Babu. 2000 Cold stress induces switchover of respiratory pathway to lactate glycolysis in psychrotrophic Rhizobium strains Folia Microbiol. (Praha) 45 177–182CrossRefGoogle Scholar
  405. Sardesai, N., and C. R. Babu. 2001 Poly-beta-hydroxybutyrate metabolism is affected by changes in respiratory enzymatic activities due to cold stress in two psychrotrophic strains of Rhizobium Curr. Microbiol. 42 53–58PubMedCrossRefGoogle Scholar
  406. Sato, N. 1994 A cold-regulated cyanobacterial gene cluster encodes RNA-binding protein and ribosomal protein S21 Plant Molec. Biol. 24 819–823CrossRefGoogle Scholar
  407. Sato, N., T. Tachikawa, A. Wada, and A. Tanaka. 1997 Temperature-dependent regulation of the ribosomal small-subunit protein S21 in the cyanobacterium Anabaena variabilis M3 J. Bacteriol. 179 7063–7071PubMedGoogle Scholar
  408. Saunders, N. F., T. Thomas, P. M. Curmi, J. S. Mattick, E. Kuczek, R. Slade, J. Davis, P. D. Franzmann, D. Boone, K. Rusterholtz, R. Feldman, C. Gates, S. Bench, K. Sowers, K. Kadner, A. Aerts, P. Dehal, C. Detter, T. Glavina, S. Lucas, P. Richardson, F. Larimer, L. Hauser, M. Land, and R. Cavicchioli. 2003 Mechanisms of thermal adaptation revealed from the genomes of the Antarctic Archaea Methanogenium frigidum and Methanococcoides burtonii Genome Res. 13 1580–1588PubMedCrossRefGoogle Scholar
  409. Scheyhing, C. H., S. Hormann, M. A. Ehrmann, and R. F. Vogel. 2004 Barotolerance is inducible by preincubation under hydrostatic pressure, cold-, osmotic-and acid-stress conditions in Lactobacillus sanfranciscensis DSM 20451T Lett. Appl. Microbiol. 39 284–289PubMedCrossRefGoogle Scholar
  410. Schindelin, H., M. Herrler, G. Willimsky, M. A. Marahiel, and U. Heinemann. 1992 Overproduction, crystallization, and preliminary X-ray diffraction studies of the major cold shock protein from Bacillus subtilis, CspB Proteins 14 120–124PubMedCrossRefGoogle Scholar
  411. Schindelin, H., M. A. Marahiel, and U. Heinemann. 1993 Universal nucleic acid-binding domain revealed by crystal structure of the B. subtilis major cold-shock protein Nature 364 164–168PubMedCrossRefGoogle Scholar
  412. Schindelin, H., W. Jiang, M. Inouye, and U. Heinemann. 1994 Crystal structure of CspA, the major cold shock protein of Escherichia coli Proc. Natl. Acad. Sci. USA 91 5119–5123PubMedCrossRefGoogle Scholar
  413. Schnier, J. 1987 The synthesis of heat-shock proteins after a decrease in translational capacity in Escherichia coli J. Gen. Microbiol. 133 3151–3158PubMedGoogle Scholar
  414. Schnuchel, A., R. Wiltscheck, M. Czisch, M. Herrler, G. Willimsky, P. Graumann, M. A. Marahiel, and T. A. Holak. 1993 Structure in solution of the major cold-shock protein from Bacillus subtilis Nature 364 169–171PubMedCrossRefGoogle Scholar
  415. Schröder, K., P. Zuber, G. Willimsky, B. Wagner, and M. A. Marahiel. 1993 Mapping of the Bacillus subtilis cspB gene and cloning of its homologs in thermophilic, mesophilic and psychrotrophic bacilli Gene 136 277–280PubMedCrossRefGoogle Scholar
  416. Schröder, K., P. Graumann, A. Schnuchel, T. A. Holak, and M. A. Marahiel. 1995 Mutational analysis of the putative nucleic acid-binding surface of the cold-shock domain, CspB, revealed an essential role of aromatic and basic residues in binding of single-stranded DNA containing the Y-box motif Molec. Microbiol. 16 699–708CrossRefGoogle Scholar
  417. Seaton, B. L., and L. E. Vickery. 1994 A gene encoding a DnaK/hsp70 homolog in Escherichia coli Proc. Natl. Acad. Sci. USA 91 2066–2070PubMedCrossRefGoogle Scholar
  418. Serror, P., R. Dervyn, S. D. Ehrlich, and E. Maguin. 2003a csp-like genes of Lactobacillus delbrueckii ssp. bulgaricus and their response to cold shock FEMS Microbiol. Lett. 226 323–330PubMedCrossRefGoogle Scholar
