Advertisement

Magnetotactic Bacteria

  • Stefan Spring
  • Dennis A. Bazylinski

Introduction

Magnetotactic bacteria are Gram-negative, motile prokaryotes that synthesize intracellular crystals of magnetic iron oxide or iron sulfide minerals. These apparently membrane-bounded crystals are called magnetosomes (Balkwill et al., 1980) and cause the bacteria to orient and migrate along geomagnetic field lines. Magnetotactic bacteria are indigenous in sediments or stratified water columns where they occur predominantly at the oxic-anoxic transition zone (OATZ) and the anoxic regions of the habitat or both. They represent a diverse group of microorganisms with respect to morphology, physiology and phylogeny. Despite the efforts of a number of different research groups, only a few representatives of this group of bacteria have been isolated in axenic culture since their discovery by (Richard P. Blakemore, 1975), and even fewer have been adequately described in the literature. Therefore, little is known about their metabolic plasticity, whereas their diverse morphology...

Keywords

Magnetotactic Bacterium Magnetite Crystal Geomagnetic Field Line cbbL Gene Flagellar Rotation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

978-0-387-30742-8_26_MOESM1_ESM.mov
Sequence showing magnetotactic spirilla displaying axial magnetotaxis
978-0-387-30742-8_26_MOESM2_ESM.mov
Sequence showing magnetotactic cocci displaying polar magnetotaxis

Sequence showing the typical “ping-pong” motility of the MMP

Literature Cited

  1. Balkwill, D. L., D. Maratea, and R. P. Blakemore. 1980 Ultrastructure of a magnetic spirillum J. Bacteriol. 141 1399–1408PubMedGoogle Scholar
  2. Bazylinski, D. A., R. B. Frankel, A. J. Garratt-Reed, and S. Mann. 1988 Anaerobic Production of magnetite by a marine magnetotactic bacterium Nature 334 518–519CrossRefGoogle Scholar
  3. Bazylinski, D. A., R. B. Frankel, A. J. Garratt-Reed, and S. Mann. 1990 Biomineralizationof iron-sulfides in magnetotactic bacteria from sulfidic environments In: R. B. Frankel and R. P. Blakemore (Eds.) Iron Biominerals Plenum Press New York, NY 239–255Google Scholar
  4. Bazylinski, D. A., and R. B. Frankel. 1992 Production of iron sulfide minerals by magnetotactic bacteria from sulfidic environments In: H. C. W. Skinner, and Fitzpatrick (Eds.) Biomineralization Processes of Iron and Manganese: Modern and Ancient Environments Catena-Verlag Cremlingen-Destedt, Germany 147–159Google Scholar
  5. Bazylinski, D. A., A. J. Garratt-Reed, A. Abedi, and R. B. Frankel. 1993aCopper association with iron sulfide magnetosomes in a magnetotactic bacterium Arch. Microbiol. 160 35–42Google Scholar
  6. Bazylinski, D. A., B. R. Heywood, S. Mann, and R. B. Frankel. 1993bFe3O4 and Fe3S4 in a bacterium Nature 366 218–219CrossRefGoogle Scholar
  7. Bazylinski, D. A., A. Garratt-Reed, and R. B. Frankel. 1994 Electron-microscopic studies of magnetosomes in magnetotactic bacteria Microscopy Res. Tech. 27 389–401CrossRefGoogle Scholar
  8. Bazylinski, D. A., R. B. Frankel, B. R. Heywood, S. Mann, J. W. King, P. L. Donaghay, and A. K. Hanson. 1995 Controlled biomineralization of magnetite (Fe3O4) and greigite (Fe3S4) in a magnetotactic bacterium Appl. Environ. Microbiol. 61 3232–3239PubMedGoogle Scholar
  9. Berner, R. A. 1967 Thermodynamic stability of sedimentary iron sulfides Am. J. Sci. 265 773–785CrossRefGoogle Scholar
  10. Berner, R. A. 1970 Sedimentary pyrite formation Am. J. Sci. 268 1–23CrossRefGoogle Scholar
  11. Berner, R. A. 1974 Iron sulfides in Pleistocene deep Black Sea sediments and their palaeooceanographic significance In: E. T. Degens, and D. A. Ross (Eds.) The Black Sea: Geology, Chemistry and Biology AAPG Memoirs 20 American Association of Petroleum Geologists Tulsa, OK 524–531Google Scholar
  12. Bertani, L. E., J. S. Huang, B. A. Weir, and J. L. Kirschvink. 1997 Evidence for two types of subunits in the bacterioferretin of Magnetospirillum magnetotacticum Gene 201 31–36PubMedCrossRefGoogle Scholar
  13. Blakemore, R. P. 1975 Magnetotactic bacteria Science 190 377–379PubMedCrossRefGoogle Scholar
  14. Blakemore, R. P., D. Maratea, and R. S. Wolfe. 1979 Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium J. Bacteriol. 140 720–729PubMedGoogle Scholar
  15. Blakemore, R. P. 1982 Magnetotactic bacteria Ann. Rev. Microbiol. 36 217–238CrossRefGoogle Scholar
  16. Blakemore, R. P., K. A. Short, D. A. Bazylinski, C. Rosenblatt, and R. B. Frankel. 1985 Microaerobic conditions are required for magnetite formation within Aquaspirillum magnetotacticum Geomicrobiol. J. 4 53–71CrossRefGoogle Scholar
  17. Blakemore, R. P., N. A. Blakemore, D. A. Bazylinski, and T. T. Moench. 1989 Magnetotactic bacteria In: J. T. Staley et al. (Eds.) [{http://www.cme.msu.edu/bergeys/}Bergey’s Manual of Systematic Bacteriology’ 3 Williams and Wilkins Baltimore, MD 1882–1889Google Scholar
  18. Bulte, J. W. M., and R. A. Brooks. 1997 Magnetic nanoparticles as contrast agents for imaging In: U. Häfeli, W. Schütt, J. Teller, and M. Zborowski (Eds.) Scientific and Clinical Applications of Magnetic Carriers Plenum Press New York, NY 527–543Google Scholar
  19. Burgess, J. G., R. Kawaguchi, T. Sakaguchi, R. H. Thornhill, and T. Matsunaga. 1993 Evolutionary relationships among Magnetospirillum strains inferred from phylogenetic analysis of 16S rRNA sequences J. Bacteriol. 175 6689–6694PubMedGoogle Scholar
  20. Bulte, J. W. M., and R. A. Brooks. 1997 Magnetic nanoparticles as contrast agents for imaging Häfeli, U., Schütt, W., Teller, J., Zborowski, M. Scientific and clinical applications of magnetic carriers Plenum Press New York 527–543Google Scholar
  21. Butler, R. F., and S. K. Banerjee. 1975 Theoretical single-domain grain size range in magnetite and titanomagnetite J. Geophys. Res. 80 4049–4058CrossRefGoogle Scholar
  22. Chang, S.-B. R., and J. L. Kirschvink. 1989aMagnetofossils, the magnetization of sediments, and the evolution of magnetite biomineralization Ann. Rev. Earth Planet Sci. 17 169–195CrossRefGoogle Scholar
  23. Chang, S.-B. R., J. F. Stolz, J. L. Kirschvink, and S. M. Awramik. 1989bBiogenic magnetite in stromatolites. 2: Occurrence in ancient sedimentary environments Precambrian Res. 43 305–312CrossRefGoogle Scholar