  419. Serror, P., G. Ilami, H. Chouayekh, S. D. Ehrlich, and E. Maguin. 2003b Transposition in Lactobacillus delbrueckii subsp. bulgaricus: Identification of two thermosensitive replicons and two functional insertion sequences Microbiology 149 1503–1511PubMedCrossRefGoogle Scholar
  420. Severinov, K., and S. A. Darst. 1997 A mutant RNA polymerase that forms unusual open promoter complexes Proc. Natl. Acad. Sci. USA 94 13481–13486PubMedCrossRefGoogle Scholar
  421. Shahjee, H. M., K. Banerjee, and F. Ahmad. 2002 Comparative analysis of naturally occurring L-amino acid osmolytes and their D-isomers on protection of Escherichia coli against environmental stresses J. Biosci. 27 515–520PubMedCrossRefGoogle Scholar
  422. Shivaji, S., G. S. Reddy, P. U. Raghavan, N. B. Sarita, and D. Delille. 2004 Psychrobacter salsus sp. nov. and Psychrobacter adeliensis sp. nov. isolated from fast ice from Adelie Land, Antarctica System. Appl. Microbiol. 27 628–635CrossRefGoogle Scholar
  423. Simankova, M. V., O. R. Kotsyurbenko, T. Lueders, A. N. Nozhevnikova, B. Wagner, R. Conrad, and M. W. Friedrich. 2003 Isolation and characterization of new strains of methanogens from cold terrestrial habitats System. Appl. Microbiol. 26 312–318CrossRefGoogle Scholar
  424. Sinensky, M. 1974 Homoviscous adaptation: A homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli Proc. Natl. Acad. Sci. USA 71 522–525PubMedCrossRefGoogle Scholar
  425. Smirnova, A., H. Li, H. Weingart, S. Aufhammer, A. Burse, K. Finis, A. Schenk, and M. S. Ullrich. 2001a Thermoregulated expression of virulence factors in plant-associated bacteria Arch. Microbiol. 176 393–399PubMedCrossRefGoogle Scholar
  426. Smirnova, G. V., O. N. Zakirova, and O. N. Oktiabr’skii. 2001b Role of the antioxidant system in response of Escherichia coli bacteria to cold stress [in Russian] Mikrobiologiia 70 55–60PubMedGoogle Scholar
  427. Smirnova, A. V., L. Wang, B. Rohde, I. Budde, H. Weingart, and M. S. Ullrich. 2002 Control of temperature-responsive synthesis of the phytotoxin coronatine in Pseudomonas syringae by the unconventional two-component system CorRPS J. Molec. Microbiol. Biotechnol. 4 191–196Google Scholar
  428. Smyth, C. P., T. Lundback, D. Renzoni, G. Siligardi, R. Beavil, M. Layton, J. M. Sidebotham, J. C. Hinton, P. C. Driscoll, C. F. Higgins, and J. E. Ladbury. 2000 Oligomerization of the chromatin-structuring protein H-NS Molec. Microbiol. 36 962–972CrossRefGoogle Scholar
  429. Soares, A., B. Guieysse, O. Delgado, and B. Mattiasson. 2003 Aerobic biodegradation of nonylphenol by cold-adapted bacteria Biotechnol. Lett. 25 731–738PubMedCrossRefGoogle Scholar
  430. Sol, J., O. C. Sampimon, E. Hartman, and H. W. Barkema. 2002 Effect of preculture freezing and incubation on bacteriological isolation from subclinical mastitis samples Vet. Microbiol. 85 241–249PubMedCrossRefGoogle Scholar
  431. Sprengart, M. L., E. Fuchs, and A. G. Porter. 1996 The downstream box: An efficient and independent translation initiation signal in Escherichia coli EMBO J. 15 665–674PubMedGoogle Scholar
  432. Steele, F. M., and K. H. Wright. 2001 Cooling rate effect on outgrowth of Clostridium perfringens in cooked, ready-to-eat turkey breast roasts Poult. Sci. 80 813–816PubMedGoogle Scholar
  433. Stougaard, P., F. Jorgensen, M. G. Johnsen, and O. C. Hansen. 2002 Microbial diversity in ikaite tufa columns: An alkaline, cold ecological niche in Greenland Environ. Microbiol. 4 487–493PubMedCrossRefGoogle Scholar
  434. Stülke, J. 2002 Control of transcription termination in bacteria by RNA-binding proteins that modulate RNA structures Arch. Microbiol. 177 433–440PubMedCrossRefGoogle Scholar
  435. Sun, K., L. Camardella, G. Di Prisco, and G. Herve. 1998 Properties of aspartate transcarbamylase from TAD1, a psychrophilic bacterial strain isolated from Antarctica FEMS Microbiol. Lett. 164 375–382PubMedCrossRefGoogle Scholar