  24. Dean, A. J., and D. A. Bazylinski. 1999aCloning and sequencing of the form II ribulose bisphosphate carboxylase/oxygenase (rubisco) gene (cbbM) from the marine magnetotactic bacterium, strain MV-1 In: 96th Ann. Meet. Am. Soc. Microbiol. Abstr. H-207 369Google Scholar
  25. Dean, A. J., and D. A. Bazylinski. 1999bGenome analysis of several magnetotactic bacterial strains using pulsed-field gel electrophoresis Curr. Microbiol. 39 219–225PubMedCrossRefGoogle Scholar
  26. De Graef, M. R., S. Alexeeva, J. L. Snoep, and M. J. T. De Mattos. 1999 The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli J. Bacteriol. 181 2351–2357PubMedGoogle Scholar
  27. DeLong, E. F., R. B. Frankel, and D. A. Bazylinski. 1993 Multiple evolutionary origins of magnetotaxis in bacteria Science 259 803–806PubMedCrossRefGoogle Scholar
  28. Devouard, B., M. Pósfai, X. Hua, D. A. Bazylinski, R. B. Frankel, and P. R. Buseck. 1998 Magnetite from magnetotactic bacteria: size distribution and twining Am. Mineral. 83 1387–1398Google Scholar
  29. Diaz-Rizzi, J. C., and J. L. Kirschvink. 1992 Magnetic domain state and coercivity predictions for biogenic greigite (Fe3S4): A comparison of theory with magnetosome observations J. Geophys. Res. 97 (B12) 17309–17315Google Scholar
  30. Dubbels, B. L., A. J. Dean, and D. A. Bazylinski. 1998 Approaches to and studies in understanding the molecular basis for magnetosome synthesis in magnetotactic bacteria 98th Ann. Meet. Am. Soc. Microbiol. In: Abstr. H-82 290Google Scholar
  31. Farina, M., H. Lins de Barros, D. Motta de Esquivel, and J. Danon. 1983 Ultrastructure of a magnetotactic microorganism Biol. Cell. 48 85–88Google Scholar
  32. Farina, M., D. M. S. Esquivel, and H. G. P. Lins de Barros. 1990 Magnetic iron-sulphur crystals from a magnetotactic microorganism Nature 343 256–258CrossRefGoogle Scholar
  33. Fassbinder, J. W. E., H. Stanjek, and H. Vali. 1990 Occurrence of magnetic bacteria in soil Nature 343 161–162PubMedCrossRefGoogle Scholar
  34. Fassbinder, J. W. E., and H. Stanjek. 1993 Occurrence of bacterial magnetite in soils from archaeological sites Archaeologia Polona 31 117–128Google Scholar
  35. Frankel, R. B., G. C. Papaefthymiou, R. P. Blakemore, and W. O’Brien. 1983 Fe3O4 precipitation in magnetotactic bacteria Biochim. Biophys. Acta 763 147–159CrossRefGoogle Scholar
  36. Frankel, R. B., D. A. Bazylinski, M. S. Johnson, and B., L. Taylor. 1997 Magneto-aerotaxis in marine coccoid bacteria Biophys. J. 73 994–1000PubMedCrossRefGoogle Scholar
  37. Frankel, R. B., D. A. Bazylinski, and D. Schüler. 1998 Biomineralization of magnetic iron minerals in magnetotactic bacteria J. Supramolecular Science 5 383–390CrossRefGoogle Scholar
  38. Funaki, M., H. Sakai, and T. Matsunaga. 1989 Identification of the magnetic poles on strong magnetic grains from meteorites using magnetotactic bacteria J. Geomagn. Geoelectr. 41 77–87CrossRefGoogle Scholar
  39. Funaki, M., H. Sakai, T. Matsunaga, and S. Hirose. 1992 The S pole distribution on magnetic grains in pyroxenite determined by magnetotactic bacteria Phys. Earth Planet. Int. 70 253–260CrossRefGoogle Scholar
  40. Futschik, H. Pfützner, A. Doblander, P. Schönhuber, T. Dobeneck, N. Petersen, and H. Vali. 1989 Why not use magnetotactic bacteria for domain analyses? Phys. Scr. 40 518–521CrossRefGoogle Scholar