  436. Suutari, M., and S. Laakso. 1992 Unsaturated and branched-chain fatty acids in temperature adaptation of Bacillus subtilis and Bacillus megaterium Biochim. Biophys. Acta 1126 119–124PubMedCrossRefGoogle Scholar
  437. Suutari, M., and S. Laasko. 1994 Microbial fatty acids and thermal adaptation Crit. Rev. Microbiol. 20 285–328PubMedCrossRefGoogle Scholar
  438. Suzuki, I., D. A. Los, Y. Kanesaki, K. Mikami, and N. Murata. 2000a The pathway for perception and transduction of low-temperature signals in Synechocystis EMBO J. 19 1327–1334PubMedCrossRefGoogle Scholar
  439. Suzuki, I., D. A. Los, and N. Murata. 2000b Perception and transduction of low-temperature signals to induce desaturation of fatty acids Biochem. Soc. Trans. 28 628–630PubMedCrossRefGoogle Scholar
  440. Suzuki, I., Y. Kanesaki, K. Mikami, M. Kanehisa, and N. Murata. 2001 Cold-regulated genes under control of the cold sensor Hik33 in Synechocystis Molec. Microbiol. 40 235–244CrossRefGoogle Scholar
  441. Suzuki, T., T. Nakayama, T. Kurihara, T. Nishino, and N. Esaki. 2002 Primary structure and catalytic properties of a cold-active esterase from a psychrotroph, Acinetobacter sp. strain No. 6. isolated from Siberian soil Biosci. Biotechnol. Biochem. 66 1682–1690PubMedCrossRefGoogle Scholar
  442. Suzuki, Y., M. Haruki, K. Takano, M. Morikawa, and S. Kanaya. 2004 Possible involvement of an FKBP family member protein from a psychrotrophic bacterium Shewanella sp. SIB1 in cold-adaptation Eur. J. Biochem. 271 1372–1381PubMedCrossRefGoogle Scholar
  443. Svingor, A., J. Kardos, I. Hajdu, A. Nemeth, and P. Zavodszky. 2001 A better enzyme to cope with cold. Comparative flexibility studies on psychrotrophic, mesophilic, and thermophilic IPMDHs J. Biol. Chem. 276 28121–28125PubMedCrossRefGoogle Scholar
  444. Szer, W. 1970 Cell-free protein synthesis at 0°C: An activating factor from ribosomes of a psychrophilic microorganism Biochim. Biophys. Acta 213 159–170PubMedCrossRefGoogle Scholar
  445. Tafuri, S. R., and A. P. Wolffe. 1990 Xenopus Y-box transcription factors: Molecular cloning, functional analysis and developmental regulation Proc. Natl. Acad. Sci. USA 87 9028–9032PubMedCrossRefGoogle Scholar
  446. Takeuchi, S., Y. Mandai, A. Otsu, T. Shirakawa, K. Masuda, and M. Chinami. 2003 Differences in properties between human alphaA-and alphaB-crystallin proteins expressed in Escherichia coli cells in response to cold and extreme pH Biochem. J. 375 471–475PubMedCrossRefGoogle Scholar
  447. Tanabe, H., J. Goldstein, M. Yang, and M. Inouye. 1992 Identification of the promoter region of the Escherichia coli major cold shock gene, cspA J. Bacteriol. 174 3867–3873PubMedGoogle Scholar
  448. Tasaka, Y., Z. Gombos, Y. Nishiyama, P. Mohanty, T. Ohba, K. Ohki, and N. Murata. 1996 Targeted mutagenesis of acyl-lipid desaturases in Synechocystis: Evidence for the important roles of polyunsaturated membrane lipids in growth, respiration and photosynthesis EMBO J. 15 6416–25PubMedGoogle Scholar
  449. Tendeng, C., E. Krin, O. A. Soutourina, A. Marin, A. Danchin, and P. N. Bertin. 2003 A Novel H-NS-like protein from an antarctic psychrophilic bacterium reveals a crucial role for the N-terminal domain in thermal stability J. Biol. Chem. 278 18754–18760PubMedCrossRefGoogle Scholar
  450. Thammavongs, B., D. Corroler, J. M. Panoff, Y. Auffray, and P. Boutibonnes. 1996 Physiological response of Enterococcus faecalis JH2-2 to cold shock: Growth at low temperatures and freezing/thawing challenge Lett. Appl. Microbiol. 23 398–402PubMedCrossRefGoogle Scholar
  451. Thieringer, H. A., P. G. Jones, and M. Inouye. 1998 Cold shock and adaptation Bioessays 20 49–57PubMedCrossRefGoogle Scholar
  452. Thomas, T., and R. Cavicchioli. 2002a Cold adaptation of archaeal elongation factor 2 (EF-2) proteins Curr. Prot. Pept. Sci. 3 223–230CrossRefGoogle Scholar