  41. Gorby, Y. A., T. J. Beveridge, and R. P. Blakemore. 1988 Characterization of the bacterial magnetosome membrane J. Bacteriol. 170 834–841PubMedGoogle Scholar
  42. Heywood, B. R., D. A. Bazylinski, A. J. Garratt-Reed, S. Mann, and R. B. Frankel. 1990 Controlled biosynthesis of greigite (Fe3O4) in magnetotactic bacteria Naturwiss. 77 536–538CrossRefGoogle Scholar
  43. Heywood, B. R., S. Mann, and R. B. Frankel. 1991 Structure, morphology and growth of biogenic greigite (Fe3S4) In: M. Alpert, P. Calvert, R. B. Frankel, P. Rieke, and D. Tirrell (Eds.) Materials Synthesis Based on Biological Processes Materials Research Society Pittsburgh, PA 93–108Google Scholar
  44. Huettel, M., S. Forster, S. Kloser, and H. Fossing. 1996 Vertical migration in the sediment-dwelling sulfur bacteria Thioploca spp. in overcoming diffusion limitations Appl. Environ. Microbiol. 62 1863–1872PubMedGoogle Scholar
  45. Iida, A., and J. Akai. 1996 Crystalline sulfur inclusions in magnetotactic bacteria Sci. Rep. Niigata Univ. Ser. E (Geology) 11 35–42Google Scholar
  46. Kawaguchi, R., J. G. Burgess, T. Sakaguchi, H. Takeyama, R. H. Thornhill, and T. Matsunaga. 1995 Phylogenetic analysis of a novel sulfate-reducing magnetic bacterium, RS-1, demonstrates its membership of the β-Proteobacteria FEMS Microbiol. Lett. 126 277–282PubMedGoogle Scholar
  47. Kimble, L. K., and D. A. Bazylinski. 1996 Chemolithoautotrophy in the marine magnetotactic bacterium, strain MV-1 In: Ann. Meet. Am. Soc. Microbiol. Abstr. K-174Google Scholar
  48. Mann, S., R. B. Frankel, and R. P. Blakemore. 1984aStructure, morphology and crystal growth of bacterial magnetite Nature 405 405–407CrossRefGoogle Scholar
  49. Mann, S., T. T. Moench, and R. J. P. Williams. 1984bA high resolution electron microscopic investigation of bacterial magnetite Proc. R. Soc. London B 221 385–393CrossRefGoogle Scholar
  50. Mann, S., N. H. C. Sparks, and R. P. Blakemore. 1987aUltrastructure and characterization of anisotropic inclusions in magnetotactic bacteria Proc. R. Soc. London B 231 469–476CrossRefGoogle Scholar
  51. Mann, S., N. H. C. Sparks, and R. P. Blakemore. 1987bStructure, morphology and crystal growth of anisotropic magnetite crystals in magnetotactic bacteria Proc. R. Soc. London B 231 477–487CrossRefGoogle Scholar
  52. Mann, S., and R. B. Frankel. 1989 Magnetite biomineralization in unicellular organisms In: S. Mann, J. Webb, and R. J. P. Williams (Eds.) Biomineralization: Chemical and Biochemical Perspectives VCH Publishers New York, NY 389–426Google Scholar
  53. Mann, S., N. C. H. Sparks, and R. G. Board. 1990aMagnetotactic bacteria: Microbiology, biomineralization, palaeomagnetism, and biotechnology Adv. Microbial Phys. 31 125–181CrossRefGoogle Scholar
  54. Mann, S., N. C. H. Sparks, R. B. Frankel, D. A. Bazylinski, and H. W. Jannasch. 1990bBiomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium Nature 343 258–261CrossRefGoogle Scholar
  55. Mann, S., N. C. H. Sparks, and V. J. Wade. 1990cCrystallochemical control of iron oxide biomineralization In: R. B. Frankel and R. P. Blakemore (Eds.) Iron Biominerals Plenum Press New York, NY 21–49Google Scholar
  56. Maratea, D., and R. P. Blakemore. 1981 Aquaspirillum magnetotacticum sp. nov., a magnetic spirillum Int. J. Syst. Bacteriol. 31 452–455CrossRefGoogle Scholar
  57. Matsuda, T., J. Endo, N. Osakabe, A. Tonomura, and T. Arii. 1983 Morphology and structure of biogenic magnetite particles Nature 302 411–412CrossRefGoogle Scholar
  58. Matsunaga, T., and S. Kamiya. 1987 Use of magnetic particles isolated from magnetotactic bacteria for enzyme immobilization Appl. Microbiol. Biotechnol. 26 328–332CrossRefGoogle Scholar
  59. Matsunaga, T. 1991aApplications of bacterial magnets Tibtech 9 91–95CrossRefGoogle Scholar
  60. Matsunaga, T., T. Sakaguchi, and F. Tadokoro. 1991bMagnetite formation by a magnetic bacterium capable of growing aerobically Appl. Microbiol. Biotechnol. 35 651–655CrossRefGoogle Scholar
  61. Matsunaga, T., C. Nakamura, J. G. Burgess, and S. Sode. 1992 Gene transfer in magnetic bacteria: Transposon mutagenesis and cloning of genomic DNA fragments required for magnetosome synthesis J. Bacteriol. 174 2748–2753PubMedGoogle Scholar
  62. Matsunaga, T., and N. Tsujimura. 1993 Respiratory inhibitors of a magnetic bacterium Magnetospirillum sp. AMB-1 capable of growing aerobically Appl. Microbiol. Biotechnol. 39 368–371Google Scholar
  63. McFadden, B. A., and J. M. Shively. 1991 Bacterial assimilation of carbon dioxide by the Calvin cycle In: J. M. Shively, and L. L. Barton (Eds.) Variations in Autotrophic Life Academic Press San Diego, CA 25–49Google Scholar
  64. McKay, D. S., E. K. Gibson Jr., K. L. Thomas-Keprta, H. Vail, C. S. Romanek, S. J. Clemett, X. D. F. Chillier, C. R. Maechling, and R. N. Zare. 1996 Search for past life on Mars: Possible relic biogenic activity in Martian meteorite ALH84001 Science 273 924–930PubMedCrossRefGoogle Scholar
  65. Meldrum, F. C., B. R. Heywood, S. Mann, R. B. Frankel, and D. A. Bazylinski. 1993aElectron microscopy study of magnetosomes in a cultured coccoid magnetotactic bacterium Proc. R. Soc. London B 251 231–236CrossRefGoogle Scholar
  66. Meldrum, F. C., B. R. Heywood, S. Mann, R. B. Frankel, and D. A. Bazylinski. 1993bElectron microscopy study of magnetosomes in two cultured vibroid magnetotactic bacteria Proc. R. Soc. London B 251 237–242CrossRefGoogle Scholar
  67. Moench, T. T., and W. A. Konetzka. 1978 A novel method for the isolation and study of a magnetotactic bacterium Arch. Microbiol. 119 203–212PubMedCrossRefGoogle Scholar
  68. Moench, T. T. 1988 Bilophococcus magnetotacticus gen. nov. sp. nov., a motile, magnetic coccus Ant. v. Leeuwenhoek 54 483–496CrossRefGoogle Scholar
  69. Nakamura, N., K. Hashimoto, and T. Matsunaga. 1991 Immunoassay method for the determination of immunoglobin G using bacterial magnetic particles Anal. Chem. 63 268–272PubMedCrossRefGoogle Scholar
  70. Nakamura, N., and T. Matsunaga. 1993aHighly sensitive detection of allergen using bacterial magnetic particles Anal. Chim. Acta 281 585–589CrossRefGoogle Scholar