  453. Thomas, D. N., and G. S. Dieckmann. 2002b Antarctic sea ice—a habitat for extremophiles Science 295 641–644PubMedCrossRefGoogle Scholar
  454. Thomassin-Lacroix, E. J., Z. Yu, M. Eriksson, K. J. Reimer, and W. W. Mohn. 2001 DNA-based and culture-based characterization of a hydrocarbon-degrading consortium enriched from Arctic soil Can. J. Microbiol. 47 1107–1115PubMedCrossRefGoogle Scholar
  455. Thomassin-Lacroix, E. J., M. Eriksson, K. J. Reimer, and W. W. Mohn. 2002 Biostimulation and bioaugmentation for on-site treatment of weathered diesel fuel in Arctic soil Appl. Microbiol. Biotechnol. 59 551–556PubMedCrossRefGoogle Scholar
  456. Toffin, L., K. Zink, C. Kato, P. Pignet, A. Bidault, N. Bienvenu, J. L. Birrien, and D. Prieur. 2005 Marinilactibacillus piezotolerans sp. nov., a novel marine lactic acid bacterium isolated from deep sub-seafloor sediment of the Nankai Trough Int. J. Syst. Evol. Microbiol. 55 345–351PubMedCrossRefGoogle Scholar
  457. Trotsenko, Y. A., and V. N. Khmelenina. 2002 Biology of extremophilic and extremotolerant methanotrophs Arch. Microbiol. 177 123–131PubMedCrossRefGoogle Scholar
  458. Trujillo, M. E., E. Velazquez, R. M. Kroppenstedt, P. Schumann, R. Rivas, P. F. Mateos, and E. Martinez-Molina. 2004 Mycobacterium psychrotolerans sp. nov., isolated from pond water near a uranium mine Int. J. Syst. Evol. Microbiol. 54 1459–1463PubMedCrossRefGoogle Scholar
  459. Truong, L. V., H. Tuyen, E. Helmke, L. T. Binh, and T. Schweder. 2001 Cloning of two pectate lyase genes from the marine Antarctic bacterium Pseudoalteromonas haloplanktis strain ANT/505 and characterization of the enzymes Extremophiles 5 35–44PubMedCrossRefGoogle Scholar
  460. Tse-Dinh, Y. C., H. Qi, and R. Menzel. 1997 DNA supercoiling and bacterial adaptation: Thermotolerance and thermoresistance Trends Microbiol. 5 323–326PubMedCrossRefGoogle Scholar
  461. Tsuruta, H., J. Tamura, H. Yamagata, and Y. Aizono. 2004 Specification of amino acid residues essential for the catalytic reaction of cold-active protein-tyrosine phosphatase of a psychrophile, Shewanella sp Biosci. Biotechnol. Biochem. 68 440–443PubMedCrossRefGoogle Scholar
  462. Tutino, M. L., A. Duilio, R. Parrilli, E. Remaut, G. Sannia, and G. Marino. 2001 A novel replication element from an Antarctic plasmid as a tool for the expression of proteins at low temperature Extremophiles 5 257–264PubMedCrossRefGoogle Scholar
  463. Uma, S., R. S. Jadhav, G. S. Kumar, S. Shivaji, and M. K. Ray. 1999 A RNA polymerase with transcriptional activity at 0°C from the Antarctic bacterium Pseudomonas syringae FEBS Lett. 453 313–317PubMedCrossRefGoogle Scholar
  464. VanBogelen, R. A., and F. C. Neidhardt. 1990 Ribosomes as sensors of heat and cold shock in Escherichia coli Proc. Natl. Acad. Sci. USA 87 5589–5593PubMedCrossRefGoogle Scholar
  465. Van de Guchte, M., P. Serror, C. Chervaux, T. Smokvina, S. D. Ehrlich, and E. Maguin. 2002 Stress responses in lactic acid bacteria Ant. v. Leeuwenhoek 82 187–216CrossRefGoogle Scholar
  466. Van de Vossenberg, J. L. C. M., T. Ubbink-Kok, M. G. L. Elferink, A. J. M. Diessen, and W. N. Konings. 1995 Ion permeability of the cytoplasmic membrane limits the maximum growth temperature of bacteria and archea Molec. Microbiol. 18 925–932CrossRefGoogle Scholar
  467. Van Petegem, F., T. Collins, M. A. Meuwis, C. Gerday, G. Feller, and J. van Beeumen. 2003 The structure of a cold-adapted family 8 xylanase at 1.3 A resolution. Structural adaptations to cold and investgation of the active site J. Biol. Chem. 278 7531–7539PubMedCrossRefGoogle Scholar
  468. Van Trappen, S., T. L. Tan, J. Yang, J. Mergaert, and J. Swings. 2004a Alteromonas stellipolaris sp. nov., a novel, budding, prosthecate bacterium from Antarctic seas, and emended description of the genus Alteromonas Int. J. Syst. Evol. Microbiol. 54 1157–1163PubMedCrossRefGoogle Scholar
  469. Van Trappen, S., T. L. Tan, J. Yang, J. Mergaert, and J. Swings. 2004b Glaciecola polaris sp. nov., a novel budding and prosthecate bacterium from the Arctic Ocean, and emended description of the genus Glaciecola Int. J. Syst. Evol. Microbiol. 54 1765–1771PubMedCrossRefGoogle Scholar
  470. Van Trappen, S., I. Vandecandelaere, J. Mergaert, and J. Swings. 2004cAlgoriphagus antarcticus sp. nov., a novel psychrophile from microbial mats in Antarctic lakes Int. J. Syst. Evol. Microbiol. 54 1969–1973PubMedCrossRefGoogle Scholar
  471. Van Trappen, S., I. Vandecandelaere, J. Mergaert, and J. Swings. 2004d Flavobacterium degerlachei sp. nov., Flavobacterium frigoris sp. nov. and Flavobacterium micromati sp. nov., novel psychrophilic bacteria isolated from microbial mats in Antarctic lakes Int. J. Syst. Evol. Microbiol. 54 85–92PubMedCrossRefGoogle Scholar
  472. Van Trappen, S., I. Vandecandelaere, J. Mergaert, and J. Swings. 2004ee Gillisia limnaea gen. nov., sp. nov., a new member of the family Flavobacteriaceae isolated from a microbial mat in Lake Fryxell, Antarctica Int. J. Syst. Evol. Microbiol. 54 445–448PubMedCrossRefGoogle Scholar
  473. Varkonyi, Z., K. Masamoto, M. Debreczeny, O. Zsiros, B. Ughy, Z. Gombos, I. Domonkos, T. Farkas, H. Wada, and B. Szalontai. 2002 Low-temperature-induced accumulation of xanthophylls and its structural consequences in the photosynthetic membranes of the cyanobacterium Cylindrospermopsis raciborskii: An FTIR spectroscopic study Proc. Natl. Acad. Sci. USA 99 2410–2415PubMedCrossRefGoogle Scholar
  474. Vazquez, S. C., S. H. Coria, and W. P. MacCormack. 2004 Extracellular proteases from eight psychrotolerant Antarctic strains Microbiol. Res. 159 157–166PubMedCrossRefGoogle Scholar
  475. Vickery, L. E., J. J. Silberg, and D. T. Ta. 1997 Hsc66 and Hsc20, a new heat shock cognate molecular chaperone system from Escherichia coli Protein Sci. 6 1047–1056PubMedCrossRefGoogle Scholar
  476. Vigh, L., B. Maresca, and J. L. Harwood. 1998 Does the membrane’s physical state control the expression of heat shock and other genes? Trends Biochem. Sci. 23 369–374PubMedCrossRefGoogle Scholar
  477. Vila-Sanjurjo, A., B. S. Schuwirth, C. W. Hau, and J. H. Cate. 2004 Structural basis for the control of translation initiation during stress Nature Struct. Molec. Biol. 11 1054–1059CrossRefGoogle Scholar
  478. Von Stetten, F., K. P. Francis, S. Lechner, K. Neuhaus, and S. Scherer. 1998 Rapid discrimination of psychrotolerant and mesophilic strains of the Bacillus cereus group by PCR targeting of 16S rDNA J. Microbiol. Meth. 34 99–106CrossRefGoogle Scholar
  479. Von Stetten, F., R. Mayr, and S. Scherer. 1999 Climatic influence on mesophilic Bacillus cereus and psychrotolerant Bacillus weihenstephanensis populations in tropical, temperate and alpine soil Environ. Microbiol. 1 503–315CrossRefGoogle Scholar
  480. Vorachek-Warren, M. K., S. M. Carty, S. Lin, R. J. Cotter, and C. R. Raetz. 2002 An Escherichia coli mutant lacking the cold shock-induced palmitoleoyltransferase of lipid A biosynthesis: absence of unsaturated acyl chains and antibiotic hypersensitivity at 12 degrees C J. Biol. Chem. 277 14186–14193PubMedCrossRefGoogle Scholar
  481. Walker, D., M. Rolfe, A. Thompson, G. R. Moore, R. James, J. C. Hinton, and C. Kleanthous. 2004 Transcriptional profiling of colicin-induced cell death of Escherichia coli MG1655 identifies potential mechanisms by which bacteriocins promote bacterial diversity J. Bacteriol. 186 866–869PubMedCrossRefGoogle Scholar
  482. Wang, J. Y., and M. Syvanen. 1992 DNA twist as a transcriptional sensor for environmental changes Molec. Microbiol. 6 1861–1866CrossRefGoogle Scholar