  71. Nakamura, N., J. G. Burgess, K. Yagiuda, S. Kudo, T. Sakaguchi, and T. Matsunaga. 1993bDetection and removal of Escherichia coli using fluorescein isothiocyanate conjugated monoclonal antibody immobilized on bacterial magnetic particles Anal. Chem. 65 2036–2039PubMedCrossRefGoogle Scholar
  72. Nakamura, C., T. Sakaguchi, S. Kudo, J. G. Burgess, K. Sode, and T. Matsunaga. 1993cCharacterization of iron uptake in the magnetic bacterium Aquaspirillum sp. AMB-1 Appl. Biochem. Biotechnol. 39/40 169–177CrossRefGoogle Scholar
  73. Okuda, Y., K. Denda, and Y. Fukumori. 1996 Cloning and sequencing of a gene encoding a new member of the tetratricopeptide protein family from magnetosomes of Magnetospirillum magnetotacticum Gene 171 99–102PubMedCrossRefGoogle Scholar
  74. Palache, C., H. Berman, and C. Frondel. 1944 Dana’s System of Mineralogy Wiley New York, NY 384Google Scholar
  75. Paoletti, L. C., and R. P. Blakemore. 1986 Hydroxamate production by Aquaspirillum magnetotacticum J. Bacteriol. 167 153–163Google Scholar
  76. Petersen, N., T. von Dobeneck, and H. Vali. 1986 Fossil bacterial magnetite in deep-sea sediments from the South Atlantic Ocean Nature 320 611–615CrossRefGoogle Scholar
  77. Pósfai, M., P. R. Buseck, D. A. Bazylinski, and R. B. Frankel. 1998aReaction sequence of iron sulfide minerals in bacteria and their use as biomarkers Science 280 880–883PubMedCrossRefGoogle Scholar
  78. Pósfai, M., P. R. Buseck, D. A. Bazylinski, and R. B. Frankel. 1998bIron sulfides from magnetotactic bacteria: Structure, compositions, and phase transitions Am. Mineral. 83 1469–1481Google Scholar
  79. Rodgers, F. G., R. P. Blakemore, N. A. Blakemore, R. B. Frankel, D. A. Bazylinski, D. Maratea, and C. Rodgers. 1990aIntercellular structure in a many-celled magnetotactic prokaryote Arch. Microbiol. 154 18–22CrossRefGoogle Scholar
  80. Rodgers, F. G., R. P. Blakemore, N. A. Blakemore, R. B. Frankel, D. A. Bazylinski, D. Maratea, and C. Rodgers. 1990bIntercellular junctions, motility and magnetosome structure in a multicellular magnetotactic procaryote In: R. B. Frankel and R. P. Blakemore (Eds.) Iron Biominerals Plenum Press New York, NY 239–255Google Scholar
  81. Sakaguchi, T., J. G. Burgess, and T. Matsunaga. 1993 Magnetite formation by a sulphate-reducing bacterium Nature 365 47–49CrossRefGoogle Scholar
  82. Schleifer, K. H., D. Schüler, S. Spring, M. Weizenegger, R. Amann, W. Ludwig, and M. Köhler. 1991 The genus Magnetospirillum gen. nov., description of Magnetospirillum gryphiswaldense sp. nov. and transfer of Aquaspirillum magnetotacticum to Magnetospirillum magnetotacticum comb. nov Sytem. Appl. Microbiol. 14 379–385CrossRefGoogle Scholar
  83. Schüler, D., and E. Baeuerlein. 1996 Iron-limited growth and kinetics of iron uptake in Magnetospirillum gryphiswaldense Arch. Microbiol. 166 301–307PubMedCrossRefGoogle Scholar
  84. Schüler, D., and E. Baeuerlein. 1998 Dynamics of iron uptake and Fe3O4 biomineralization during aerobic and microaerobic growth of Magnetospirillum gryphiswaldense J. Bacteriol. 180 159–162PubMedGoogle Scholar
  85. Schüler, D., S. Spring, and D. A. Bazylinski. 1999 Improved technique for the isolation of magnetotactic spirilla from a freshwater sediment and their phylogenetic characterization Syst. Appl. Microbiol. 22 466–471PubMedCrossRefGoogle Scholar