  483. Wang, N. Y. K., and M. Inouye. 1999 CspI, the ninth member of the CspA family of Escherichia coli, is induced upon cold shock J. Bacteriol. 181 1603–1609PubMedGoogle Scholar
  484. Watanabe, S., Y. Takada, and N. Fukunaga. 2001 Purification and characterization of a cold-adapted isocitrate lyase and a malate synthase from Colwellia maris, a psychrophilic bacterium Biosci. Biotechnol. Biochem. 65 1095–1103PubMedCrossRefGoogle Scholar
  485. Watanabe, S., N. Yamaoka, Y. Takada, and N. Fukunaga. 2002 The cold-inducible icl gene encoding thermolabile isocitrate lyase of a psychrophilic bacterium, Colwellia maris Microbiology 148 2579–2589PubMedGoogle Scholar
  486. Watanabe, S., and Y. Takada. 2004 Amino acid residues involved in cold adaptation of isocitrate lyase from a psychrophilic bacterium, Colwellia maris Microbiology 150 3393–3403PubMedCrossRefGoogle Scholar
  487. Weber, M. H., C. L. Beckering, and M. A. Marahiel. 2001a Complementation of cold shock proteins by translation initiation factor IF1 in vivo J. Bacteriol. 183 7381–7386PubMedCrossRefGoogle Scholar
  488. Weber, M. H., W. Klein, L. Muller, U. M. Niess, and M. A. Marahiel. 2001b Role of the Bacillus subtilis fatty acid desaturase in membrane adaptation during cold shock Molec. Microbiol. 39 1321–1329CrossRefGoogle Scholar
  489. Weber, M. H., A. V. Volkov, I. Fricke, M. A. Marahiel, and P. L. Graumann. 2001c Localization of cold shock proteins to cytosolic spaces surrounding nucleoids in Bacillus subtilis depends on active transcription J. Bacteriol. 183 6435–6443PubMedCrossRefGoogle Scholar
  490. Weber, M. H., and M. A. Marahiel. 2002 Coping with the cold: the cold shock response in the Gram-positive soil bacterium Bacillus subtilis Phil. Trans. R. Soc. Lond. B Biol. Sci. 357 895–907CrossRefGoogle Scholar
  491. Weber, M. H., and M. A. Marahiel. 2003 Bacterial cold shock responses Sci. Progr. 86 9–75CrossRefGoogle Scholar
  492. Wemekamp-Kamphuis, H. H., A. K. Karatzas, J. A. Wouters, and T. Abee. 2002 Enhanced levels of cold shock proteins in Listeria monocytogenes LO28 upon exposure to low temperature and high hydrostatic pressure Appl. Environ. Microbiol. 68 456–463PubMedCrossRefGoogle Scholar
  493. Wemekamp-Kamphuis, H. H., R. D. Sleator, J. A. Wouters, C. Hill, and T. Abee. 2004a Molecular and physiological analysis of the role of osmolyte transporters BetL, Gbu, and OpuC in growth of Listeria monocytogenes at low temperatures Appl. Environ. Microbiol. 70 2912–2918PubMedCrossRefGoogle Scholar
  494. Wemekamp-Kamphuis, H. H., J. A. Wouters, P. P. de Leeuw, T. Hain, T. Chakraborty, and T. Abee. 2004b Identification of sigma factor sigma B-controlled genes and their impact on acid stress, high hydrostatic pressure, and freeze survival in Listeria monocytogenes EGD-e Appl. Environ. Microbiol. 70 3457–3466PubMedCrossRefGoogle Scholar
  495. Whitby, P. W., K. E. Sim, D. J. Morton, J. A. Patel, and T. L. Stull. 1997 Transcription of genes encoding iron and heme acquisition proteins of Haemophilus influenzae during acute otitis media Infect. Immun. 65 4696–4700PubMedGoogle Scholar
  496. Whyte, L. G., S. J. Slagman, F. Pietrantonio, L. Bourbonniere, S. F. Koval, J. R. Lawrence, W. E. Inniss, and C. W. Greer. 1999 Physiological adaptations involved in alkane assimilation at a low temperature by Rhodococcus sp. strain Q15 Appl. Environ. Microbiol. 65 2961–2968PubMedGoogle Scholar
  497. Wick, L. M., and T. Egli. 2004 Molecular components of physiological stress responses in Escherichia coli Adv. Biochem. Engin. Biotechnol. 89 1–45Google Scholar
  498. Wiebe, W. J., W. M. Sheldon, and L. R. Pomeroy. 1992 Bacterial growth in the cold: Evidence for an enhanced substrate requirement Appl. Environ. Microbiol. 58 359–364PubMedGoogle Scholar
  499. Williams, R. M., and S. Rimsky. 1997 Molecular aspects of the E. coli nucleoid protein, H-NS: A central controller of gene regulatory networks FEMS Microbiol. Lett. 156 175–185PubMedCrossRefGoogle Scholar
  500. Willimsky, G., H. Bang, G. Fischer, and M. A. Marahiel. 1992 Characterization of cspB, a Bacillus subtilis inducible cold shock gene affecting cell viability at low temperatures J. Bacteriol. 174 6326–6335PubMedGoogle Scholar
  501. Wolffe, A. P. 1994 Structural and functional properties of the evolutionarily ancient Y-box family of nucleic acid binding proteins Bioessays 16 245–251PubMedCrossRefGoogle Scholar
  502. Wouters, J. A., B. Jeynov, F. M. Rombouts, W. M. de Vos, O. P. Kuipers, and T. Abee. 1999 Analysis of the role of 7 kDa cold-shock proteins of Lactococcus lactis MG1363 in cryoprotection Microbiol. 145 3185–3194Google Scholar
  503. Wouters, J. A., H. H. Kamphuis, J. Hugenholtz, O. P. Kuipers, W. M. de Vos, and T. Abee. 2000a Changes in glycolytic activity of Lactococcus lactis induced by low temperature Appl. Environ. Microbiol. 66 3686–3691PubMedCrossRefGoogle Scholar
  504. Wouters, J. A., F. M. Rombouts, O. P. Kuipers, W. M. de Vos, and T. Abee. 2000b The role of cold-shock proteins in low-temperature adaptation of food-related bacteria System. Appl. Microbiol. 23 165–173CrossRefGoogle Scholar
  505. Xia, B., J. P. Etchegaray, and M. Inouye. 2001a Nonsense mutations in cspA cause ribosome trapping leading to complete growth inhibition and cell death at low temperature in Escherichia coli J. Biol. Chem. 276 35581–35588PubMedCrossRefGoogle Scholar
  506. Xia, B., H. Ke, and M. Inouye. 2001b Acquirement of cold sensitivity by quadruple deletion of the cspA family and its suppression by PNPase S1 domain in Escherichia coli Molec. Microbiol. 40 179–188CrossRefGoogle Scholar
  507. Xia, B., H. Ke, W. Jiang, and M. Inouye. 2002 The Cold Box stem-loop proximal to the 5’-end of the Escherichia coli cspA gene stabilizes its mRNA at low temperature J. Biol. Chem. 277 6005–6011PubMedCrossRefGoogle Scholar
  508. Xia, B., H. Ke, U. Shinde, and M. Inouye. 2003 The role of RbfA in 16S rRNA processing and cell growth at low temperature in Escherichia coli J. Molec. Biol. 332 575–584PubMedCrossRefGoogle Scholar
  509. Xu, Y., G. Feller, C. Gerday, and N. Glansdorff. 2003a Metabolic enzymes from psychrophilic bacteria: challenge of adaptation to low temperatures in ornithine carbamoyltransferase from Moritella abyssi J. Bacteriol. 185 2161–2168PubMedCrossRefGoogle Scholar
  510. Xu, Y., G. Feller, C. Gerday, and N. Glansdorff. 2003b Moritella cold-active dihydrofolate reductase: are there natural limits to optimization of catalytic efficiency at low temperature? J. Bacteriol. 185 5519–5526PubMedCrossRefGoogle Scholar
  511. Xu, Y., Y. Nogi, C. Kato, Z. Liang, H. J. Ruger, D. De Kegel, and N. Glansdorff. 2003c Psychromonas profunda sp. nov., a psychropiezophilic bacterium from deep Atlantic sediments Int. J. Syst. Evol. Microbiol. 53 527–532PubMedCrossRefGoogle Scholar
  512. Yamada, M., H. Nagamitsu, H. Izu, K. Nakamura, and A. A. Talukder. 2002 Characterization of the ves gene, which is expressed at a low temperature in Escherichia coli J Molec. Microbiol. Biotechnol 4 163–169Google Scholar
  513. Yamanaka, K., T. Mitani, T. Ogura, H. Niki, and S. Hiraga. 1994 Cloning, sequencing, and characterization of multicopy suppressors of a mukB mutation in Escherichia coli Molec. Microbiol. 13 301–312CrossRefGoogle Scholar
  514. Yamanaka, K., and M. Inouye. 1997 Growth-phase-dependent expression of cspD, encoding a member of the CspA family in Escherichia coli J. Bacteriol. 179 5126–5130PubMedGoogle Scholar
  515. Yamanaka, K., L. Fang, and M. Inouye. 1998 The CspA family in Escherichia coli: Multiple gene duplication for stress adaptation Molec. Microbiol. 27 247–255CrossRefGoogle Scholar
  516. Yamanaka, K. 1999a Cold shock response in Escherichia coli J. Molec. Microbiol. Biotechnol. 1 193–202Google Scholar