  86. Sparks, N. H. C., S. Mann, D. A. Bazylinski, D. R. Lovley, H. W. Jannasch, and R. B. Frankel. 1990 Structure and morphology of magnetite anaerobically-produced by a marine magnetotactic bacterium and a dissimilatory iron-reducing bacterium Earth Planet. Sci. Lett. 98 14–22CrossRefGoogle Scholar
  87. Spormann, A. M., and R. S. Wolfe. 1984 Chemotactic, magnetotactic, and tactile behaviour in a magnetic spirillum FEMS Microbiol. Lett. 22 171–177CrossRefGoogle Scholar
  88. Spring, S., R. Amann, W. Ludwig, K. H. Schleifer, and N. Petersen. 1992 Phylogenetic diversity and identification of nonculturable magnetotactic bacteria Syst. Appl. Microbiol. 15 116–122CrossRefGoogle Scholar
  89. Spring, S., R. Amann, W. Ludwig, K. H. Schleifer, H. van Gemerden, and N. Petersen. 1993 Dominating role of an unusual magnetotactic bacterium in the microaerobic zone of a freshwater sediment Appl. Environ. Microbiol. 59 2397–2403PubMedGoogle Scholar
  90. Spring, S., R. Amann, W. Ludwig, K. H. Schleifer, D. Schüler, K. Poralla, and N. Petersen. 1994 Phylogenetic analysis of uncultured magnetotactic bacteria from the alpha-subclass of Proteobacteria Syst. Appl. Microbiol. 17 501–508CrossRefGoogle Scholar
  91. Spring, S., U. Lins, R. Amann, K. H. Schleifer, L. C. S. Ferreira, D. M. S. Esquivel, and M. Farina. 1998 Phylogenetic affiliation and ultrastructure of uncultured magnetic bacteria with unusually large magnetosomes Arch. Microbiol. 169 136–147PubMedCrossRefGoogle Scholar
  92. Steinberger, B., N. Petersen, H. Petermann, and D. G. Weiss. 1994 Movement of magnetic bacteria in time-varying magnetic fields J. Fluid Mech. 273 189–211CrossRefGoogle Scholar
  93. Stolz, J. F., S.-B. R. Chang, and J. L. Kirschvink. 1986 Magnetotactic bacteria and single-domain magnetite in hemipelagic sediments Nature 321 849–851CrossRefGoogle Scholar
  94. Stolz, J. F., D. R. Lovley, and S. E. Haggerty. 1990 Biogenic magnetite and the magnetization of sediments J. Geophys. Res. 95 4355–4361CrossRefGoogle Scholar
  95. Stolz, J. F. 1993 Magnetosomes J. Gen. Microbiol. 139 1663–1670Google Scholar
  96. Thornhill, R. H., J. G. Burgess, T. Sakaguchi, and T. Matsunaga. 1994 A morphological classification of bacteria containing bullet-shaped magnetic particles FEMS Microbiol. Lett. 115 169–176CrossRefGoogle Scholar
  97. Towe, K. M., and T. T. Moench. 1981 Electron-optical characterization of bacterial magnetite Earth Planet. Sci. Lett. 52 213–220CrossRefGoogle Scholar
  98. Vali, H., O. Förster, G. Amarantidis, and N. Petersen. 1987 Magnetotactic bacteria and their magnetofossils in sediments Earth Planet. Sci. Lett. 86 389–426CrossRefGoogle Scholar
  99. Wolfe, R. S., R. K. Thauer, and N. Pfennig. 1987 A capillary racetrack method for isolation of magnetotactic bacteria FEMS Microbiol. Lett. 45 31–35CrossRefGoogle Scholar
  100. Wolin, E. A., M. J. Wolin, and R. S. Wolfe. 1963 Formation of methane by bacterial extracts J. Biol. Chem. 238 2882–2886PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Stefan Spring
  • Dennis A. Bazylinski

There are no affiliations available

Personalised recommendations