  517. Yamanaka, K., M. Inouye, and S. Inouye. 1999b Identification and characterization of five cspA homologous genes from Myxococcus xanthus Biochim. Biophys. Acta 1447 357–365PubMedCrossRefGoogle Scholar
  518. Yamanaka, K., M. Mitta, and M. Inouye. 1999c Mutation analysis of the 5’ untranslated region of the cold shock cspA mRNA of Escherichia coli J. Bacteriol. 181 6284–6291PubMedGoogle Scholar
  519. Yamanaka, K., and M. Inouye. 2001a Induction of CspA, an E. coli major cold-shock protein, upon nutritional upshift at 37°C Genes Cells 6 279–290PubMedCrossRefGoogle Scholar
  520. Yamanaka, K., and M. Inouye. 2001b Selective mRNA degradation by polynucleotide phosphorylase in cold shock adaptation in Escherichia coli J. Bacteriol. 183 2808–2816PubMedCrossRefGoogle Scholar
  521. Yamanaka, K., W. Zheng, E. Crooke, Y. H. Wang, and M. Inouye. 2001c CspD, a novel DNA replication inhibitor induced during the stationary phase in Escherichia coli Molec. Microbiol. 39 1572–1584CrossRefGoogle Scholar
  522. Yi, H., H. I. Yoon, and J. Chun. 2005 Sejongia antarctica gen. nov., sp. nov. and Sejongia jeonii sp. nov., isolated from the Antarctic Int. J. Syst. Evol. Microbiol. 55 409–416PubMedCrossRefGoogle Scholar
  523. Yoneta, M., T. Sahara, K. Nitta, and Y. Takada. 2004 Characterization of chimeric isocitrate dehydrogenases of a mesophilic nitrogen-fixing bacterium, Azotobacter vinelandii, and a psychrophilic bacterium, Colwellia maris Curr. Microbiol. 48 383–388PubMedCrossRefGoogle Scholar
  524. Yumoto, I., T. Kusano, T. Shingyo, Y. Nodasaka, H. Matsuyama, and H. Okuyama. 2001a Assignment of Pseudomonas sp. strain E-3 to Pseudomonas psychrophila sp. nov., a new facultatively psychrophilic bacterium Extremophiles 5 343–349PubMedCrossRefGoogle Scholar
  525. Yumoto, I., K. Yamazaki, M. Hishinuma, Y. Nodasaka, A. Suemori, K. Nakajima, N. Inoue, and K. Kawasaki. 2001b Pseudomonas alcaliphila sp. nov., a novel facultatively psychrophilic alkaliphile isolated from seawater Int. J. Syst. Evol. Microbiol. 51 349–355PubMedGoogle Scholar
  526. Yumoto, I., A. Nakamura, H. Iwata, K. Kojima, K. Kusumoto, Y. Nodasaka, and H. Matsuyama. 2002 Dietzia psychralcaliphila sp. nov., a novel, facultatively psychrophilic alkaliphile that grows on hydrocarbons Int. J. Syst. Evol. Microbiol. 52 85–90PubMedGoogle Scholar
  527. Yumoto, I., K. Hirota, Y. Nodasaka, Y. Yokota, T. Hoshino, and K. Nakajima. 2004 Alkalibacterium psychrotolerans sp. nov., a psychrotolerant obligate alkaliphile that reduces an indigo dye Int. J. Syst. Evol. Microbiol. 54 2379–2383PubMedCrossRefGoogle Scholar
  528. Zangrossi, S., F. Briani, D. Ghisotti, M. E. Regonesi, P. Tortora, and G. Dehò. 2000 Transcriptional and post-transchriptional control of polynucleotide phosphorylase during cold acclimation in Escherichia coli Molec. Microbiol. 36 1470–1480CrossRefGoogle Scholar
  529. Zeeb, M., and J. Balbach. 2003a Single-stranded DNA binding of the cold-shock protein CspB from Bacillus subtilis: NMR mapping and mutational characterization Prot. Sci. 12 112–123CrossRefGoogle Scholar
  530. Zeeb, M., M. H. Jacob, T. Schindler, and J. Balbach. 2003b 15N relaxation study of the cold shock protein CspB at various solvent viscosities J. Biomol. NMR 27 221–234PubMedCrossRefGoogle Scholar
  531. Zhao, T., G. O. Ezeike, M. P. Doyle, Y. C. Hung, and R. S. Howell. 2003 Reduction of Campylobacter jejuni on poultry by low-temperature treatment J. Food Prot. 66 652–655PubMedGoogle Scholar
  532. Zhou, H. X., and F. Dong. 2003 Electrostatic contributions to the stability of a thermophilic cold shock protein Biophys. J. 84 2216–2222PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Siegfried Scherer
  • Klaus Neuhaus

There are no affiliations available

Personalised recommendations